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de champs en électrostatique Électromagnétisme

Introduction

Table des matières

I - Dipôle électrostatique 1
1) Présentation, approximation dipôlaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2) Potentiel et champ créés par un dipôle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3) Dipôle placé dans un champ extérieur : actions subies et énergie potentielle . . . . . . . . . . . . . . . 3
4) Dipôle induit ; polarisabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II - Plan uniformément chargé en surface 5
1) Calcul du champ en tout point de l’espace (sauf sur le plan...) . . . . . . . . . . . . . . . . . . . . . . . 5
2) Condensateur plan ; capacité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

III -Champ créé par une boule uniformément chargée en volume 8
1) Champ et potentiel électrostatique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2) Énergie de constitution d’un noyau atomique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

IV -Analogies avec le champ gravitationnel 9

I - Dipôle électrostatique

1) Présentation, approximation dipôlaire

Un dipôle électrostatique est un ensemble de deux charges ponctuelles opposées −q et q dont la distance a entre les deux
charges est petite.
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Que signifie la "petite" distance a ? Cela revient à considérer que le point M est situé à une distance grande devant
l’extension spatiale a du dipôle. On parle alors d’approximation dipolaire :

r ' r1 ' r2 � a

Définition :
Moment dipôlaire : On appelle moment dipolaire le vecteur :

~p = q
−−→
NP
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de champs en électrostatique Électromagnétisme

Remarque :
• Cette grandeur est très utile en physique et en chimie. Par exemple, certaines molécules (eau, chlorure d’hydrogène)

possèdent un moment dipolaire permanent.
• Le module du moment dipolaire p = qa se mesure, dans le système SI en Coulomb mètre (C.m), mais on l’exprime

souvent dans une autre unité : le debye (D) telle que 1 D = 1
3 .10−29 C.m

L’intérêt de cette unité se voit naturellement dans l’exemple du moment dipolaire de la molécule d’eau : p = 1, 85 D
• En ce qui concerne la molécule d’eau justement, compte tenu de la différence d’électronégativité entre les atomes

d’oxygène et d’hydrogène dans la molécule, le barycentre des charges positives ne coïncide pas avec celui des charges
négatives : cette molécule possède donc un moment dipolaire permanent et est ainsi qualifiée de "polaire".

2) Potentiel et champ créés par un dipôle

Soit le point N portant la charge ( −q), le point P portant la charge (+q) et un point M quelconque (voir schéma ci-dessus).
Les points N, P et M définissent un plan (Oxy) où l’origine O est située au milieu de NP. On choisit un système de coordonnées
sphériques. La distribution de charges étant invariante par rotation autour de l’axe du dipôle, cette distribution ne dépend
pas de l’angle ϕ. (Cela revient au même de choisir des coordonnées polaires avec l’angle θ défini comme indiqué sur le
schéma : le vecteur unitaire ~ux est colinéaire de même sens à

−−→
NP).

Le potentiel en M (choisi nul à l’infini) créé par les deux charges ponctuelles s’écrit, d’après le principe de superposition :
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Comparaison de la décroissance avec la distance du champ et du potentiel pour le dipôle électrostatique et pour la charge ponctuelle :
Pour le dipôle, le champ décroit en 1

r3 et le potentiel en 1
r2 . Pour la charge ponctuelle, le champ décroît en 1

r2 et le potentiel
en 1

r . Nous pouvons le justifier qualitativement et simplement : à grande distance du doublet de charges, les champs
et potentiels des deux charges de signe opposé, se " compensent " et ce d’autant plus que l’on s’éloigne du doublet. La
décroissance de V et de ~E avec r est donc plus marquée dans le cas du dipôle.

Le champ est contenu dans le plan (Oxy). Nous pouvons représenter dans ce plan l’allure des lignes de champ et des
équipotentielles correspondantes :

3) Dipôle placé dans un champ extérieur : actions subies et énergie potentielle

Nous étudierons le cas d’un dipôle rigide : la distance NP et les charges du dipôles restent invariables. Nous allons
distinguer deux cas selon la nature du champ extérieur.

