PC CHAPITRE 2 : ELECTROSTATIQUE Electromagnétisme

Introduction

Nous étudierons dans ce chapitre 'ensemble des phénomeénes et les lois concernant les propriétés et les interactions
mutuelles des charges électriques au repos, sous entendu dans un référentiel donné. Les distributions de charges sont alors
invariables dans le temps et constituent la source d’un champ électrique permanent (stationnaire) qui est alors appelé champ

électrostatique.

Apres avoir présenté la notion de champ électrostatique et ses propriétés, nous étudierons quelques exemples concrets
et fondamentaux permettant d’introduire des résultats importants dans cette branche de la physique. Nous terminerons

notre étude en mettant en évidence I'existence d’analogies avec le champ gravitationnel.

s
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I- Delaloi de Coulomb au champ électrostatique : cas d’une charge ponctuelle

1) Loide Coulomb

La loi de Coulomb ! décrit l'interaction entre deux charges électriques ponctuelles immobiles dans le vide. Soit la charge

g1, placée au point M, et la charge ¢, placée au point M,.

-

Loi de Coulomb
0 Fi2 2
o>------- ~—Q
M| ul—)z Mz

La force F; /2 exercée par la charge ponctuelle g; sur la charge ponctuelle ¢, a pour expression :

2 7192 5
Fijp = k——t1-

12

1. Charles Augustin de Coulomb (1736-1806), physicien frangais, établit les lois théoriques et expérimentales de 1’électrostatique.
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PC CHAPITRE 2 : ELECTROSTATIQUE Electromagnétisme

Remarque :
e La constante k dépend du milieu. Dans le vide, elle vaut k = 4 o = =9.10° SI, ot &y est la permittivité absolue du vide.
L'unité de k se retrouve a partir de I'expression de la force d’interaction :

2
k= e > dont I'unité est kg.m?.s™*. A2
MM
. -
e Le vecteur unitaire #7;_,, est orienté de M; vers M, sur la droite (M{M,) : 1], = HMIMZH
14vI2

e De méme, la charge g1, subit de la part de la charge g la force :

q192
Uy = k_ﬁ)lHZ = —Fl/z

12 12

ﬁ2/1 = kqllh

Ce résultat est prévisible, car il exprime la troisieme loi de Newton de la mécanique, aussi appelée principe des
actions réciproques.
e Deux charges q; et g, de méme signe se repoussent, alors que deux charges g; et g, de signes contraires s’attirent.

2) Champ et potentiel électrostatique créés par une charge ponctuelle
a) Champ électrostatique

Une charge Q est placée a l'origine du systeme de coordonnées. D’apres la loi de Coulomb, une charge test g placée en
M a distance r subit la force

Qg

F
=5 r
4regr?

qui peut étre identifiée a la partie électrique de la force de Lorentz F= qﬁ déja rencontrée.

7 e
‘ M LT;J" j E
0 9 . Up
i
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7 ©

Défnition :  La charge ponctuelle Q placée en O crée en un point M situé a la distance r de O le
champ électrostatique :

=l Q —
E=———
4regr
s -1 =) N 2 oM
exprimé en V.m™" (norme de E), ol #, = oM

Application :  Proton et électron de I'atome d’hydrogéne peuvent étre modélisés par des charges
ponctuelles (dans une premiere approximation). Dans ces conditions, le champ électrostatique créé
par le noyau au niveau de I'électron (a une distance r ~ 1071° m) est 47% > ~ 10" V.m™', qui est un
champ tres intense ; a titre de comparaison le champ électrique au sommet d’'un clocher par temps
d’orage peut atteindre 3 MV.m=1.

Remarque :
e On remarque que le champ électrostatique créé par une charge positive et celui créé par une charge négative ont des
sens opposés (signe de qp).
e On constate de plus que lorsque M et O sont confondus, r — 0 et le champ diverge : donc le champ n’est pas défini
sur la charge.
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b) Potentiel électrostatique

. =2 . . . . N
On peut également ajouter que la force F ci-dessus se met sous la forme d’un gradient, manifestation de son caractere
conservatif :

= Qq > Qq _ )
b= 4egr? grad dmegr| gradE,
Comme F = qﬁ, il vient :
E = —grad
-8t (4n€0r)

Défnition :  Le potentiel électrostatique V est défini par :

- |
E=-gradV
P A ReTENIR

Le potentiel électrostatique créé par une charge ponctuelle Q & une distance r de celle-ci est

Remarque :
V est défini a une constante pres, tout comme 1’énergie potentielle E, = qV. Le choix opéré ici consiste a fixer 1’origine
d’énergie potentielle a une distance infinie de Q.

