PC CHAPITRE 3 : DIFFUSION THERMIQUE Thermodynamique

Introduction

Les analogies physiques des phénomenes de diffusion de particules et de conduction thermique se traduisent par des
équations mathématiques similaires. Nous soulignerons ici I'identité du formalisme mathématique.

Physiquement, les deux phénomeénes se propagent de proche en proche de fagon irréversible. Le premier, la diffusion
particulaire, nait d’un gradient de concentration, comme on I'a vu. La diffusion thermique, nait quant a elle d'un gradient
de température (loi de Fourier).

Le phénomene de diffusion thermique est développé ici notamment pour ses multiples applications domestiques et
industrielles. Il est évidemment trés lié aux enjeux énergétiques d’isolation thermique qui sont une préoccupation actuelle
et une source d’innovation permanente.
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I- Description de la diffusion thermique

1) Les trois modes de transfert thermique

Les transferts thermiques entre le systeme étudié et le milieu extérieur (ou les transferts d’énergie interne a l'intérieur
du systeme) peuvent s’effectuer de trois fagons différentes : la diffusion thermique (ou conduction), la convection et le
rayonnement.

e Dans un milieu matériel macroscopiquementimmobile, la diffusion thermique correspond au déplacement d’énergie
transmis de proche en proche a 1'échelle microscopique (entre atomes, ions ou molécules).
On observe le phénomene de diffusion (ou conduction) thermique dans les milieux ou la température n’est pas
homogene. La diffusion thermique se fait depuis les zones de températures élevées vers les zones de températures
faibles.
Dans les fluides (liquides ou gaz), le phénomene de diffusion thermique est généralement masqué par le phénomene
de convection. En revanche, dans les solides opaques, il est le seul qui intervienne.

e La convection thermique est un déplacement d’énergie di au mouvement macroscopique de matiére.
Le phénomene de convection est observé au sein des milieux fluides (liquides et gaz).

e Le rayonnement thermique est I'énergie transférée aux atomes du systéme étudié par les photons qui constituent ce
rayonnement. Chaque photon absorbé par le systeme apporte I'énergie E = hv.
L’étude du rayonnement thermique sera détaillée ultérieurement.
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PC CHAPITRE 3 : DIFFUSION THERMIQUE Thermodynamique

2) Vecteur densité de flux thermique

Défnition :
On définit le flux thermique ou flux de transfert thermique Q a travers la surface orientée S la

quantité : ¢y, = % ; ce flux correspond a la puissance thermique (transfert thermique par unité de
temps) qui traverse la surface S.

On définit alors un vecteur densité de flux thermique (de maniére analogue a la diffusion de particules, et au vecteur
densité de flux de particules) :

Défnition :  Vecteur densité de flux thermique ]?3

—_—
Le transfert thermique élémentaire 6Q traversant la surface orientée dS pendant df est

PN =
5Q = jo(7,t).dSdt

P - . i . . =
soit dgy, = jo(7,t).dS est le flux thermique élémentaire a travers dS. dS est un vecteur normal

2 . —
(colinéaire a 17) & la surface dS. Le vecteur densité de flux thermique jo s’exprime en W.m™2,
Le flux thermique a travers une surface orientée S est donc

o= [ agn= [ R@nB e Q=( i ]E<ﬁt>.o?s)dt

Physiquement, le vecteur j_;h indique la direction et le sens du transfert thermique et sa norme désigne la puissance
thermique par unité de surface traversant la surface S délimitant le systeme étudié du milieu extérieur.

Cas ot la surface est fermée
Considérons un systéeme thermodynamique contenu dans un volume V déterminé. La surface fermée S enveloppe le
volume V. Chaque élément de surface dS de S a pour vecteur unitaire normal i,y dirigé vers 'extérieur de S.

D’apres la définition du flux thermique ¢y, = %, si le transfert thermique est effectivement recu par le systeme (0Q > 0),
alors le flux est globalement entrant : cela se traduit par ¢y, > 0 (flux entrant).
De méme, si le transfert thermique est cédé par le systeme (6Q < 0), alors le flux est globalement sortant : cela se traduit

par ¢ < 0 (flux sortant). Dans le cas ot le flux est entrant (¢, > 0), le vecteur densité de flux thermique j_é est dirigé vers
I'intérieur du volume V : ainsi le produit scalaire j_)Q(?, t).dS dans 1?expression de ¢y, est négatif.

