
PC Chapitre 3 : diffusion thermique Thermodynamique

Introduction

Les analogies physiques des phénomènes de diffusion de particules et de conduction thermique se traduisent par des
équations mathématiques similaires. Nous soulignerons ici l’identité du formalisme mathématique.

Physiquement, les deux phénomènes se propagent de proche en proche de façon irréversible. Le premier, la diffusion
particulaire, naît d’un gradient de concentration, comme on l’a vu. La diffusion thermique, naît quant à elle d’un gradient
de température (loi de Fourier).

Le phénomène de diffusion thermique est développé ici notamment pour ses multiples applications domestiques et
industrielles. Il est évidemment très lié aux enjeux énergétiques d’isolation thermique qui sont une préoccupation actuelle
et une source d’innovation permanente.
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I - Description de la diffusion thermique

1) Les trois modes de transfert thermique

Les transferts thermiques entre le système étudié et le milieu extérieur (ou les transferts d’énergie interne à l’intérieur
du système) peuvent s’effectuer de trois façons différentes : la diffusion thermique (ou conduction), la convection et le
rayonnement.
• Dans un milieu matériel macroscopiquement immobile, la diffusion thermique correspond au déplacement d’énergie

transmis de proche en proche à l’échelle microscopique (entre atomes, ions ou molécules).
On observe le phénomène de diffusion (ou conduction) thermique dans les milieux où la température n’est pas
homogène. La diffusion thermique se fait depuis les zones de températures élevées vers les zones de températures
faibles.
Dans les fluides (liquides ou gaz), le phénomène de diffusion thermique est généralement masqué par le phénomène
de convection. En revanche, dans les solides opaques, il est le seul qui intervienne.

• La convection thermique est un déplacement d’énergie dû au mouvement macroscopique de matière.
Le phénomène de convection est observé au sein des milieux fluides (liquides et gaz).

• Le rayonnement thermique est l’énergie transférée aux atomes du système étudié par les photons qui constituent ce
rayonnement. Chaque photon absorbé par le système apporte l’énergie E = hν.
L’étude du rayonnement thermique sera détaillée ultérieurement.
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2) Vecteur densité de flux thermique

Définition :
On définit le flux thermique ou flux de transfert thermique Q à travers la surface orientée S la

quantité : φth = δQ
dt ; ce flux correspond à la puissance thermique (transfert thermique par unité de

temps) qui traverse la surface S.

On définit alors un vecteur densité de flux thermique (de manière analogue à la diffusion de particules, et au vecteur
densité de flux de particules) :

Définition : Vecteur densité de flux thermique ~jQ

Le transfert thermique élémentaire δQ traversant la surface orientée
−→
dS pendant dt est

δQ = ~jQ(~r, t).
−→
dSdt

soit dφth = ~jQ(~r, t).
−→
dS est le flux thermique élémentaire à travers dS.

−→
dS est un vecteur normal

(colinéaire à ~n) à la surface dS. Le vecteur densité de flux thermique ~jQ s’exprime en W.m−2.
Le flux thermique à travers une surface orientée S est donc

φth =

"
S

dφth =

"
S

~jQ(~r, t).
−→
dS et Q =

("
S

~jQ(~r, t).
−→
dS

)
dt

Physiquement, le vecteur ~jth indique la direction et le sens du transfert thermique et sa norme désigne la puissance
thermique par unité de surface traversant la surface S délimitant le système étudié du milieu extérieur.

Cas où la surface est fermée
Considérons un système thermodynamique contenu dans un volume V déterminé. La surface fermée S enveloppe le

volumeV. Chaque élément de surface dS de S a pour vecteur unitaire normal ~next dirigé vers l’extérieur de S.
D’après la définition du flux thermique φth = δQ

dt , si le transfert thermique est effectivement reçu par le système (δQ > 0),
alors le flux est globalement entrant : cela se traduit par φth > 0 (flux entrant).

De même, si le transfert thermique est cédé par le système (δQ < 0), alors le flux est globalement sortant : cela se traduit
par φth < 0 (flux sortant). Dans le cas où le flux est entrant (φth > 0), le vecteur densité de flux thermique ~jQ est dirigé vers
l’intérieur du volumeV : ainsi le produit scalaire ~jQ(~r, t).

