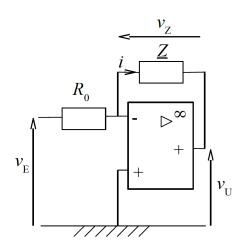
But : mesurer la partie réelle et la partie imaginaire d'une impédance complexe $\underline{Z} = R + jX$ ainsi qu'une estimation de leurs incertitudes.

On travaillera en régime sinusoïdal de pulsation ω , la tension d'entrée, délivrée par un générateur basse fréquence (GBF) sera notée : $v_E(t) = V_E \cos(\omega t)$.

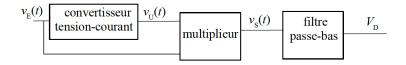
L'impédance \underline{Z} sera constituée d'une résistance $R_1 = 3, 3 \, k\Omega$ associée en parallèle avec un condensateur de capacité $C_1 = 4,7$ nF (ces deux valeurs sont donnée à 10% près), étudié à une fréquence f = 10 kHz (on pourra négliger l'incertitude sur sa valeur ou donner une "petite valeur").


Déterminer les expressions puis les valeurs attendues R_{att} et X_{att} de R et X.

Faire un ou deux fichiers python (ou utiliser le fichier fourni) permettant de déterminer les valeurs de R et X ainsi qu'une estimation de leurs incertitudes.

I - Convertisseur tension-courant

On utilise le montage représenté ci-contre comportant un amplificateur opérationnel linéaire intégré (ALI) idéal fonctionnant en régime linéaire.


- Établir les relations entre i(t) et $v_E(t)$ d'une part et entre $v_U(t)$ et $v_Z(t)$ d'autre part. Pourquoi appelle-t-on ce montage convertisseur tension-courant?
- Ce montage permet d'obtenir deux tensions, l'une proportionnelle à $v_Z(t)$ et l'autre à i(t).
- Donner l'expression de $v_U(t)$ en fonction de V_E , R_0 , R, X et des fonctions $\cos(\omega t)$ et $\sin(\omega t)$. (on fera bien attention à ne pas mélanger dans les calculs les expressions réelles et les complexes).

II - Mesure de la résistance R

1) Montage

On utilisera le montage schématisé ci-dessous comportant un multiplieur donnant $v_S(t) = k.v_U(t).v_E(t)$ (de constante k = 0,1 V⁻¹) et un filtre passe-bas du premier ordre ne laissant passer que la composante continue (ou valeur moyenne). On choisira $V_E \approx 5$ V.

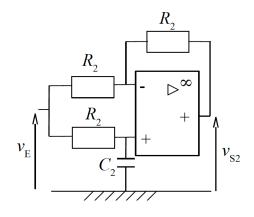
Déterminer les expressions de $v_S(t)$ et de V_D .

En déduire l'expression de la résistance $R = Re(\underline{Z})$ en fonction de k, V_E, R_0 et V_D .

2) Mesure

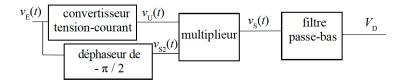
- Réaliser le montage, sans oublier de brancher l'alimentation continue du multiplieur et de l'ALI (3 fils pour chacun) et de la mettre en marche;).
- On réalisera le filtre passe-bas avec une résistance R' et un condensateur de capacité C'.
- Faire le schéma de ce filtre et choisir des valeurs de R' et C' en justifiant ce choix.
- Faire la manipulation et comparer à la valeur attendue.
- Affiner la comparaison avec le calcul d'incertitudes.

III - Mesure de la réactance X


1) Montage déphaseur

- On utilise le montage représenté ci-contre comportant un amplificateur opérationnel linéaire intégré (ALI) idéal fonctionnant en régime linéaire.
- Montrer que la fonction de transfert sinusoïdale se met sous la forme

$$\frac{\underline{v}_{S2}}{\underline{v}_E} = \frac{1 - jR_2C_2\omega}{1 + jR_2C_2\omega}$$


Pourquoi appelle-t-on ce montage un déphaseur?

• Nous prenons $R_2=1.5~\mathrm{k}\Omega$ et $C_2=10~\mathrm{nF}$. Pour quelle fréquence le montage est-il un déphaseur de $-\frac{\pi}{2}$?

2) Montage

On rajoute dans le montage du II-2 le déphaseur de $-\frac{\pi}{2}$ (déjà réalisé sur une plaquette) pour obtenir le montage schématisé ci-dessous.

Déterminer les expressions de $v_{S2}(t)$, $v_S(t)$ et V_D .

En déduire l'expression de la réactance $X = Im(\underline{Z})$ en fonction de k, V_E, R_0 et V_D .

3) Mesure

Réaliser le montage.

Estimer la valeur X_{mes} de X.

Estimer son incertitude, à l'aide de Python. Comparer à la valeur attendue.