3) Principe de superposition : cas d'un ensemble de charges ponctuelles

Soient N charges ponctuelles Q; placées respectivement aux points O;.
D’apres le théoreme de superposition, les champs électrostatiques créés au point M par les N charges s’ajoutent.

Définition :
S
Le champ E créé en M par N charges ponctuelles Q; placées en O; s’écrit :
N
— dmegr:
ouil; = ? = ”g—%m est le vecteur unitaire de la droite (O;M) dirigé de O; vers M.

On peut également appliquer ce principe de superposition a la fonction potentiel électrostatique.
Le potentiel électrostatique V créé en un point M par un ensemble de N charges potentielles Q; placées en O; (avec
r; = O;M) vaut :
N
Qi

V(M) =
M) P 4megr;

Lorsque les points M et O; sont confondus, 7; — 0 etle potentiel diverge : le potentiel n’est donc pas défini (on a également
imposé la nullité du potentiel électrostatique lorsque M est trés loin de ’'assemblée de charges ponctuelles.).
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4) Circulation du champ électrostatique ; conséquence

Considérons deux points M; et My, ainsi qu'un point O au niveau duquel on a une charge ponctuelle Q. Les points M;
et M, sont a une distance respective r; et 7, de O. On peut calculer la circulation du champ électrostatique E entre M et M,
qui correspond a la quantité :
M 5=
C= f Ed¢
M,

_)
d¢ est le vecteur déplacement élémentaire le long du chemin (imaginaire) entre M; et M5.

Mz — V(MZ)
C=- grad V.d{ = —f dV = V(M,) — V(M)
M1 V(Ml)
cette quantité ne dépend donc pas du chemin suivi pour aller de M; a M». De plus, si le chemin suivi est fermé (M; = M,)
et on obtient C = 0

BFropricté
La circulation du champ électrostatique ne dépend pas du chemin suivi et est nulle le long d'un
contour fermé. On dit que le champ électrostatique est un champ a circulation conservative.

La conséquence essentielle du caractere conservatif de la circulation du champ électrostatique est la suivante : calculons
cette circulation sur un contour fermé % et utilisons le théoréme de Stokes (vu en mécanique des fluides!)

56 E@:o:ff ot E.dsS
@) ©

ol S est la surface enfermée par le contour fermé %'. Nous constatons ainsi que le rotationnel de ce champ est nul en tout
point M de I'espace ot il est défini.

&. yopw’e?é c

Le champ électrostatique vérifie I'équation locale

rotE =0

Remarque :

e Nous avons établi plusieurs résultats et propriétés fondamentales de 1’électrostatique, en prenant comme sources
du champ une ou plusieurs charges discretes. Tous ces résultats se généralisent a des distributions continues de
charge. Les résultats qui suivront concerneront aux- aussi a la fois les distributions de charges discretes et continues.

e La circulation du champ électrique qui ne dépend pas du chemin suivi nous donne un argument supplémentaire

5=
pour justifier 1’existence du potentiel électrostatique, car le travail W de la force électrostatique est égal a —gC (F.d¢
- —>
au lieu de E.d¢ dans l'intégrale ci-dessus).

. . —_— 2 = . . .s . . .
e ['équation ci-dessus rot E = 0 est un cas particulier de la premiére équation de Maxwell que nous rencontrons : il
s’agit de I'équation de Maxwell-Faraday de 1’électrostatique.

II - Propriétés de symétrie et d’invariance des sources

1) Distributions de charge

Les distributions de charge peuvent étre discrétes (comme vu dans le I) ou continues. Dans ce dernier cas, la description
naturelle est la donnée du champ de densité volumique de charge p(M).

Néanmoins, il arrive parfois que certaines dimensions de la distribution soient négligeables devant d’autres. Ainsi, une
couche de faible épaisseur (devant sa longueur et sa largeur) est assimilée a une nappe bidimensionnelle, et un cable de
petit rayon (devant sa longueur) a un fil.