−→
dS dans l ?expression de φth, est négatif.

Inversement, dans le cas où le flux est sortant (φth < 0), le vecteur densité de flux thermique ~jQ est dirigé vers l’extérieur
du volumeV : le produit scalaire ~jQ(~r, t).

−→
dS dans l’expression de φth, est positif.

Ces deux constatations nous amènent à ajouter un signe "-" dans l’expression de φth pour un système fermé, soit (
−→
dS

orienté vers l’extérieur) :

φth = −

	
S

~jQ.
−→
dS

II - Bilan d’énergie

L’idée est de faire un bilan d’énergie de type premier principe, sur un système (élémentaire) de taille mésoscopique.
Nous ferons les hypothèses suivantes :

— à l’intérieur du système élémentaire, une source éventuelle d’énergie thermique, avec un taux pQ ;
— les transferts d’énergie du système élémentaire avec le milieu extérieur (c’est-à-dire le reste du solide) sont uniquement

dus à la diffusion thermique ;
— les phénomènes observés sont unidimensionnels.
On va chercher à exprimer la conservation de l’énergie dans les 3 systèmes de coordonnées.

1) Coordonnées cartésiennes

Considérons un solide en forme de parallélépipède rectangle, de volume total V, parallèle à l’axe Ox selon sa plus grande
longueur. Dans le plan orthogonal à l’axe Ox, le parallélépipède présente une surface S.
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En contact avec deux thermostats de températures différentes T1 et T2 (T1 > T2), positionnés respectivement au niveau
des abscisses x1 et x2 (x2 > x1), le parallélépipède est le siège de diffusion thermique unidirectionnelle dans le sens des x
croissants (car la surface latérale est calorifugée).

Réalisons un bilan énergétique localisé sur un volume élémentaire dτ situé entre les deux abscisses x et x + dx, soit dτ =
Sdx.
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2) Cas général
Démontrons l’équation de conservation également dans le cas
général (à trois dimensions donc).
On considère comme système un volume V, délimité par une
surface S (fermée donc orientée sortante).
L’énergie interne du volume V entre les instants t et t+dt vaut
(on utilise l’extensivité) :

du(t) =

$
V

(u(t + dt) − u(t))dτ

Par ailleurs, le transfert thermique sortant du système pendant dt est

δQ =

	
~jQ.
−→
dSdt

par définition du flux. S’il y a une source de transfert thermique, en plus, le transfert thermique entrant dans le système
sera

δQ = −

	
~jQ.
−→
dSdt +

$
V

pQdτdt

soit, en utilisant le théorème de Green-Ostrogradski :

δQ =

$
V

([
−div~jQ + pQ

]
dτ

)
dt

On utilise alors ces deux expressions dans le premier principe et on obtient le bilan d’énergie interne à 3D avec source :

div~jQ + ρ
∂u
∂t

= pQ

Remarque :
Cette expression généralise bien les trois bilans vus au-dessus, en reprenant l’expression de l’opérateur divergence

dans les trois systèmes de coordonnées.

Cartésiennes Cylindriques Sphériques
div ~A = ∂Ax

∂x +
∂Ay

∂y + ∂Az
∂z div ~A = 1

r
∂(rAr)
∂r + 1

r
∂Aθ

∂θ + ∂Az
∂z div ~A = 1

r2
∂(r2Ar)
∂r + 1

r sin(θ)
∂(sin(θ)Aθ)

∂θ + 1
r sin(θ)

∂Aϕ

∂ϕ

3) Description thermodynamique du système

Il reste dans cette partie à exprimer l’énergie interne du système.
Plusieurs cas sont possibles (et apparaissent dans les exercices, à vous de détecter dans quelle situation on veut se

placer...) :
— Dans le cas d’une phase condensée (liquide ou solide), il est commun d’introduire la capacité thermique massique

du système. Dans ce cas : du = cdT et donc :

∂u
∂t

= c
∂T
∂t

— Dans le cas d’un gaz, on pourra introduire cV, la capacité thermique massique à volume constant ; dans ce cas :

∂u
∂t

= cV
∂T
∂t

— Dans de rares cas (mais ça ne veut pas dire "jamais"...) la capacité thermique massique est négligée (lorsqu’un autre
paramètre thermodynamique l’emporte, par exemple une chaleur latente) ; dans ce cas

∂u
∂t

= 0

La situation la plus rencontrée reste la première, et dans ce cas, l’équation locale de conservation de l’énergie devient :

div~jQ + ρc
∂T
∂t

= pQ
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III - Loi de Fourier

1) Présentation et énoncé

Comme la loi de Fick, la loi de Fourier est une loi phénoménologique ; c’est-à-dire que son expression essaie de rendre
compte "au mieux" de l’expérience. Cette loi n’est donc pas universelle, comme peut l’être le bilan d’énergie.

