
PC Chapitre 4 : Magnétostatique Électromagnétisme

Introduction

Nous avons souligné en première année que des conducteurs parcourus par des courants électriques étaient des sources
de champ magnétique. Ce chapitre est consacré à l’étude du champ magnétique dans le cas particulier du régime perma-
nent : es distributions de courants sont alors invariables dans le temps et constituent la source d’un champ appelé champ
magnétostatique.

Le premier paragraphe est consacré à l’étude de ce champ et de ses propriétés, notamment les équations locales
caractéristiques seront présentées très rapidement. Nous présenterons également le théorème d’Ampère qui est l’outil de la
classe de PC permettant de calculer les champs magnétostatiques.

Le second paragraphe expose quelques exemples importants de champs magnétostatiques correspondants à des situa-
tions avant tout d ?intérêt pratique tant au niveau macroscopique que microscopique.

Dans la troisième partie, nous privilégierons le point de vue de dipôle magnétique pour discuter de phénomènes physiques
d’intérêt. Conformément au programme officiel de la classe de PC, nous insisterons sur le contenu physique sous-jacent des
équations fondamentales de la magnétostatique.

N.B : il serait de bon ton (profitable) de relire/réviser les notions sur le champ magnétique vue au début du thème
d’induction de PCSI.
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I - Champ magnétostatique

1) Équations de Maxwell de la magnétostatique

Nous allons directement présenter ici les équations de Maxwell de la magnétostatique, d’abord sous forme locale, puis
nous interpréterons ces équations sous forme intégrale, pour en déduire notamment le théorème, utile pour déterminer le
champ magnétostatique créé par une distribution de courant (équivalent au théorème de l’électrostatique).

a) Forme locale

Sous forme locale, les équations de Maxwell de la magnétostatique s’expriment selon (~B est donc le champ magnétique
créé dans tout l’espace, et ~j est le vecteur densité de courant qui modélise le courant électrique)
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•Équation de Maxwell-Thompson (ou Maxwell-flux) :

div ~B = 0

•Équation de Maxwell-Ampère :

−→
rot ~B = µ0~j

où µ0 est appelée la perméabilité magnétique du vide et est une constante fondamentale de la Physique (au même titre
que ε0 permittivité diélectrique du vide).
µ0 = 4π.10−7 kg.m.A−2.s−2

A Retenir

b) Forme intégrale

Les deux équations de Maxwell précédente ont des interprétations intégrales qui vont nous donner une information sur
le champ magnétique, à l’échelle macroscopique.
• Le champ magnétostatique est à flux conservatif :

Nous l’avons déjà plusieurs fois, un champ de vecteurs comme ~B qui vérifie

div ~B = 0

est à flux conservatif, c’est-à-dire que le flux du champ magnétique à travers une surface fermée est nul. Le flux de ~B
est donc identique le long d’un tube de courant, et en particulier, si les lignes de champ se resserrent, la norme de ~B
augmente (voir mécanique des fluides ou diffusion en régime stationnaire).

• Le théorème d’Ampère :
Il faut pouvoir déterminer l’expression de la norme du champ magnétostatique créé par une distribution de courants
lorsque l’on en connaît déjà le sens et la direction (par l’étude des invariances et symétries, voir plus loin). La
grandeur du flux ne nous permet pas en effet d’y parvenir (contrairement au théorème de Gauss de l’électrostatique).
Au préalable, il nous faut revenir sur la notion de circulation d’un champ.

T héorème :
Théorème d’Ampère :
Soit (C ) un contour fermé orienté. Soit (S) une surface s’appuyant sur (C ) et orienté en accord avec

le contour (règle de la main droite). La circulation du champ magnétique le long du contour fermé
orienté est donnée par ∮

(C )

~B.
−→
d` = µ0Ienlacé

où Ienlacé est l’intensité du courant enlacé par (C )

Démo :
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Remarque :
— le calcul de l’intégrale sera simple en pratique si l’on choisit un contour adapté à la distribution de courants étudiée

(d’où l’intérêt de l’étude des invariances et symétries comme en électrostatique). Il faut choisir un contour tel que ~B
et
−→
d` soient tangents ou orthogonaux en tout point de (C ) ;

— si les courants sont définis par une densité de courants ~j, on utilise la définition I =
!