La distribution de charge est alors caractérisée par la densité surfacique de charge o(M) ou la densité linéique de charge
AM)
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Exemple : Pour une nappe d’épaisseur e et de densité volumique de charge p uniforme, la charge 0Q dans le volume

dS.e est 0Q = pedS; dans le cadre d'une modélisation surfacique, on note o = p.e la densité surfacique de charge et alors
0Q = odS.

Exemple : Pour un cable de section s et de densité volumique de charge p uniforme, la charge 6Q" dans le volume d¢.s
est 6Q’ = psd(; dans le cadre d’une modélisation linéique, on note A = p.s la densité linéique de charge et alors 6Q’ = AdC.

2) Invariance par une transformation

Défnition :
Un objet est invariant par une transformation lorsque son image est confondue avec 1'objet de
départ.

Exemple :
o Plan infini uniformément chargé :

pour le plan orthogonal a (Oz), la distribution est invariante par toutes les translations d’axe (Ox) et (Oy), donc p(M)
est indépendante des variables x et y. Ainsi p(z) en coordonnées cartésiennes.
o Charge ponctuelle :

La distribution est invariante par toutes les rotations autour de 1’origine (ot se trouve la charge), donc p(M) est
indépendante des variables 0 et ¢. Ainsi p(r) en coordonnées sphériques.
o boule uniformément chargée :

La distribution est invariante par toutes les rotations autour de 1’origine (oi1 se trouve la charge), donc p(M) est
indépendante des variables 6 et ¢. Ainsi p(r) en coordonnées sphériques.
o cylindre homogene infini d’axe (Oz) :

La distribution est invariante par toute rotation d’angle 6 quelconque autour de 1’axe (Oz) et par toute translation
d’axe (Oz), donc p(M) est indépendante des variables 0 et z. Ainsi p(r) en coordonnées cylindriques.

o disque uniformément chargé d’axe (Oz) :
La distribution est invariante par toute rotation d’angle 6 quelconque autour de I’axe (Oz), donc p(M) est indépendante
de la variable 0. Ainsi p(r, z) en coordonnées cylindriques.

3) Considérations de symétries

Défnition :
— (I1,) est plan de symétrie de la distribution de charges si la densité volumique de charge est
identique de part et d’autre de (Il,), c’est-a-dire si elle est inchangée par réflexion a travers (I1).
— (ILL) est plan d’antisymétrie de la distribution de charges si la densité volumique de charge est
changée en son opposée par réflexion a travers (I1_) : on parle de conjugaison de charge.

Par exemple, le plan médiateur du segment reliant les deux charges d"un doublet de deux charges identiques est un plan
de symétrie de la distribution de charges.

Au contraire, le plan médiateur du segment reliant les deux charges d’un doublet de deux charges opposées est un plan
d’antisymétrie de la distribution de charges.

Remarque :
Lorsqu’une distribution de charges admet un plan d’antisymétrie, sa charge totale est nécessairement nulle. En effet,
on peut alors associer deux a deux les éléments de volume symétriques 1'un de I'autre par ce plan qui portent donc des
charges opposées.

Page 5 2024/2025



PC CHAPITRE 2 : ELECTROSTATIQUE Electromagnétisme

Exemple :
o Plan infini uniformément chargé :
pour le plan orthogonal a (Oz), la distribution de charges admet pour plans de symétries le plan xOz (et tous les

paralléles), ainsi que le plan yOz (et tous les paralleles).
o Charge ponctuelle :

La distribution de charges admet comme plans de symétrie tous les plans qui passent par 1’origine O ot se trouve la
charge ponctuelle.
o boule uniformément chargée :
La distribution de charges admet comme plans de symétrie tous les plans qui passent par le centre O de la boule.
o cylindre homogene infini d’axe (Oz) :
La distribution de charges admet pour plans de symétrie, tous les plans orthogonaux a (Oz)

4) Principe de Curie et conséquence pour le champ

@vi%ci«pe :
Principe de Curie : les symétries des causes se retrouvent dans les effets qu’elles produisent.