Mathématiquement, nous avons deux inconnues ~jQ et T (température) reliées par l’équation de conservation de l’énergie.
Il faut donc une autre équations qui relie ces deux inconnues.

Loi (phénoménologique) de Fourier. Pour rendre compte des observations, Fourier a proposé (1822)

~jQ = −λ
−−−→
grad T

où la constante λ est appelé la conductivité thermique et T est la température.

Quelques commentaires sur cette loi :

1. c’est une loi phénoménologique : elle n’a pas de justification théorique. Elle est ainsi valable "lorsqu’elle est valable".
En d’autres termes, c’est une loi qu’on écrit à condition qu’elle suffise à rendre compte du phénomène observé. Sinon,
il faut proposer une autre loi. Commentons que la loi de Fourier est notamment mise facilement en défaut par exemple
lorsque les inhomogénéités deviennent trop fortes (norme de

−−−→
grad T trop importante) ;

2. ~jQ est proportionnel à
−−−→
grad T : ce sont les inhomogénéités qui causent la diffusion, et notamment il n’y a pas de courant

mésoscopique de diffusion si la température est constante (milieu homogène, soit
−−−→
grad T = ~0)

3. ~jQ est de sens contraire à
−−−→
grad T : la diffusion va des zones de température élevée vers les zones de température basse

(irréversibilité de la diffusion, voir IV...)

2) Conductivité thermique

a) Analyse dimensionnelle

‖~jQ‖ est en W.m−2 (M.T−3)
‖
−−−→
grad T‖ est en K.m−1 (Θ.L−1)

soit λ est en W.m−1.K−1

Le coefficient de conductivité thermique λ est positif et a pour unité SI W.m−1.K−1

A Retenir

b) ODG

La valeur de la conductivité thermique dépend de la nature du milieu de diffusion. Le tableau ci-dessous donne quelques
valeurs dans les conditions usuelles.

Matériau Air Eau Béton Acier inoxydable Cuivre Bois Verre
λ (W.m−1.K−1) 0,026 0,56 1,4 15 à 60 400 0,05 à 0,25 0,7 à 1,3

IV - Régimes stationnaires

1) Conservation du flux (en l’absence de sources internes)

Conservation du flux thermique. En régime stationnaire et en l’absence de terme d’apparition ou de disparition de
puissance thermique, l’équation locale de conservation s’écrit

div~jQ = 0
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Au niveau global (macroscopique), cela signifie que ~jQ est à flux conservatif :
en utilisant le théorème de Green-Ostrogradsky, on en déduit	

S

~jQ.
−→
dS = 0

On dira que le vecteur densité de flux thermique est à flux conservatif.
Cela signifie que le flux de ~jQ est constant le long d’un tube de courant, ou de manière équivalente, nul à travers une

surface fermée (à l’intérieur de laquelle il n’y a pas de source évidemment) :
conservation du flux thermique

(S1)

(S2)

•
−→
dS1

•
−→
dS2

"
S1

~jQ.
−→
dS1 =

"
S2

~jQ.
−→
dS2

soit
φth1 = φth2

2) Résistance thermique

a) Un premier exemple
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b) Définition et lois d’association

Dans l’exemple ci-dessus, le flux thermique est alors proportionnelle à l’écart de température entre les parois. On définit
alors la résistance thermique :

Définition :
Résistance thermique : elle est définie comme le rapport entre la différence de température (origine

de l’apparition d’un flux thermique) sur le flux thermique (courant de diffusion)

Rth =
∆T
φth

qui s’exprime en K.W−1

Dans l’exemple ci-dessus, on trouve

Rth =
e
λS

Il découle de cette définition (similaire à l’électrocinétique, voir plus loin) des lois d’association, lorsque plusieurs
matériaux sont traversés

