
PC Chapitre 1 : Modèle scalaire de la lumière Optique

Ce chapitre est purement descriptif : il explicite une modélisation de la lumière permettant de rendre compte de phé-
nomènes non décrits par l’optique géométrique, à savoir les interférences que nous étudierons extensivement, ainsi que la
diffraction qui n’est quant à elle pas au programme.
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I - Onde lumineuse et chemin optique
Il est très important de cerner dès le début du chapitre que les raisonnements de l’optique ondulatoire reposent en partie

sur la construction des rayons lumineux, qui sont par essence des objets de l’optique géométrique. Il y a une complémentarité
(et non une opposition) entre rayon lumineux et onde lumineuse.

1) Chemin optique
Le chemin optique est la grandeur qui permet, via le théorème de Malus, de faire le lien entre l’optique géométrique et

l’optique ondulatoire

Définition : Chemin optique
On appelle chemin optique de S à M la quantité (en m)

L(SM) =

∫ M

S

n(P )d`

où le point P se trouve sur un rayon lumineux qui relie S à M. n est l’indice optique du milieu.

Propriété :
Le chemin optique L(SM) reliant S à M est égal à la longueur parcourue par la lumière, dans le vide

pendant le temps mis par la lumière pour aller de S à M dans le milieu.

Démo :
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Exemple : cas d’un milieu LHI (n= cst)

2) Surface d’onde

Définition : Surface d’onde
Soit S une source lumineuse ponctuelle. On appelle surface d’onde les surfaces (ensemble des points

M) telles que

L(SM) = cste

En d’autres termes, ce sont des surfaces "equi-chemin optique".

Exemple : Dans un milieu homogène, les surfaces d’onde d’une source ponctuelle sont des sphères. Très loin de la source,
en première approximation, les surfaces d’onde sont des plans.

3) Théorème de Malus
C’est le théorème qui fait le lien entre l’optique géométrique et l’optique ondulatoire.

T héorème : Théorème de Malus (admis)

Soit S une source ponctuelle. Soit Σ une surface d’onde de S et M un point sur Σ. Alors en M le
rayon lumineux est perpendiculaire à la surface d’onde Σ.

En des termes moins formels, "les rayons lumineux sont orthogonaux aux surfaces d’onde" (et inver-
sement).

Idée : grâce à ce théorème, on peut dessiner les surfaces d’ondes si on connait les rayons lumineux (et inversement).

Exemples : 1) Source ponctuelle dans un milieu homogène, 2) rayons parallèles (équivalent à une source à l’infini), 3)
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surfaces d’onde après la traversée d’une lentille pour une source dans le plan focal objet et 4) utilisation du principe du
retour inverse de la lumière.
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II - La vibration lumineuse

1) Définition

Définition : Vibration lumineuse
La lumière émise par une source ponctuelle monochromatique de fréquence f peut être décrite par un

champ scalaire a(M, t) qui se propage

a(M, t) = a(M) cos (ωt− ϕ(M))

avec ω = 2πϕ. La phase à l’origine ϕ(M) est pour nous l’objet le plus important dans cette grandeur,
c’est elle qui conduit aux phénomènes d’interférences. On s’intéressera plus rarement à l’amplitude a(M).
; On ne précise jamais l’unité de a(M, t), car elle n’est pas définie une fois pour toute. Le signe "-" dans
ωt− ϕ(M) est conventionnel. On peut rencontrer des exercices où la vibration lumineuse est écrite avec
un "+".

Remarque : si la source n’est pas monochromatique, on la décompose en plusieurs sources monochromatiques ; et si elle
n’est pas ponctuelle, on la décompose en plusieurs sources ponctuelles. L’amplitude résultante est la somme des amplitudes
de chacune des sources.

Remarque : Lien avec l’électromagnétisme.
La grandeur a est une composante du champ électromagnétique, c’est-à-dire Ex, ou By par exemple. C’est pour cette

raison que l’unité de a n’est pas précisée : elle peut représenter tantôt un champ
−→
E , tantôt un champ

−→
B et ces champs

n’ont pas la même unité (ni le même dimension, bien entendu...)

Modèle scalaire de la lumière. Cette modélisation de la lumière par une onde scalaire constitue le modèle scalaire
de la lumière. C’est dans le cadre de ce modèle que nous étudierons les phénomènes d’interférences dans les chapitres
ultérieurs.

Remarque : le modèle scalaire de la lumière permet de rendre compte du comportement ondulatoire de la lumière
(interférence et diffraction). En revanche, l’oubli du caractère vectoriel du champ électromagnétique (

−→
E ,
−→
B ) empe ?che

toute interprétation des phénomènes liés à la polarisation. Pour décrire la physique de la polarisation, on est obligé d’avoir
recours à l’électromagnétisme.

2) Éclairement ou intensité
Les détecteurs de lumière (y compris l’œil) sont tous sensibles à l’énergie lumineuse, liée au carré de a. Les fréquences en

jeu étant de l’ordre de 1015 Hz, ils ne sont en fait plus précisément sensibles uniquement à la valeur moyenne de l’énergie
lumineuse.

