EN EXERCICES UNIQUEMENT

OPTIQUE Chapitre 4 : Interférences par division d'amplitude : interféromètre de Michelson

MÉCANIQUE Toute la Mécanique de Sup (hors particules dans (\vec{E}, \vec{B}))

EN QUESTION DE COURS OU EXERCICES

MÉCANIQUE Chapitre 1 : Cinématique du point matériel / Changements de référentiels

- Opérateur gradient : définition et expression dans les 3 systèmes de coordonnées (non démontré en cylindriques et sphériques).
- Trajectoire circulaire : schéma (avec système de coordonnées) et savoir retrouver le vecteur vitesse et accélération dans le cas uniforme ou non.
- Lois de composition des vitesses et des accélérations dans le cas de \mathcal{R}' en translation quelconque dans \mathcal{R} ; notion de point coïncident.
- Lois de composition des vitesses et des accélérations dans le cas de \mathcal{R}' en rotation uniforme dans \mathcal{R} ; notion de point coïncident.

MÉCANIQUE Chapitre 2 : Dynamique du point matériel en référentiel non galiléen

- Forces d'inertie et théorèmes généraux en référentiel non galiléen.
- \mathcal{R}' en translation dans \mathcal{R} : expression des forces d'inertie et exemple du pendule en équilibre dans un train en translation.

- \mathcal{R}' en rotation uniforme d'axe fixe dans \mathcal{R} : expression de \vec{F}_{ie} et E_p associée.
- Relation Fondamentale de la Statique des Fluides en référentiel non galiléen; application à la surface libre d'un liquide dans un véhicule en translation accélérée $\vec{a} = a_0 \vec{u}_x$ (guider l'application).
- Application au référentiel terrestre non galiléen (1) : champ gravitationnel, PFD dans \mathcal{R}_T non galiléen et poids d'un corps.
- Application au référentiel terrestre non galiléen (2) : déviation vers l'Est (exercice guidé).
- Application au référentiel géocentrique non galiléen : théorie statique des marées.

MÉCANIQUE DU SOLIDE Révisions de Sup, cas d'un solide en rotation uniforme autour d'un axe fixe

EN QUESTION DE COURS UNIQUEMENT

MÉCANIQUE DES FLUIDES Chapitre 1 : Cinématique des fluides

- Champ eulérien des vitesse, lignes de champ, tubes de champ : définir l'approche eulérienne, les lignes et tubes de champ.
- Dérivée particulaire de la masse volumique et/ou du champ de vitesse : expressions à l'aide du terme local et convectif.
- Vecteur densité de flux de masse et débit de masse à travers une paroi
- Équation locale de conservation de la masse dans le cas d'un écoulement unidimensionnel
- Théorème de Green-Ostrogradsky et forme intégrale de l'équation de conservation de la masse.
- Écoulement stationnaire, incompressible, irrotationnel : définition et conséquence.

SAVOIR-FAIRE

Les exercices suivants pourront être reposés aux étudiants : TD6, TD7, TD8