Quand plusieurs milieux sont traversés par le même flux thermique, on peut leur associer une résistance thermique
équivalente :

Rth,eq = Rth,1 + Rth,2

ou plus généralement :

Rth,eq =
∑

i

Rth,i

Lois d’association série
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Quand plusieurs milieux sont soumis à la même différence de température, on peut leur associer une résistance
thermique équivalente :

1
Rth,eq

=
1

Rth,1
+

1
Rth,2

ou plus généralement :

1
Rth,eq

=
∑

i

1
Rth,i

Lois d’association parallèle

c) Analogie avec l’électrocinétique

La notion de résistance thermique découle donc de l’analogie que l’on peut faire avec l’électricité. La résistance électrique
d’un conducteur ohmique est le rapport de la différence de potentiel imposée sur le flux électrique (intensité électrique) qui
le traverse, ce qui est tout à fait similaire à la définition de la résistance thermique.

Grandeur Conduction thermique Conduction électrique
Grandeur transportée Énergie interne U Charge électrique q
Loi d’Ohm T1 − T2 = Rthφth,1→2 T1 − T2 = RI1→ 2
Résistance Rth = e

λS R = L
γS =

ρL
S

(on reverra en électrostatique)
Flux φth =

!
M
~jQ(M, t).

−→
dSM I =

!
M
~jélec(M, t).

−→
dSM

(on reverra en magnétostatique)
Équation de conservation du flux ÷ ~jQ = 0 ÷ ~jélec = 0

(on reverra en électrostatique)
Loi de Fourier ~jQ = −λ

−−−→
grad T ~jélec = −γ

−−−→
grad V

(on reverra en électrostatique)
Association série Rth,eq = Rth,1 + Rth,2 Req = R1 + R2

Association parallèle 1
Rth,eq

= 1
Rth,1

+ 1
Rth,2

1
Req

= 1
R1

+ 1
R2
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d) Application : double vitrage

Considérons un double vitrage constitué par deux lames de verre d’épaisseur e séparées par une lame d’air statique
d’épaisseur e. Notons λ la conductivité thermique du verre. Sachant que le verre est quarante fois plus conducteur que l’air,
comparer la résistance thermique d’un double vitrage avec celle d’un simple vitrage.

V - Équation de la diffusion thermique (en l’absence de sources)

1) Cas général et propriétés de l’équation de diffusion

IMPORTANT ! le programme officiel impose l’écriture de l’équation de diffusion sans sources ; je me restreint à ce qui
est demandé, mais je donnerai tout de même la généralisation en remarque.

La lecture d’un formulaire d’analyse vectorielle stipule que :

div
(
−−−→
grad f

)
= ∆ f

où ∆ correspond à l’opérateur Laplacien déjà vu en mécanique des fluides.

Analyse vectorielle

L’équation de conservation de l’énergie (sans sources, donc...) s’écrit alors :

div ~jQ + ρc
∂T
∂t

= −λdiv
(
−−−→
grad T

)
+ ρc

∂T
∂t

= 0

soit

∂T
∂t

= D∆T

où on a noté D = λ
ρc : le coefficient de diffusion (en m2.s−1).
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On appelle cette équation aux dérivées partielles une équation de diffusion. C’est une EDP qu’on rencontre très souvent
en physique, dans des domaines très variés. Elle a un statut similaire à l’équation de d’Alembert pour la propagation
des ondes : elle régit tous les phénomènes de diffusion simple au même titre que l’équation de d’Alembert régit ceux de
propagation.

Propriété :

1. déjà, l’équation de diffusion est linéaire, on a donc le théorème de superposition : la somme de
solutions est solution ;

2. ensuite, l’équation de diffusion est irréversible : ses solutions ne sont pas invariantes par ren-
versement du temps (si n(x, t) est solution, n(x,−t) ne l’est pas). En cela, elle est diamétralement
opposée à l’équation de d’Alembert qui au contraire rend compte d’un phénomène de propagation
réversible ;

3. c’est une équation aux dérivées partielles : elle admet toute une zoologie de solutions selon les
conditions aux limites et de la condition initiale du système (donc pas de solution unique type cosinus
comme pour l’oscillateur harmonique...) ;

4. en ODG, on a :