Définition : Éclairement.
On appelle éclairement (ou intensité lumineuse) la grandeur

E(M, t) = 2
〈
a2(M, t)

〉
L’éclairement est, à un facteur multiplicatif près, la puissance surfacique (puissance par unité de

surface) reçue, c’est-à-dire la valeur moyenne du vecteur de Poynting électromagnétique (voir le cours
d’électromagnétisme). C’est la grandeur mesurée par tous les détecteurs optiques.
; E est parfois notée I. C’est l’équivalent en optique de l’intensité sonore en acoustique. Notons également
que le facteur 2 est conventionnel, et qu’il est parfois omis.

3) Phase de la vibration
Le but dans cette partie est de relier la différence de phase à l’origine entre deux points S et M en fonction du chemin

optique entre les deux.
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On considère une source ponctuelle monochromatique S. Cette source émet une onde lumineuse

a(S, t) = a(S) cos(ωt− ϕ(S))

Un observateur en M reçoit l’onde

a(M, t) = a(M) cos(ωt− ϕ(M))

que l’on peut également écrire à partir de S car l’onde se propage de S à M :

a(M, t) = a(M) cos(ω(t− τ)− ϕ(S))

où τ est le temps mis par l’onde pour se propager dans le milieu entre S et M. On a alors

ϕ(M) = ϕ(S) + ωτ

De plus τ =
L(SM)

c
avec c la célérité de l’onde lumineuse, ce qui conduit à

ϕ(M) = ϕ(S) +
2π

λ0
L(SM)

La différence de phase est ainsi directement reliée au chemin optique. On comprend pour cette raison que les surfaces
d’onde, c’est-à-dire les surfaces équi-chemin optique par définition, sont aussi des surfaces équiphases.

4) Cas de l’onde plane et de l’onde sphérique

On introduit k =
2π

λ0

a) onde sphérique progressive sinusoïdale

L’onde sphérique progressive harmonique est un modèle de vibration lumineuse proche d’une source, pour laquelle la
surface d’onde est une sphère.

a(M, t) =
A0

SM
cos

[
ωt− 2π

λ0
L(SM) + ϕ(S)

]

a(M, t) =
A0

SM
cos
[
ωt−

−→
k .
−−→
SM + ϕ(S)

]
L’amplitude de la vibration dépend bien de r = SM mais ses variations en fonction de r sont faibles comparées à celles

imposées par la phase. La direction de propagation, repérée par le vecteur d’onde k, le long de laquelle nous venons d’évaluer
le retard de phase de l’onde, se confond avec le rayon lumineux. Le retard de phase de l ?onde a donc été calculé le long d’un
rayon lumineux.

b) Onde plane progressive harmonique

Dans ce cas, l’onde se trouve loin de la source. Localement la direction de propagation de l’onde est unique, dirigée selon
une droite orthogonale au plan tangent local π. Le vecteur d’onde

−→
k est donc constant :

−→
k = k−→u avec −→u un vecteur unitaire

orthogonal à π. L’amplitude a(M) de l’onde est aussi constante sur un domaine local. Plutôt que d’évaluer le retard de phase
de l’onde par rapport à la source, supposée très éloignée, pour ne pas dire "à l’infini", on préfère souvent choisir une origine
des phases en un point O, local. Choisissons cette origine O sur la droite orientée par le vecteur unitaire −→u r placé dans le
sens de propagation de la lumière.

On obtient alors : ϕ(M) = ϕ(O) +
−→
k .
−−→
OM

et la vibration lumineuse s’écrira :

a(M, t) = A0 cos
[
ωt−

−→
k .
−−→
OM + ϕ(S)

]
c) Notation complexe d’une onde

Comme en RSF en électricité, on associe une grandeur complexe à la vibration lumineuse :

a(M, t) = a(M) cos(ωt− ϕ(M)) −→ a(M, t) = a(M)ej(ωt−ϕ(M)
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III - Généralités des détecteurs et sources de lumière

1) Les détecteurs de lumière
Les détecteurs sont tous sensibles à l’éclairement, c’est-à-dire à la valeur moyenne du carré de l’amplitude. On les distingue

principalement par leur temps de réponse et leur sensibilité : ce sont les deux grandeurs typiques qui caractérisent tel
ou tel détecteur.
• La sensibilité est la variation de la grandeur mesurée (une tension dans une photodiode par exemple) lors de la

variation de l’éclairement. Plus la tension varie plus le détecteur est sensible, c’est-à-dire en particulier qu’il peut
permettre de détecter de faibles variations d’éclairement.

• Le temps de réponse est le temps que prend la grandeur mesurée (par exemple une tension) à changer lorsque
l’éclairement change. Notamment, voici quelques temps de réponse typiques :
— œil : 10−1 s (24 images / secondes au cinéma) ;
— photorésistance : 10−2 s ;
— photodiode : 10−6 s.