(S)
~j.
−→
dS donnée au chapitre 1.

c) Linéarité des équations

Les équations locales relatives au champ que nous avons obtenues pour le champ ~B (et le champ ~E au chapitre précédent)
sont toutes linéaires (ce sont des équations aux dérivées partielles). Il est donc possible de résoudre un problème d’élec-
tromagnétisme où plusieurs sources de champ sont simultanément présentes en utilisant une méthode de superposition : le
champ créé par une superposition de sources, est égale à la superposition des champs créés par chaque source ; de manière
équivalente, chaque champ créé vérifie les équations de Maxwell, il en est de même pour le champ total (superposition)

2) Invariances et symétries d’une distribution de courant et conséquences

a) Distributions de courant

À la différence des distributions de charge, les distributions de courant sont nécessairement continues.
La description naturelle d’une distribution de courant est la donnée du champ de vecteur densité de courant ~j, dont le

flux à travers une surface quelconque constitue l’intensité électrique la traversant.
Néanmoins, il arrive parfois que certaines dimensions de la distribution soient négligeables devant d’autres. Ainsi, une

couche de faible épaisseur (devant sa longueur et sa largeur) est assimilée à une nappe bidimensionnelle, et un câble de
petit rayon (devant sa longueur) à un fil.

La distribution de courant est alors caractérisée par le vecteur densité surfacique de courant ~js ou par une intensité i
dans le cas filiforme.

Exemple : Pour une nappe d’épaisseur e et de densité de courant ~j uniforme, l’intensité totale i dans le volume L.`.e

est i = j.e.` ; dans le cadre d’une modélisation surfacique, la densité de courant surfacique ~js est telle que l’intensité totale
i′ = js.` ; on veut i = i′ ce qui impose : ~js = ~j.e ;

Exemple : Pour un câble de section s, de rayon a et de densité de courant ~j uniforme, l’intensité totale i dans le câble est
i = j.s. La modélisation est ici directe en choisissant une intensité i = j.s

Il est à noter que la modélisation surfacique n’est pas au programme.

b) Invariances

• Invariance par rotation autour d’un axe :
S’il existe un axe autour duquel une rotation d’angle θ laisse invariante la distribution de courants, alors la norme
B du champ magnétostatique en M ne dépend pas de l’angle θ correspondant à cette rotation (ou de la coordonnée
d’espace correspondant à cet angle).
Exemple : fil infini. La distribution est un fil rectiligne infini et celui-ci reste invariant par toute rotation d’angle θ
autour de son axe de révolution (lui-même).
Donc le module du champ ne dépend pas de θ.

• Invariance par translation selon une direction :
S’il existe une direction pour laquelle toute translation laisse invariante la distribution de courants, alors la valeur du
champ en M ne dépend pas de la variable d’espace qui définit la direction de cette translation.
Dans l’exemple du fil infini, on constate que le fil étant "infiniment long", toute translation selon z laisse invariant ce
fil parcouru par le courant d’intensité I. Donc la norme du champ ne dépend pas de z.

c) Symétries de la distribution de courant

• Plans de symétrie :
Supposons l’existence d’un plan de symétrie Π+ pour une distribution de courants : celle- ci est symétrique de part
et d’autre de ce plan. Nous admettrons le résultat suivant :
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Propriété :
Le champ magnétostatique est orthogonal en tout point M appartenant à un plan de symétrie d’une

distribution de courants

Il est quelquefois également utile de raisonner sur des points M1 et M2 symétriques de part et d’autre du plan de symétrie
de la distribution de courants. Le champ ~B(M2) en M2 est alors égal à l’opposé du symétrique par rapport à ce plan du
champ ~B(M1) en M1.
• Plans d’antisymétrie :