Remarque : nous allons établir dans ce paragraphe les expressions de l’énergie potentielle Ep, de la résultante des forces
exercées sur le dipôle et du moment de celle- ci. Tous ces résultats seront fournis en évaluation mais il faut savoir les
exploiter.

a) Énergie potentielle

•Champ extérieur uniforme :
Procédons à une étude énergétique du problème. Nous raisonnons sur un dipôle déjà constitué et cherchons à évaluer

l’énergie potentielle associée à son interaction avec un champ électrique extérieur ~Eext.
L’énergie potentielle électrostatique Ep est alors égale au travail fourni par un opérateur pour amener de façon quasi

statique le dipôle depuis l’infini jusqu’à sa position finale. Soient VP et VN les valeurs du potentiel aux points P et N.
Sachant que l’on ne rapproche pas les charges l’une de l’autre, mais que l’on amène le dipôle depuis une position éloignée
où le champ extérieur est nul jusqu’à sa position finale, l’expression de l’énergie potentielle électrostatique du dipôle est :
Ep = (−q)VN + qVP = q(VP − VN).

Or VP − VN =
∫ P

N −
~Eext.
−→
d` = −~Eext.

−−→
NP. On obtient donc

Ep = −~p.~Eext

qui correspond à l’énergie potentielle électrostatique d’un dipôle électrostatique dans un champ électrique ~Eext.
Conséquence : Ep est minimale si ~p et ~Eext sont colinéaires ; le dipôle va s’orienter spontanément dans le sens du champ

électrostatique extérieur.

•Champ extérieur non uniforme :

dans ce cas, puisque le champ varie peu sur l’étendue du dipôle (approximation dipolaire), on admet que
∫ P

N −
~Eext.
−→
d` ≈

−~Eext.
−−→
NP, et l’énergie potentielle garde la même expression.
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b) Résultante et moment

•Champ extérieur uniforme :

La résultante des forces subies par le dipôle s’écrit : ~F = ~FN + ~FP = −q~Eext + q~Eext = ~0
Calculons maintenant le moment de cet ensemble de forces par-rapport à un point C quelconque :

−→
M C =

−−→
CN ∧ ~FN +

−→
CP ∧ ~FP =

(
−
−−→
CN +

−→
CP

)
∧ q~Eext = q

−−→
NP ∧ ~Eext

soit :

−→
M C = ~p ∧ ~Eext

Le sens du moment donne le sens naturel de rotation du dipôle via la règle du tire- bouchon. Le dipôle (ou plutôt son
moment dipolaire) tend spontanément à s’orienter dans le sens du champ extérieur.

•Champ extérieur non uniforme

La force ~F que le dipôle subit de la part d’un champ extérieur non uniforme a pour expression : ~F = −
−−−→
grad Ep =

−−−→
grad ~p.~Eext.

Conséquence : Le dipôle tend à se déplacer spontanément vers les zones de champ extérieur plus intense.

4) Dipôle induit ; polarisabilité

Une molécule polarisable acquiert un moment dipolaire ~p en présence d’un champ électrique extérieur ~E : celui-ci
déforme la molécule en tirant le noyau dans un sens et le nuage électronique dans l’autre sens ce qui décale les barycentres
des charges positives et négatives (fig. 25).

Si le champ appliqué n’est pas trop élevé, il existe une relation linéaire entre le moment dipolaire induit et le champ :
~p = αε0~E, où α désigne la polarisabilité de la molécule.

L’atome, supposé isolé, est représenté par une charge +e uniformément répartie à l’intérieur d’une sphère de centre O
et de rayon R. L’électron de cet atome de charge −e supposé ponctuel y est libre de se déplacer. Sous l’action d’un champ
électrique extérieur ~Eext, l’électron se décale à la distance r du centre O et est également soumis au champ ~E créé par la
charge +e.

En notant ~r le vecteur position de l’électron, le moment dipolaire de l’atome ainsi polarisé s’écrit donc : ~p = −e~r. Pour
expliciter le vecteur position, appliquons le théorème de Gauss en choisissant pour surface de Gauss (S) une sphère de
centre O et de rayon r.

Puisque la charge est répartie uniformément, on a donc Qint = e r3

R3 . De plus, le flux de ~E donne E4πr2. Ainsi ~E = e
4πε0R3~r.

Traduisons enfin l’équilibre des forces auquel est soumis l’électron : −e~Eext−e~E = ~0 ; l’association de ces deux relations donne
~p = −e~r = 4πR3ε0~Eext.
On obtient alors

α = 4πR2

l’ordre de grandeur de la polarisabilté est celui du volume de l’atome soit quelques 10−30 m3.
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II - Plan uniformément chargé en surface

1) Calcul du champ en tout point de l’espace (sauf sur le plan...)
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2) Condensateur plan ; capacité

a) Définition et champ créé

Définition : Un condensateur plan est constitué de deux plans parallèles de grandes dimensions
(cela signifie que la dimension dtypique des plans est très supérieure à la distance e séparant les deux
plans), appelées armatures, éloignés d’une distance e et portant des charges opposées−q et +q réparties
sur chacun d’eux avec une densité surfacique σ uniforme. Le milieu séparant les deux armatures est
de l’air assimilé au vide (de permittivité absolue ε0).