Ces temps sont tous très (très) grand devant la période de la vibration lumineuse 10−15 s. C’est pour cette raison que les
détecteurs ne peuvent être sensibles qu’à la moyenne de la puissance reçue.

2) Description des sources
On considère trois grand types de sources de lumière :
— les lampes conventionnelles : LED, ampoule à incandescence, lumière naturelle (rayonnnement solaire) ;
— les lampes spectrales : on rencontre en prépa principalement les lampes au sodium et au mercure ;
— les LASER.

Propriété : Lampes conventionnelles.
Elles émettent une lumière dont le spectre est continu et très large (contient typiquement toutes les

longueurs d’onde du domaine visible, ou une grande majorité). La répartition spectrale des longueurs
d’onde conduit à la couleur de la lumière.

Propriété : Lampes spectrales.
Elles émettent une lumière dont le spectre est un spectre de raies. Le spectre ne contient donc que

quelques composantes, de largeur très petites mais non nulle (∆f ≈ 1012 Hz � f0 ≈ 1015 Hz, pour une
raie donnée).
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Propriété : LASER.
Ils émettent une lumière dont le spectre ne contient qu’une seule raie, beaucoup plus fine que celles

des lampes spectrales (∆f ≈ 106 Hz). On considère pour cette raison souvent leur lumière parfaitement
monochromatique (une raie infiniment fine).

3) Modélisation de l’émission des sources réelles : le train d’onde

Transformée de Fourier. La transformée de Fourier est la représentation d’un signal dans le domaine spectral,
c’est-à-dire dans le domaine des fréquences (ou des longueurs d’onde de manière équivalente). Il y a une équivalence
entre un signal s(t) et sa transformée de Fourier ŝ(f) : ce sont deux représentations d’un même signal. On a les
propriétés suivantes que l’on admet

— une raie infiniment fine (onde dite monochromatique) correspond à une onde harmonique illimitée dans le
temps (sans réalité physique) ;

— une raie de largeur ∆f correspond à une onde de durée typique ∆t telle que

∆f∆t ≈ 1

donc plus la raie est large en fréquence ou en longueur d’onde, plus l’onde correspondante a une durée petite en
temps.

Appendice Mathématique

Modèle du train d’onde : c’est un modèle de la vibration lumineuse émise par une source ponctuelle réelle (donc non
parfaitement monochromatique). Il s’énonce comme suit :

La lumière émise par une source lumineuse ponctuelle peut être décrite comme une succession de trains d’onde. Un train
d’onde est une onde harmonique
• de fréquence f ;
• de durée τ , appelé temps de cohérence de la source ;
• de phase à l’origine aléatoire.

C’est donc un morceau d’onde harmonique a(M, t) = A(M)cos(ωt− ϕ(M)) de durée τ où ϕ(M) = ϕ(S) +
2π

λ0
L(SM) et

où ϕ(S) est aléatoire d’un train d’onde à l’autre.

Le temps de cohérence τ est lié à la largeur spectrale de la source car ∆f × τ ≈ 1 donc τ ≈ 1

∆f
.

⇒ C’est parce que la phase ϕ(S) est aléatoire que les phénomènes d’interférence sont rares dans la vie quotidienne. Si
les sources étaient parfaitement monochromatiques (donc avec une durée de cohérence infinie et donc une phase ϕ(S) stable
dans le temps) nous verrions des interférences partout tout le temps ! (c’est ce qui arrive avec un LASER, en fait...)

Définition : Longueur de cohérence temporelle.
Elle est définie par

`c = cτ

Elle représente la taille moyenne d’un train d’onde s’il se propageait dans le vide.

Quelques valeurs numériques :

∆f (Hz) τ (s) `c (m)
spectre continu 1× 1014 3× 10−15 7× 10−7

raie du mercure 1× 1012 1× 10−12 3× 10−4

LASER 1× 106 1× 10−6 3× 102

7 sur 8 2025/2026



PC Chapitre 1 : Modèle scalaire de la lumière Optique

Calcul de chemins optiques.
Nous allons être amenés dans les chapitres à venir à calculer beaucoup de chemins optiques entre deux points S et M
d’un rayon lumineux. Pour cela, on dispose des méthodes suivantes :

1. dans un milieu homogène, L(SM) = nSM : il suffit de calculer la distance SM directement ;
2. les chemins optiques sont additifs. Si le rayon lumineux de S à M passe par A, alorsL(SM) = L(SA) +L(AM)

On peut se servir de cette propriété pour décomposer le calcul du chemin optique en plusieurs morceaux ;
3. le théorème de Malus (combiné ou non avec le principe de retour inverse de la lumière) permet souvent de

déterminer facilement la forme des surfaces d’onde, et donc d’identifier des points à équi-chemin optique de la
source. En pratique, on ne rencontre que deux cas :
Cas 1. Si les rayons lumineux sont tous parallèles entre eux (source à l’infini), alors les surfaces d’ondes sont

planes.
Cas 2. Si la source est dans un milieu homogène, alors elle émet des surfaces d’onde sphériques.

Point Méthode
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