Inversement, dans le cas ot le flux est sortant (¢y, < 0), le vecteur densité de flux thermique ]'_Eg est dirigé vers l'extérieur
du volume V : le produit scalaire ]'_()3(77’, 1).dS dans l’expression de ¢y, est positif.

-
Ces deux constatations nous ameénent a ajouter un signe "-" dans l'expression de ¢y, pour un systeme fermé, soit (dS

orienté vers l'extérieur) :
>
¢m == (P jo-dS
s

II- Bilan d’énergie

L’idée est de faire un bilan d’énergie de type premier principe, sur un systéeme (élémentaire) de taille mésoscopique.
Nous ferons les hypothéses suivantes :
— alintérieur du systéme élémentaire, une source éventuelle d’énergie thermique, avec un taux pg ;
— les transferts d’énergie du systeme élémentaire avec le milieu extérieur (c’est-a-dire le reste du solide) sont uniquement
dus a la diffusion thermique;
— les phénomeénes observés sont unidimensionnels.
On va chercher a exprimer la conservation de 1’énergie dans les 3 systémes de coordonnées.

1) Coordonnées cartésiennes

Considérons un solide en forme de parallélépipéde rectangle, de volume total V, parallele a I’axe Ox selon sa plus grande
longueur. Dans le plan orthogonal a I’axe Ox, le parallélépipede présente une surface S.
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PC CHAPITRE 3 : DIFFUSION THERMIQUE Thermodynamique

En contact avec deux thermostats de températures différentes Ty et T» (Tq > T>), positionnés respectivement au niveau
des abscisses x; et xp (x2 > x1), le parallélépipede est le siege de diffusion thermique unidirectionnelle dans le sens des x

croissants (car la surface latérale est calorifugée).
Réalisons un bilan énergétique localisé sur un volume élémentaire dt situé entre les deux abscisses x et x + dx, soit dt =

Sdx.

0 e dn)
W gy s
X L i+ / R
T T > » X
0 A S -
X, xl/‘ X+dx X,
(7) & (T)
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2) Cas général

Démontrons 1'équation de conservation également dans le cas

général (a trois dimensions donc). S

On considére comme systéeme un volume V, délimité par une

surface S (fermée donc orientée sortante).

L’énergie interne du volume V entre les instants et {+df vaut ds

(on utilise I'extensivité) :
du(t) = ff (u(t + dt) — u(t))dr
v

Par ailleurs, le transfert thermique sortant du systéme pendant dt est

» 2
6Q = 9%6 jo-dSdt

par définition du flux. S’il y a une source de transfert thermique, en plus, le transfert thermique entrant dans le systéme

sera
»
0Q =— #]Qdet + fff podrdt
Vv

soit, en utilisant le théoreme de Green-Ostrogradski :

5Q = f f IV ([-divjo +po]dr)dt

On utilise alors ces deux expressions dans le premier principe et on obtient le bilan d’énergie interne a 3D avec source :

Lo» Ju
divio +po- =po

Remarque :
Cette expression généralise bien les trois bilans vus au-dessus, en reprenant 1’expression de I'opérateur divergence
dans les trois systemes de coordonnées.

Cartésiennes Cylindriques Sphériques
A = A Ay dA o X — 1I0A) | 104 | A oA — 1I07A) 1 JGin(0)Ag) 194
divA= e+ 5y + 57 | divA= 5= + 057 + 5 | dVA = 25 + rnm — a0 7SIn@) 9p

3) Description thermodynamique du systeme

Il reste dans cette partie a exprimer I'énergie interne du systéme.
Plusieurs cas sont possibles (et apparaissent dans les exercices, a vous de détecter dans quelle situation on veut se
placer...) :
— Dans le cas d'une phase condensée (liquide ou solide), il est commun d’introduire la capacité thermique massique
du systeme. Dans ce cas : du = cdT et donc :

u_ oT
ot ot

— Dans le cas d"un gaz, on pourra introduire cy, la capacité thermique massique a volume constant ; dans ce cas :

du i JaT

ot Vo

— Dans de rares cas (mais ¢a ne veut pas dire "jamais"...) la capacité thermique massique est négligée (lorsqu’un autre
parametre thermodynamique I'emporte, par exemple une chaleur latente) ; dans ce cas

u

E_O

La situation la plus rencontrée reste la premiere, et dans ce cas, ’équation locale de conservation de I'énergie devient :

divip + ca—T—
ViQ Pgt—PQ
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IITI - Loi de Fourier

1) Présentation et énoncé

Comme la loi de Fick, la loi de Fourier est une loi phénoménologique ; c’est-a-dire que son expression essaie de rendre
compte "au mieux" de I’expérience. Cette loi n’est donc pas universelle, comme peut I'étre le bilan d’énergie.