ConsEQUENCE : d’apres ce principe de Curie, le champ électrostatique hérite des symétries de la distribution de charges
qui lui donne naissance, et en particulier de ses invariances.

De plus, soit (IL;) un plan de symétrie de la distribution de charges, P et P’ deux points de la distribution de charges,
symétriques par-rapport au plan, M et M’ deux points de 1'espace symétriques par-rapport au plan. D’apres le principe
—> — - —
de Curie, dEp/(M’) est le symétrique de dEp(M) (il en est de méme pour dEp(M’) et dEp(M)); le champ résultant (par
superposition) Ei (M) sera alors également le symétrique de ﬁ(M’).

— —
Si maintenant on considere le point M” sur le plan de symétrie, dEp est symétrique a dEp : la superposition de ces deux
champs est comprise dans le plan de symétrie, il en est de méme pour la distribution totale.

dEp(M) - = dEp(M')
dEp: Fp
7\4”\ |/

M

i . M
dEp (M) ™

e AER(M)

plan T1

Soit (Il-) un plan d’antisymétrie de la distribution de charges, P et P’ deux points de la distribution de charges,
symétriques par-rapport au plan (les charges en P et P’ sont opposées), M et M’ deux points de l'espace symétriques

par-rapport au plan. D’apres le principe de Curie, dEp (M’) est I’antisymétrique de dEp(M) (il en est de méme pour dEp(M”)
- = =3
et dEp (M)) ; le champ résultant (par superposition) E(M) sera alors également 1’antisymétrique de E(M’).
- —

Si maintenant on considere le point M” sur le plan de symétrie, dEp est antisymétrique a dEp : la superposition de ces
deux champs est orthogonale au plan d’antisymétrie, il en est de méme pour la distribution totale.

- dEp(M')
T aEp .,
EpM) 4 dEP(W
o NN T _-M/
;ﬂ}% . P/ P

charge négative en P

plan IT
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A RETENIR

e Si p(M) ne dépend pas de certaines variables (d’espace...), alors En‘en dépend pas non plus.
e En un point M appartenant a un plan de symétrie de la distribution de charges, E(M) est contenu dans ce

plan; en un point M appartenant a un plan d’antisymétrie de la distribution de charges, E(M) est orthogonal
a ce plan

ATTENTION !! Les propriétés liées a la direction du champ électrostatique sont valables qu’en des points appartenant
aux plans de symétrie ou d’antisymétrie. Les appliquer en dehors de ces plans constitue une erreur classique.
Distributions classiques des exemples précédents :

IIT- Théoréme de Gauss

1) Enoncé et forme locale

Considérons une distribution quelconque de charges dans le vide. Elle crée un champ E dont on veut déterminer
1?expression. Il faudra au préalable étudier les symeétries et invariances, car le théoréme ci-dessous n’est applicable qu’aux
distributions ayant de hautes symétries et invariances. ? ?

Théoréme :
Théoréme de Gauss
Le flux du champ E a travers une surface fermée (S) (appelée surface de Gauss) est proportionnel a

la charge Q;, contenue dans le volume V délimité par la surface (S).

# E’ dT)S _ Qint
(5) €0
Notons V le volume enfermé par la surface fermée (S) et utilisons le théoreme de Green-Ostrogradski :

- > -
5@5 EdS = fff div Edt
) v

Lorsque la distribution de charges est continue, en notant p la densité volumique de charges, on a aussi : Q¢ = f f f pdz.
Le théoreme de Gauss s’écrit donc aussi sous la forme équivalente :

[ oec- & [

P A REeTENIR <
On en déduit alors une formulation locale du théoréme de Gauss :
divE = L
0]
qui porte le nom d’équation de Maxwell-Gauss
N\ J
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2) Meéthode

Considérons une distribution quelconque de charges dans le vide. Elle crée un champ E dont on veut déterminer
I'expression. Apres avoir effectué 1’étude des symétries et invariances, on applique le théoréeme de Gauss pour déterminer
I'expression du champ.

1. Détermination de la forme du champ par une analyse des symétries de la distribution de charges en deux temps :

— détermination des transformations qui laissent la distribution de charges (donc le champ) invariante;
— détermination de la direction du champ en un point M quelconque en cherchant des plans de symétrie ou d’anti-
symétrie pour la distribution de charges passant par M !!

