Problème 1 : QCM (d'après ENAC)

1) Partie 1

- 1. B)C)
- 2. A)D)
- 3. B)D)
- 4. D)
- 5. C)
- 6. B)C)

2) Partie 2

- 7. B)C)
- 8. A)
- 9. C)
- 10. B)
- 11. A)D)
- 12. C)

3) Partie 3

- 13. D)
- 14. C)
- 15. B)
- 16. A)
- 17. B)
- 18. A)

4) Partie 4

- 19. B)
- 20. A)D)
- 21. B)
- 22. A)C)
- 23. B)
- 24. A)C)

Problème 2 : Études de transformations d'un gaz parfait

1) Préliminaires

- 1. $PV=nRT,\,P$ en Pa
,Ven m³, nen mol
,Ten K, Ren J.K^{-1}
mol^{-1}.
- 2. H = U + PV = U + nRT, soit $C_{Pm} = C_{Vm} + R$; on obtient $\gamma C_{Vm} = C_{Vm} + R$ ou encore $C_{Vm} = \frac{R}{\gamma 1}$ et donc $C_{Pm} = \gamma C_{Vm} = \frac{R\gamma}{\gamma 1}$
- 3. $\Delta U = nC_{Vm}\Delta T = \frac{nR}{\gamma-1}\Delta T$ (première loi de Joule) $T\mathrm{d}S = \mathrm{d}U + P\mathrm{d}V = \frac{nR}{\gamma-1}\mathrm{d}T + nRT\frac{\mathrm{d}V}{V}, \text{ soit }\mathrm{d}S = \frac{nR}{\gamma-1}\frac{\mathrm{d}T}{T} + nR\frac{\mathrm{d}V}{V} \text{ qui donne le résultat par intégration entre l'état initial et l'état final.}$
- 4. PV = nRT donne, si on utilise la différentielle du log de cette équation : $\frac{dP}{P} + \frac{dV}{V} = \frac{dT}{T}$, ce qui permet de changer de variable dans dS, et mène au résultat après intégration.

- 1. A l'EF, $T_F = T_1$, on a alors $P_1V_1 = nRT_1$ et $2P_1'V_1 = nRT_1$, soit $P_1' = \frac{P_1}{2}$
- 2. La transformation est isotherme, car quasistatique avec contact avec un thermostat, on a donc: $W_1 = -nRT_1 \ln\left(\frac{V_F}{V_I}\right) =$ $-nRT_1\ln(2)$
- 3. $\Delta U_1 = 0$ car $T_F = T_I$, et en appliquant le premier principe au gaz dans l'enceinte, on trouve $Q_1 = -W_1 = nRT_1 \ln(2)$
- 4. Contact avec un thermostat $\Rightarrow S_{e1} = \frac{Q_1}{T_1} = nR \ln(2)$

$$\Delta S_1 = nR \left[\frac{1}{\gamma - 1} \ln \left(\frac{T_F}{T_I} \right) + \ln \left(\frac{V_F}{V_I} \right) \right] = nR \ln(2) = S_{e1}$$

Le deuxième principe donne $\Delta S_1 = S_{e1} + S_{c1} = S_{e1}$, on en déduit que $S_{c1} = 0$, la transformation est donc réversible, ce qui est cohérent, car la transformation est lente + contact avec un thermostat.

Détente de Joule Gay-Lussac

- 1. $\Delta U = W + Q$, or les parois sont athermanes, et le transfert thermique entre le gaz et le vide, lors de la détente, est nul, donc Q=0; de plus les parois sont fixes, la seule paroi mobile est celle entre le gaz et le vide, soit $\delta W=-P_{vide}dV=0$; on obtient alors $\Delta U = 0$, soit $T_1' = T_1$
- 2. Un gaz parfait comme un gaz réel subit une transformation à énergie interne constante; toutefois, la température d'un gaz réel peut (et va) varier au cours de cette transformation, car son énergie interne dépend à la fois de la température et du volume.
- 3. $\Delta S_2 = nR \ln(2)$ pour le mêmes raisons qu'en 1) $S_{e2} = 0$ ici car le système est isolé thermiquement $S_{c2} = nR\ln(2) > 2$
- 4. $\Delta S_2 = \Delta S_1$ qui est tout à fait prévisible car les états initial et final sont identiques, et S est une fonction d'état.

Problème 3 : Problème ouvert

Un verre contient initialement une masse $m_e = 250$ g d'eau à la température 25 °C. Un morceau de glace de masse $m_g = 150$ g et de température -19 °C est ensuite placé dans le verre. Enfin, on supposera que les échanges thermiques avec l'atmosphère sont négligeables.

- 1. Il y a 2 inconnues, il faut faire des hypothèses : soit toute la glace a fondu à l'état final et on a que de l'eau liquide dont on détermine T_f (H1), soit il reste de la glace à l'état final, donc $T_f = 273$ K (0°C...) et il faut déterminer la masse restante. L'idée est qu'une des conclusions sera aberrante.
 - (H1) : 2 systèmes sont mis en contact, l'eau liquide de température $T_{i1} = 298$ K qui se refroidit à T_f , sa variation d'enthalpie sera $\Delta H_1 = m_e.c_e(T_f - T_{i1})$; et de la glace qui se réchauffe de $T_{i2} = 254$ K à 273 K, puis se liquiéfie, puis l'eau liquide se réchauffe à T_f . $\Delta H_2 = m_g.c_g(273 - T_{i2}) + m_g\Delta_{fus}H + m_g.c_e(T_f - 273)$. Le PP pour cette transfo monobare (que l'on supposera également adiabatique, pour simplifier) donne $\Delta H_{tot} = \Delta H_1 + \Delta H_2 = 0$ d'où T_f (données)
 - (H2): 3 systèmes sont mis en contact, l'eau liquide de température $T_{i1} = 298$ K qui se refroidit à 273 K; la glace qui se réchauffe à 273 K et une fraction x qui se liquéfie. $\Delta H_1 = m_e.c_e(273 - T_{i1})$; $\Delta H_2 = m_g.c_g(273 - T_{i2}) + x.m_g\Delta_{fus}H$. Le même argument que ci-dessus permet de trouver x donc la composition du système.
- 2. On applique le deuxième principe.

Donn'ees:

$$\Delta h_{fusion}(0 \, ^{\circ}\text{C}) = 333 \, \text{J.g}^{-1}$$

 $c_{eau} = 4.18 \, \text{J.K}^{-1}.\text{g}^{-1}$
 $c_{glace} = 2.10 \, \text{J.K}^{-1}.\text{g}^{-1}$