Champ électrostatique créé
Nous allons utiliser le résultat ci-dessus qui nous a permis d’établir l’expression du champ créé par un seul plan infini.

On considère que les deux plans sont infiniment grands (illimités) et orthogonaux à l’axe (Oz). Soit un point M de l’espace
n’étant pas situé sur les charges (c’est-à-dire pas sur les armatures).

le champ ~E créé en un point M par ces deux plans est obtenu par superposition des champs créés par chacun des
plans.

A Retenir

On nomme ~E+ et ~E− les champs créés en tout point M respectivement par les plans chargés positivement (" plan + ") et
négativement (" plan - "). On remarque qu’en dehors des armatures, ces deux champs se compensent car ils ont la même
norme et des sens opposés : le champ résultant est nul. En revanche, entre les armatures, ils s’ajoutent :

~E = ~E+ + ~E− =
σ

2ε0
~uz +

σ
2ε0

~uz =
σ
ε0
~uz

b) Expression de la capacité du condensateur plan

On note A l’armature positive, B l’armature négative, et u = VA?VB la différence de potentiel (positive) entre les armatures
du condensateur. Pour déterminer la capacité C du condensateur, on commence par déterminer l’expression de la différence
de potentiel en calculant la circulation du champ ~E :∫ B

A

~E.
−→
d` = VA − VB = u

et comme ~E est uniforme : ∫ B

A

~E.
−→
d` = ~E.

∫ B

A

−→
d` = ~E.

−→
AB =

σe
ε0

Si l’on note S la surface totale du plan, alors on peut exprimer sa charge q en fonction de σ : q = σS. la relation devient :
VA − VB =

qe
ε0S .
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Lorsque q désigne la charge de l’armature positive et u la tension positive prise aux bornes du condensateur, on a :
q = Cu, où

C =
ε0S

e
est la capacité du condensateur plan (sans effet de bord : modèle du plan infini).

A Retenir

Remarque :
Si on imagine une expérience dans laquelle l’isolant entre les armatures est de l’air, lorsque la tension u = VA−VB entre

les plaques augmente, il apparait un grésillement, cette tension est devenue trop importante pour que l’espace entre les
armatures reste isolant : on a atteint la valeur du champ disruptif de l’air. Il est de l’ordre de 30 kV.cm−1 ou 3.106 V.m−1 ;
les forces électrostatiques exercées sur les molécules gazeuses de l’air ionisent alors celles-ci.

c) Densité volumique d’énergie électrostatique

En première année, un raisonnement basé sur les grandeurs électrocinétiques a permis d’établir l’expression de l’énergie
électrostatique emmagasinée dans un condensateur :

Eemm =
1
2

Cu2

En utilisant à présent les résultats qui viennent d’être démontrés, on a donc : Eemm = 1
2
ε0S

e (Ee)2 = 1
2ε0E2.(Se). Puisque le

champ est nul en dehors du condensateur, l’énergie électrostatique emmagasinée peut donc s’écrire sous la forme :

Eemm =

$
espace

ε0E2

2
dτ =

$
espace

dEemm

dτ
dτ

Dans cette dernière écriture, nous avons introduit la densité volumique d’énergie électrostatique dEemm
dτ = ε0E2

2 . Nous
admettrons la généralité de cette expression établie dans le cas particulier du condensateur plan.

A Retenir

Commentaire : l’énergie électrostatique est donc localisée dans l’espace où le champ ~E est non nul. L’énergie est localisée
dans le champ lui- même (et non au niveau des charges), nous reviendrons sur ce point plus tard.

Ordre de grandeur : dans l’air, à un champ disruptif égal à 3.106 V.m−1 correspond à une densité volumique d’énergie
électrostatique égale à (3.106)/(2.36π.109) ≈ 40 J.m−3. Cette valeur est relativement faible comme on le voit.
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III - Champ créé par une boule uniformément chargée en volume

1) Champ et potentiel électrostatique
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2) Énergie de constitution d’un noyau atomique

La cohésion du noyau atomique est assurée par une interaction supplémentaire attractive très intense, de faible portée
(de l’ordre de 10−15 m) et qui s’exerce entre toutes les particules du noyau. On parle d’interaction forte.

imaginons une transformation quasi-statique (fictive) permettant l’élaboration du noyau atomique. Un opérateur amène
progressivement depuis l’infini la charge élémentaire dq par couches successives d’épaisseur dr.