Certaines distributions de courants possèdent des plans d’antisymétrie : une symétrie par rapport à un tel plan
transforme la distribution de courants en une distribution exactement opposée. Nous admettrons le résultat suivant :

Propriété :
Le champ magnétostatique est contenu dans le plan d’antisymétrie en tout point M appartenant à

ce plan d’antisymétrie d’une distribution de courants

3) Sens du champ magnétostatique

Ayant déterminé la direction du champ magnétostatique à l’aide des symétries, il est également nécessaire de déterminer
son sens. Il existe différentes règles pour y parvenir.

On peut utiliser la règle dite "du tire-bouchon". Celui-ci relie un sens de rotation et un sens de translation. En associant
une des deux opérations au courant (rotation ou translation), l’autre opération (translation ou rotation) donne le sens du
champ magnétostatique. Si le courant suit une boucle fermée, on associe la rotation du tire-bouchon au sens du courant : il
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se translate alors dans un sens qui est celui de ~B. Si le courant part à l’infini, on lui associe la translation du tire-bouchon : il
tourne alors dans un sens qui donne celui de ~B.

On peut aussi utiliser la règle dite "du bonhomme d’Ampère" ou "de la main droite". On aligne le bonhomme d’Ampère (ou
la main droite) sur le courant, celui-ci entre par les pieds (ou par le poignet) et sort par la tête (le bout des doigts de la main
droite). Lorsque le bonhomme (ou la paume de la main droite) regarde le point M où l’on cherche le sens du champ, son
bras gauche tendu perpendiculairement (le pouce pour la main droite) donne le sens du champ.

4) Propriétés topographiques

Pour dégager les propriétés caractéristiques d’une carte de champ magnétostatique, reprenons une carte de champ
étudiée dans le cours de première année (celle créée par une spire circulire) et donnée ci-dessous :

• Les lignes de champ sont des courbes fermées sur elles mêmes. Ceci est donc un critère permettant de différencier
une carte de champ magnétostatique d’une carte de champ électrostatique ;

• Les lignes du champ magnétostatique "tournent" autour de leurs sources (
−→
rot ~B = µ0~j) contrairement aux lignes de

champ électrostatique (
−→
rot ~E = ~0). On peut donc repérer la position de la ou des source(s) du champ et même le sens

de circulation du courant dans celle(s)-ci en utilisant les règles donnant le sens du champ (règle du tire- bouchon,...) :
ici le courant est dirigé vers l’avant à gauche et vers l’arrière à droite ;

• On peut identifier des plans de symétrie (plan Π2 : le champ est orthogonal en tout point de ce plan) ou d’antisymétrie
(plan Π1 et plan de la figure : le champ est contenu dans ces plans) ;

• Les tubes de champ s’évasent lorsque l’on s’écarte des sources : le champ est moins intense à grande distance de la
spire.

II - Exemples de champs magnétostatiques

1) Méthode
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2) Câble rectiligne infini
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3) Fil infini
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4) Solénoïde long sans effet de bords

a) Calcul du champ

b) Inductance propre

φ = L.I = N.
!
~B.
−→
dS = N.B.S, soit L = µ0.n2.πR2`, qui ne dépend que de la géométrie du circuit (et du milieu par µ0).

c) Densité volumique d’énergie magnétique

Um = 1
2 L.I2

soit

Um =
B2

2µ0
.(πR2`)

On trouve alors la densité volumique d’énergie magnétique

dUm

dτ
=

B2

2µ0

L’énergie est bien localisée dans le champ magnétique lui-même !
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III - Dipôles magnétostatiques

1) Définition et applications directes

Moment magnétique d’une boucle de courant plane :
On constate que les lignes de champ, vues de loin, d’un aimant et d’une spire circulaire sont très ressemblantes. On
peut alors modéliser l’action de l’un et de l’autre par un moment magnétique.