2. Choix d’une surface de Gauss (fermée...) adaptée a la forme du champ ;

3. Calcul du flux de E a travers cette surface fermée et de la charge intérieure ;

4. Conclusion.

3) Exemple : champ créé par un cylindre uniformément chargé
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IV - Propriétés topographiques
1) Définitions

Défnition :
Lignes de champ

Les lignes de champ sont telles qu’en chacun de leurs points M, le vecteur E leur est tangent.

Le long d"une ligne de champ, la valeur du champ E peut varier. Le tracé d"une carte de lignes de champ ne permet donc
d’en connaitre que la direction en tout point. On oriente chaque ligne de champ par une fleche donnant le sens du champ
sur la ligne.

Définition :
Surface équipotentielle (ou iso-potentiel)

Une surface équipotentielle est définie par I’ensemble des points ou la valeur du potentiel électro-
statique reste constante.

2) Champ électrique orienté vers les potentiels décroissants

% 1gne de
R Vs chamy
74

74
< surtace
so V>

surface - i

iso }

Fropricté :  Le long d’une ligne de champ, le champ E est dirigé vers les potentiels décroissants.

3) Champ électrique perpendiculaire aux équipotentielles

& w;m’e?e/ e

Les lignes de champ sont en tout point orthogonales aux équipotentielles

La connaissance de ’ensemble des lignes de champ permet donc de tracer les surfaces équipotentielles, de méme que la
connaissance de 1’ensemble des équipotentielles permet de trouver la direction du champ en tout point.
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4) Conservation du flux électrique en un lieu vide de charge

Sy
\
I
/
S2
S1

Laconséquence estla suivante : 1’évasement des tubes de champ électrostatique loin des sources traduit une diminution
de 'intensité de ce champ.

5) Valeur du champ et surfaces équipotentielles successives

V,=675 V
V,=1230 V
]
[
[
d=1cm

J’ai reproduit une partie d’une carte de champ (voir ci-dessous) en y ajoutant 1’échelle d’espace et deux valeurs du poten-
tiel V. Nous pouvons calculer une valeur moyenne du champ en évaluant le gradient de potentiel entre les équipotentielles

V=VietV=V,:E~ 22 ~555kVim™".

6) Cartes de lignes de champs

Etudions & présent une carte de champ associée a deux charges ponctuelles g :

PointM  ____ [
de champ nul YA . G Ligne
= " de champ
Ligne  ---—--- - N
g > . _(-,lz)

équipotentielle
(trace de la surface
équipotentielle
dans le plan

de la figure)

' Orthogonalité entre — lignes de champ
une ligne de champ

. - — :équipotentielles
et une équipotentielle

— Les lignes de champ ne sont pas des courbes fermées, elles se dirigent ici vers l'infini (elles peuvent aussi se diriger
vers une charge de signe contraire) ;

— Toutes les lignes divergent a partir des charges ponctuelles : ces charges sont donc toutes deux positives; (le
théoréme de Gauss sous sa forme locale fait ressortir que le champ électrostatique diverge depuis sa source si la
densité de charges p y est localement positive.)

— Deux lignes de champ distinctes ne peuvent se couper excepté en un point de champ nul (sinon, le champ devrait
avoir deux directions ou deux sens distincts en ce point!). Le champ est donc ici nul au point M ;

— Les lignes de champ sont symétriques de part et d’autre des plans (I1;) et (I1;) dont on a donné les traces en traits
pointillés dans le plan de la figure : ceci illustre que ce sont deux plans de symétrie pour la distribution de charges
(ici deux charges ponctuelles de méme signe);
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— Leslignes équipotentielles sont orthogonales aux lignes de champ : on peut déduire les lignes équipotentielles d"une
carte de champ et inversement. Les surfaces équipotentielles sont sphériques au voisinage immédiat de chacune des
charges : a proximité d"une charge, le champ global est peu différent de celui créé par cette charge donc radial autour
d’elle. On remarque également qu’a grande distance des deux charges, les équipotentielles tendent vers des spheres
orthogonales aux lignes de champ : a grande distance, la distribution est vue comme une unique charge ponctuelle
Q.

Carte de champ de deux charges de signe contraire :
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