Mathématiquement, nous avons deux inconnues j_é et T (température) reliées par 1’équation de conservation de l’énergie.
II faut donc une autre équations qui relie ces deux inconnues.

( 7

Loi (phénoménologique) de Fourier. Pour rendre compte des observations, Fourier a proposé (1822)

- —_—
jo =-AgradT

ol la constante A est appelé la conductivité thermique et T est la température.

Quelques commentaires sur cette loi :

1. c’est une loi phénoménologique : elle n’a pas de justification théorique. Elle est ainsi valable "lorsqu’elle est valable".
En d’autres termes, c’est une loi qu’on écrit a condition qu’elle suffise a rendre compte du phénomene observé. Sinon,
il faut proposer une autre loi. Commentons que la loi de Fourier est notamment mise facilement en défaut par exemple

—_—
lorsque les inhomogénéités deviennent trop fortes (norme de grad T trop importante) ;

> —_—
2. jo est proportionnel a grad T : ce sont les inhomogénéités qui causent la diffusion, et notamment il n’y a pas de courant

4 =
mésoscopique de diffusion si la température est constante (milieu homogene, soit grad T = 0)

nd B
3. jo est de sens contraire & grad T : la diffusion va des zones de température élevée vers les zones de température basse
(irréversibilité de la diffusion, voir IV...)

2) Conductivité thermique

a) Analyse dimensionnelle

lljoll est en W.m2 (M.T3)

=
llgrad T|| esten Km™! (©.L™1)
soit A esten Wm™1.K™!

A RETENIR

Le coefficient de conductivité thermique A est positif et a pour unité STW.m~1.K~!

b) ODG

La valeur de la conductivité thermique dépend de la nature du milieu de diffusion. Le tableau ci-dessous donne quelques
valeurs dans les conditions usuelles.

Matériau Air | Eau | Béton | Acierinoxydable | Cuivre Bois Verre
A (Wm=tK™1) | 0,026 | 0,56 1,4 15a 60 400 005a025|07a1.3

IV - Régimes stationnaires

1) Conservation du flux (en ’absence de sources internes)

Conservation du flux thermique. En régime stationnaire et en 1’absence de terme d’apparition ou de disparition de
puissance thermique, ’équation locale de conservation s’écrit

divj_;g =0
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PC CHAPITRE 3 : DIFFUSION THERMIQUE Thermodynamique

Au niveau global (macroscopique), cela signifie que ]'_)Q est a flux conservatif :
en utilisant le théoréeme de Green-Ostrogradsky, on en déduit

»
S@Ejg.ds =0
S

On dira que le vecteur densité de flux thermique est a flux conservatif.

Cela signifie que le flux de ]?g est constant le long d"un tube de courant, ou de maniére équivalente, nul a travers une
surface fermée (a 'intérieur de laquelle il n’y a pas de source évidemment) :

conservation du flux thermique

> T2 iy
ff ]Q.d51 = ff ]Q.d52
Sl SZ

G = P

soit

2) Résistance thermique

a) Un premier exemple
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PC CHAPITRE 3 : DIFFUSION THERMIQUE Thermodynamique

b) Définition et lois d’association

Dans 'exemple ci-dessus, le flux thermique est alors proportionnelle a I'écart de température entre les parois. On définit
alors la résistance thermique :

Défnition :
Résistance thermique : elle est définie comme le rapport entre la différence de température (origine
de I'apparition d"un flux thermique) sur le flux thermique (courant de diffusion)

AT
Ry, = —
ons
qui s’exprime en KW~!
Dans I'exemple ci-dessus, on trouve
e
Ry, = —
th= 33

I1 découle de cette définition (similaire a 1’électrocinétique, voir plus loin) des lois d’association, lorsque plusieurs
matériaux sont traversés

g Lo1s D’ASSOCIATION SERIE N
S
J th
T O T3

n =T T2 Th-T 3

Quand plusieurs milieux sont traversés par le méme flux thermique, on peut leur associer une résistance thermique
équivalente :

Rineq = Ring + Ren2

ou plus généralement :