L ∝
√

D.τ

Démo point 4. : Analysons l’équation de diffusion en ordre de grandeur. Notons pour cela T la température typique du
problème, L la distance typique sur laquelle se fait la diffusion et τ le temps typique de diffusion. Alors

∆T ∼
T

L2 et
∂T
∂t
∼
T

τ

L’équation de diffusion impose

D
T

L2 ∼
T

τ

soit L =
√

D.τ On observe que la diffusion est très rapide au début (tangente verticale à l’origine) puis de plus en plus
lente (comportement en racine carrée). Dans l’autre sens, on a τ ∝ L2/D donc si la taille double L → 2L, alors le temps
quadruple τ→ 4τ.

Remarque :
• Cas particulier du régime stationnaire : dans ce cas, la température ne dépend plus du temps, et l’équation de

diffusion devient

∆T = 0

T vérifie alors l’équation de Laplace (équation très générale que l’on reverra apparaître...)

• En présence de sources, l’équation de diffusion devient :

∂T
∂t
−D∆T = pQ

où pQ est la puissance thermique créée dans le système.

2) Cas unidimensionnel

On suppose la diffusion selon la direction Ox : ~jQ = jQ(x, t)~ux et T(x, t) ; le bilan d’énergie s’écrit : ∂ jQ
∂x + ρc ∂T

∂t = 0 que l’on
écrit en utilisant la loi de Fourier à 1D : jQ = −λ ∂n

∂x , soit :

∂T
∂t

= D
∂2T
∂x2

qui a bien sûr les mêmes propriétés que celle du cas général tridimensionnel.
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3) Conditions aux limites

Résoudre l’équation de la chaleur consiste à déterminer le champ de température dans un volume V sachant que l’on
connaît les conditions initiales ainsi que les propriétés sur la frontière S du volume. Dans la pratique on distingue différents
cas.

a) Contact avec un thermostat

Le système est en contact parfait avec un thermostat de température T0 : à chaque instant on a la condition aux limites

T(M, t) = T0

pour un point M sur le contact.

b) Interface solide-solide : continuité du flux thermique

Lorsqu’il y a diffusion thermique entre deux solides en contact S1 et S2, le phénomène, se transmettant de proche en
proche, se déroule sans accumulation d’énergie sur la surface de contact S. Ainsi, le flux thermique sortant du solide S1 est
égal au flux entrant dans le solide S2 :

φth,S1 = φth,S2

c) Interface solide-solide : cas du contact parfait

Pour deux solides dont les formes sont parfaitement ajustées sur toute leur surface de contact S, le contact est dit parfait
et il y a continuité de la température T sur toute la surface S : soit

TS1 = TS2

(sur la surface S).

d) Interface solide-solide : contact avec une paroi calorifugée

Si le solide S1 est en contact avec le solide S2 qui est une paroi parfaitement calorifugée, cette dernière bloque le flux
thermique :

φth,S2 = 0 = φth,S1

par continuité du flux thermique.
Ainsi, une paroi calorifugée agit comme un interrupteur ouvert sur l’ensemble du flux thermique φth.

e) Interface solide-fluide : loi de Newton

Les transferts thermiques à l’interface d’un solide et d’un fluide (par exemple de l’air au contact d’une vitre) donnent
lieu à la fois à des phénomènes de conduction pour le solide et de convection pour le fluide. On parle alors d’échanges
conducto-convectifs sur l’interface.

Ces transferts thermiques sont modélisés par la loi de Newton. Dans cette loi, le système étudié est le solide de température
de surface Ts, tandis que le fluide, de température T f , constitue le milieu extérieur.
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La loi de Newton indique que le courant thermique algébrique jQ sortant du solide, à l’interface solide-fluide, est
proportionnel à l’écart de température Ts − T f , soit :

jQ = h(Ts − T f )

où h est le coefficient de transfert thermique conducto-convectif, et s’exprime en W.m−2.K−1.

Loi de Newton

La loi de Newton peut aussi s’écrire de manière équivalente à l’aide du flux thermique. Puisque le flux thermique
élémentaire dφth à travers la surface élémentaire dS s’écrit dφth = jQdS, et

dφth = jQdS

qui devient φth = jQS si le flux thermique est uniforme sur toute la surface S traversée.
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