−→m

Pour une spire circulaire de surface S parcourue par une intensité I,

~m = I.~S = I.S~n

~n est le vecteur normal à la spire.

Rappel de Sup

a) Définition

Définition :
On appelle dipôle magnétostatique toute distribution de courants permanents de moment magné-

tique ~m non nul et dont les dimensions caractéristiques D sont petites.

Ce concept physique est important car il a servi à construire le premier modèle de la matière aimantée proposé par
Ampère. Il a ensuite été utilisé pour apporter une explication à l’origine du magnétisme à l’échelle de l’atome. C’est ce que
nous abordons dans le point suivant.

b) Application 1 : modèle planétaire de Bohr de l’atome d’hydrogène

Le modèle planétaire de Bohr dans sa version simplifiée décrit les électrons de charge −e, de masse m comme ayant
des trajectoires circulaires de rayon r autour du noyau. Pour l’atome d’hydrogène, notons ~v la vitesse de l’unique électron
gravitant autour du noyau selon un mouvement périodique de période T. Nous supposerons que l’électron n’est soumis
qu’à la force de Coulomb de la part du proton.

1. Moment magnétique du système.
(a) Comment peut définir une intensité pour ce système ?
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(b) Déterminer l’expression du moment magnétique ~m associé à l’atome d’hydrogène.

2. Moment cinétique du système.

(a) Le mouvement de l’électron est-il uniforme ? Justifier.

(b) Déterminer l’expression du moment cinétique de l’atome.

3. Montrer que moment magnétique et moment cinétique sont proportionnels. Que dire du coefficient de proportionna-
lité ?

Dans un modèle planétaire de l’atome, le moment magnétique ~m associé au mouvement orbital de l’électron autour
du noyau dont le moment cinétique orbital est noté ~σ vérifient la relation de proportionalité :

~m = γ~σ

où γ = − e
2m est appelé rapport gyromagnétique de l’électron.

A Retenir

Remarquons que le proton peut être considéré comme fixe dans le référentiel barycentrique compte tenu de sa masse
bien plus élevée que celle de l’électron. Il en résulte que le moment cinétique atomique se confond avec celui de l’électron.
On peut alors imaginer étendre le résultat précédent à l’atome dans son ensemble et écrire pour celui-ci : ~m = γatome~σ.

c) Application 2 : Magnéton de Bohr

Historiquement, la première quantification de la matière a été proposée par Bohr : la projection du moment cinétique
orbital ~σ sur une direction donnée ne peut prendre que des valeurs multiples entières de ~. Par conséquent, puisque ~m = γ~σ,
nous déduisons que le moment magnétique est lui aussi une grandeur quantifiée multiple de ~e

2m et appelée magnéton de
Bohr que nous noterons µB. Déterminons sa valeur numérique avec un chiffre significatif :

µB = 0, 9.10−23A.m2

Que représente cette quantité ? Elle nous donne un ordre de grandeur du moment magnétique atomique.
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Comment retrouver ce résultat simplement par analyse dimensionnelle ?
Le magnéton de Bohr est un moment magnétique, donc sa dimension physique est une intensité électrique fois une

longueur au carré. Celui-ci dépend de ~, car c’est une caractéristique quantique, de la masse m de l’électron, et de sa charge
q (qui permet d’obtenir une intensité, car en mouvement). On imagine alors

µB = qαmβ~γ

avec [q] = I.T, [m] = M et [~] = M.L2.T−1 (car ~ s’exprime en J.s). On obtient l’équation aux dimensions

I.L2 = Iα.Tα.MβMγ.L2γ.T−γ

soit 
α = 1
2γ = 2
β + γ = 0
α − γ = 0

ou encore α = γ = 1 et β = −1, ainsi

µB =
q~
m

On retrouve l’expression attendue.