Rth,eq = Z Rth,i
i
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Thermodynamique

Lo1s b’ASSOCIATION PARALLELE

Quand plusieurs milieux sont soumis a la méme différence de température, on peut leur associer une résistance

thermique équivalente :

ou plus généralement :

O J.th
n Sz | Tr

0 B =
4 Tx)
)
T W\'i
- X
0 L

R» @,

11,1
Rineg Ry Runp

Loy L
Rth,eq : Rth,i

O =Dy +Dy
|

¢) Analogie avec 1’électrocinétique

La notion de résistance thermique découle donc de I'analogie que I’on peut faire avec 1’électricité. La résistance électrique
d’un conducteur ohmique est le rapport de la différence de potentiel imposée sur le flux électrique (intensité électrique) qui
le traverse, ce qui est tout a fait similaire a la définition de la résistance thermique.

Grandeur Conduction thermique Conduction électrique
Grandeur transportée Energie interne U Charge électrique q
Loi d’Ohm T1 — Tr = Ry T, —-T,=RIl -2
Résistance Ry =% R = % = ps—L
(on reverra en électrostatique)
v =2 > =
Flux b = [[,joM,).dSy I= [, jeiec(M, 1).dSp

(on reverra en magnétostatique)
Bl

Equation de conservation du flux + fQ =0 + Jelec =0
(on reverra en électrostatique)
Loi de Fourier j_é =-AgradT j_;lec = —ygradV

(on reverra en électrostatique)

Association série

Rineq = Ring + Ry
T

Req =R+ R,

Association paralléele

1
RHLL‘I] Rth,l RHI/Z

I I . T
Ry R "R
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d) Application : double vitrage

Couches de sels
métalliques
semi-conducteurs

sur vitrage intérieur
let extérieur en triple
vitrage] pour limiter les

Exemple pour un double vitrage
4-20G-8 (gamme PVC T84)

déperditions de chaleur
vers lextérieur et
réfléchir vers l'intérieur
les infrarouges

Réflexion
énergie
solaire

Injection de gaz
argon pour une
isolation maximale.

Chaleur
Ivaleur Ug]

Réflexion
Chaleur

Intérieur

$558%

‘ Chauffage

Vitrage 4 mm

Espace 20 mm

Considérons un double vitrage constitué par deux lames de verre d’épaisseur e séparées par une lame d’air statique
d’épaisseur e. Notons A la conductivité thermique du verre. Sachant que le verre est quarante fois plus conducteur que l'air,
comparer la résistance thermique d'un double vitrage avec celle d'un simple vitrage.

V - Equation de la diffusion thermique (en ’absence de sources)

1) Cas général et propriétés de 1'équation de diffusion

IMPORTANT! le programme officiel impose I’écriture de 1’équation de diffusion sans sources; je me restreint a ce qui
est demandé, mais je donnerai tout de méme la généralisation en remarque.

ANALYSE VECTORIELLE

La lecture d’un formulaire d’analyse vectorielle stipule que :

div(gé?if):zxf

ol A correspond a I'opérateur Laplacien déja vu en mécanique des fluides.

L’équation de conservation de I'énergie (sans sources, donc...) s’écrit alors :

aT dT
div j ]Q +pos = —Adiv (grad T) +peop =0

soit

aT

— = DAT
ot

ottonanoté D = ﬁ : le coefficient de diffusion (en m?.s71).
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On appelle cette équation aux dérivées partielles une équation de diffusion. C’est une EDP qu’on rencontre trés souvent
en physique, dans des domaines trés variés. Elle a un statut similaire a I’équation de d’Alembert pour la propagation
des ondes : elle régit tous les phénomenes de diffusion simple au méme titre que 1'équation de d’Alembert régit ceux de
propagation.

3. a*opm’e?é c

1. déja, I'équation de diffusion est linéaire, on a donc le théoreme de superposition : la somme de
solutions est solution ;

2. ensuite, ’équation de diffusion est irréversible : ses solutions ne sont pas invariantes par ren-
versement du temps (si n(x, t) est solution, n(x, —t) ne 1'est pas). En cela, elle est diamétralement
opposée al’équation de d’Alembert qui au contraire rend compte d'un phénomene de propagation
réversible ;

3. c’est une équation aux dérivées partielles : elle admet toute une zoologie de solutions selon les
conditions aux limites et de la condition initiale du systeme (donc pas de solution unique type cosinus
comme pour I’oscillateur harmonique...) ;