Lorsque le noyau, assimilé à une sphère de rayon r (0≤ r ≤ R) possède déjà une charge q supposée uniformément répartie
en volume, celle-ci est telle que q = r3Q

R3 où Q désigne la charge totale du noyau de rayon R (voir ci-dessus). L’adjonction de la
charge dq supplémentaire nécessite à l’opérateur de fournir un travail élémentaire δW pour vaincre les forces de répulsion
coulombienne. L’énergie potentielle coulombienne varie de dEp = Ep(r) − Ep(r→∞) = dq.(V(r) − V(r→∞)) = dq.V(r), V(r)
étant le potentiel à la surface de la sphère de rayon r soit V(r) =

q
4πε0r . Cet accroissement d’énergie potentielle correspond au

travail fourni par l’opérateur et on a donc :

δW =
qdq

4πε0r
=

1
4πε0r

r3Q
R3 d

(
r3Q
R3

)
=

3Q2r4dr
4πε0R6

On intègre ensuite de 0 à R : W =
∫ R

0
3Q2r4dr
4πε0R6 = 3

5
1

4πε0

Q2

R . Cette expression correspond à l’énergie de cohésion du noyau
atomique, et a été obtenue en n’utilisant uniquement des outils de physique classique.

Terminons cette étude en précisant l’ordre de grandeur numérique des rayons et énergies mis en jeu dans le noyau
atomique. L’ordre de grandeur du noyau atomique est de 10−15. Prenons le cas particulier du noyau de l’élément Hélium
4
2He qui peut être produit par une réaction de fusion nucléaire entre deux noyaux plus légers, issus du deutérium 2

1H et du
tritium 3

1H. Cette réaction libère une énergie égale à 17,6 MeV dont 3,5 MeV sont emportés par le noyau d’Hélium. Cette
énergie EHe emportée par le noyau d’Helium englobe entre autres l’énergie répulsive W. L’AN donne W ≈ 1, 8.10−13 J soit
environ 1 MeV ; on retrouve bien l’ordre de grandeur de l’énergie EHe du noyau d’Hélium.

IV - Analogies avec le champ gravitationnel

L’expression de la force d’interaction électrostatique donnée par la loi de Coulomb est de structure tout à fait semblable
à celle de la force d’interaction gravitationnelle entre deux masses ponctuelles vue dans le cours de mécanique.

Domaine Electrostatique Gravitation

Sources q1 et ρ m1 et µ

Force : ~F1/2
q1q2

4πε0r2
12
~u1→2 −

Gm1m2

r2
12
~u1→2

Constante 1
4πε0

−G

Champ q1

4πε0r2
12
~u1→2 −

Gm1

r2
12
~u1→2

Théorème de Gauss :
�

(S)
~E.
−→
dS = Qint

ε0

�
(S)
~G.
−→
dS = −4πGMint

Maxwell-Gauss : div ~E =
ρ
ε0

div ~G = −4πµG
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Nous pouvons alors également en déduire une analogie entre les propriétés des champs d’une part électrostatique et
d’autre part gravitationnel :

Champ électrostatique créé par une charge ponc-
tuelle q : ~E =

q
4πε0r2 ~ur

Champ gravitationnel créé par une masse ponctuelle
m : ~G = −Gm

r2 ~ur

Propriétés : caractère conservatif de la circulation,
existence d’une énergie potentielle électrostatique
pour une charge ponctuelle et dont dérive la force
électrostatique, symétries et invariances d’espace du
champ (liées à celles de la distribution de charges).

Propriétés : caractère conservatif de la circulation,
existence d’une énergie potentielle gravitationnelle
pour une charge ponctuelle et dont dérive la force
gravitationnelle, symétries et invariances d’espace
du champ (liées à celles de la distribution de masse).

Il existe toutefois des différences : alors que la force de gravitation est toujours attractive, la force d’interaction électro-
statique est répulsive lorsque les deux charges sont de même signe. Cette différence provient du fait que la masse est une
grandeur toujours positive.

Application : Déterminer l’expression du champ gravitationnel créé en tout point de l’espace par une masse ponctuelle
m supposée isolée à l’aide du théorème de Gauss. Quelle est la forme des lignes de champ gravitationnel ?
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