d) ODG du moment magnétique d’un aimant permanent

Dans la matière aimantée, les moments magnétiques prennent une direction privilégiée en présence d’un champ
magnétique extérieur et sous l’effet d ?une interaction quantique. La résultante de toutes les contributions micro-
scopiques ~m va alors donner lieu à l’existence d’un moment magnétique macroscopique ~M permanent : on parle
d’aimantation permanente (tandis que dans la matière non aimantée, les moments magnétiques sont orientés aléa-
toirement la plupart du temps : l’aimantation globale est nulle. Précisons également que l’agitation thermique
peut diminuer voire annuler l’aimantation au-delà d’une certaine température caractéristique du matériau aimanté
considéré.).
On peut alors distinguer trois types de milieux :

— Milieu ferromagnétique : matériaux magnétique possédant un moment dipolaire magnétique moyen non nul
même en l’absence d’excitation magnétique : on peut donc les utiliser comme aimants permanents.

— Milieu diamagnétique : milieux ne possédant pas de moment magnétique microscopique.
— Milieu paramagnétique : milieux possédant des moments magnétiques microscopiques dont l’orientation est

aléatoire.

Tous les moments magnétiques microscopiques sont donc en ce cas alignés dans la même direction et le même sens. Dans
un aimant permanent, de volume typique 10 cm3, on peut dénombrer comme ordre de grandeur une mole de moments
magnétiques microscopiques. On obtient alors :

M ≈ NAµB ≈ 6.1023
× 10−23 = 6 A.m2

On retrouve l’ODG donné dans le cours d’induction en Sup PCSI.
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2) Actions subies par un dipôle magnétotstatique placé dans un champ extérieur

a) Expressions

On va ici résumer les conclusions pour la résultante, le moment et l’énergie potentielle d’un dipôle dans un champ
magnétique extérieur ~Bext :
• Résultante : il s’agit de la résultante des forces de Laplace car nous étudions un dipôle magnétique, structurellement

équivalent à une boucle de courant dans un champ ~Bext. L’étude déjà vue en Sup nous permet d’affirmer ~F = ~0, car la
boucle est fermée.

• Moment subi par le dipôle :

~M = ~m ∧ ~Bext

• Énergie potentielle d’un dipôle magnétique placé dans un champ magnétique extérieur :

Ep = −~m.~Bext

Remarque : si le dipôle est situé dans une zone de champ magnétique non uniforme, il subit alors une force ~F telle que :
~F = −

−−−→
grad Ep =

−−−→
grad (~m.~Bext), ce qui peut aussi s’écrire sous la forme ~F = (~m.

−−−→
grad)~Bext avec ~m qui est considéré comme un

vecteur constant dans cette dernière écriture.

b) Expérience de Stern et Gerlach

En 1921, deux scientifiques allemands Otto Stern et Walther Gerlach (1889-1979), réalisent l’expérience dont le dispositif
est schématisé ci-dessous

Traduction : Cher Monsieur Bohr, Ci-joint la suite de notre travail concernant la preuve expérimentale de la quantification
directionnelle.

- [À gauche] : argent [silber], sans champ magnétique [ohne magnet feld]
- [À droite] : avec champ [mit feld]
Nous vous félicitons pour la confirmation de votre théorie ! Avec mes salutations respectueuses. Bien à vous. Walther

Gerlach.
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Caractéristiques de l’expérience :
— Taille de la fente d’entrée : b=1mm ; Longueur de l’électroaimant : l=3,5cm
— Distance entre le milieu de l’électroaimant et l’écran : D=1,8cm (Echelle non respectée)
— Pression dans l ?enceinte : p=1,0mPa
— Température du jet à la sortie du four : T=1270K
— Gradient de champ magnétique : ∂B

∂z = 500 T.m−1

— Argent : M = 107 g.mol−1 ; Z = 47 ; RAg = 160 pm.
— c = 3, 00.108 m.s−1 ; e = 1, 60.10−19 C ; h = 6, 62.10−34 J.s
— kB = 1, 38.10−23 J.K−1
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