4. en ODG, 0on a:

Lx VD.t

Démo point 4. : Analysons 1’équation de diffusion en ordre de grandeur. Notons pour cela 7~ la température typique du
probleme, L la distance typique sur laquelle se fait la diffusion et 7 le temps typique de diffusion. Alors

T ar T
AT ~ ﬁ et E ~ ?
L’équation de diffusion impose
r.T
2

soit L = VD.7 On observe que la diffusion est trés rapide au début (tangente verticale a I’origine) puis de plus en plus
lente (comportement en racine carrée). Dans l'autre sens, on a T « L?/D donc si la taille double L — 2L, alors le temps
quadruple 7 — 47.

Remarque :
e Cas particulier du régime stationnaire : dans ce cas, la température ne dépend plus du temps, et ’équation de
diffusion devient

AT =0

T vérifie alors I’équation de Laplace (équation trés générale que l'on reverra apparaitre...)

e En présence de sources, I'équation de diffusion devient :

aT
5~ DAT = pg

oll pg est la puissance thermique créée dans le systeme.

2) Cas unidimensionnel

On suppose la diffusion selon la direction Ox : j_()g = jo(x, t)ily et T(x, t) ; le bilan d’énergie s’écrit : % + pc% =0 quel'on

écrit en utilisant la loi de Fourier a 1D : jg = —/\%, soit :

aT ?*T

o " Poa

qui a bien stir les mémes propriétés que celle du cas général tridimensionnel.

Page 10 2025/2026



PC CHAPITRE 3 : DIFFUSION THERMIQUE Thermodynamique

3) Conditions aux limites

Résoudre I'équation de la chaleur consiste a déterminer le champ de température dans un volume V sachant que 1'on
connait les conditions initiales ainsi que les propriétés sur la frontiere S du volume. Dans la pratique on distingue différents
cas.

a) Contact avec un thermostat

Le systeme est en contact parfait avec un thermostat de température Ty : a chaque instant on a la condition aux limites

T(M,t) = Ty

pour un point M sur le contact.

b) Interface solide-solide : continuité du flux thermique

Lorsqu’il y a diffusion thermique entre deux solides en contact S; et Sy, le phénomene, se transmettant de proche en
proche, se déroule sans accumulation d’énergie sur la surface de contact S. Ainsi, le flux thermique sortant du solide S; est
égal au flux entrant dans le solide S; :

Owms, = Pms,

c) Interface solide-solide : cas du contact parfait

Pour deux solides dont les formes sont parfaitement ajustées sur toute leur surface de contact S, le contact est dit parfait
etil y a continuité de la température T sur toute la surface S : soit

Ts, =Ts,

(sur la surface S).

d) Interface solide-solide : contact avec une paroi calorifugée

Si le solide S; est en contact avec le solide S, qui est une paroi parfaitement calorifugée, cette derniere bloque le flux
thermique :

Gms, =0 = Pus,

par continuité du flux thermique.
Ainsi, une paroi calorifugée agit comme un interrupteur ouvert sur I’ensemble du flux thermique ¢y;.

e) Interface solide-fluide : loi de Newton

Solide Fluide
Jth i
Jih T Ty Jthe,

I'(x)

Conduction

7| SO

Convection

iy

Les transferts thermiques a l'interface d’un solide et d’un fluide (par exemple de l’air au contact d’une vitre) donnent
lieu a la fois a des phénomenes de conduction pour le solide et de convection pour le fluide. On parle alors d’échanges

conducto-convectifs sur I'interface.
Ces transferts thermiques sont modélisés par la loi de Newton. Dans cette loi, le systéeme étudié est le solide de température

de surface T, tandis que le fluide, de température Ty, constitue le milieu extérieur.
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Lo pE NEwTON <

La loi de Newton indique que le courant thermique algébrique jq sortant du solide, a I'interface solide-fluide, est
proportionnel a I'écart de température Ts — T, soit :

jo=MTs =Ty

ot h est le coefficient de transfert thermique conducto-convectif, et s’exprime en W.m=2.K1.

La loi de Newton peut aussi s’écrire de maniére équivalente a 1’aide du flux thermique. Puisque le flux thermique
élémentaire d¢y, a travers la surface élémentaire dS s’écrit dgy, = jodS, et

doy, = jodS

qui devient ¢y, = joS si le flux thermique est uniforme sur toute la surface S traversée.
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