EN EXERCICES UNIQUEMENT

Chapitre 11 : Dynamique du point matériel

EN QUESTION DE COURS OU EXERCICES

Chapitre 12 : Point matériel - Énergie et Puissance

- Définir la notion de puissance; caractère moteur et résistant d'une force
- Définir la notion de travail élémentaire et de travail entre deux instants quelconques.
- Forces conservatives (1): définition, lien avec l'énergie potentielle
- Forces conservatives (2) : détermination de l'expression de l'énergie potentielle des forces usuelles (poids, interaction gravitationnelle/électrostatique, force de Hooke)
- Enoncer et démontrer les théorèmes de la puissance cinétique et de l'énergie cinétique.
- Énoncer et démontrer les théorèmes de la puissance mécanique et de l'énergie mécanique.
- Mouvement conservatif : à partir d'une forme quelconque du graphe de $E_p(x)$ (mouvement à un degré de liberté), expliciter les limites du mouvement (état lié / de diffusion); barrière de potentiel.
- Équilibre d'un point matériel : positions d'équilibre stable et instable. Donner les caractéristiques dans le cas particulier d'un mouvement conservatif : petites oscillations autour d'une position d'équilibre stable.

Chapitre 13 : Particule chargée dans un champ électromagnétique extérieur

- Définir la force de Lorentz en explicitant ses termes. Déterminer la puissance de cette force et conclure. Montrer à l'aide d'ordres de grandeur qu'elle est prépondérante devant le poids.
- Exprimer le théorème de l'énergie mécanique lorsque seule la force de Lorentz est présente. Ordres de grandeur, notion d'électronvolt.
- Déterminer l'équation de la trajectoire d'une particule chargée dans un champ électrostatique uniforme (champ électrique parallèle ou orthogonal à la trajectoire).
- Déterminer les équations paramétriques de la trajectoire d'une particule chargée dans un champ magnétostatique uniforme (définir la pulsation cyclotron et le rayon de la trajectoire).

EN QUESTION DE COURS UNIQUEMENT

Chapitre 14 : Théorème du moment cinétique en référentiel galiléen

- Définir le moment cinétique d'un point matériel par-rapport à un point; interprétation physique
- Définir le moment cinétique par-rapport à un axe orienté; propriété : invariance dans le choix du point d'application (énoncé et démonstration)
- Donner la formule du moment d'une force par-rapport à un point.
- Donner la formule du moment d'une force par-rapport à un axe orienté; énoncer puis démontrer les conditions d'annulation de ce moment. Lien entre le signe du moment et le sens de rotation du point matériel.
- Définir le bras de levier et donner l'expression du moment d'une force par-rapport à un axe orienté en fonction de celui-ci.
- Énoncer puis démontrer le TMC, par-rapport à un point fixe et/ou par-rapport à un axe orienté fixe.
- Pendule pesant : déterminer l'équation différentielle du mouvement en appliquant le TMC.
- Conservation du moment cinétique : les différents cas (système isolé, mouvement à force centrale) + conséquences dans le cas d'un mouvement à force centrale.

SAVOIR-FAIRE

Les exercices suivants pourront être reposés aux étudiants : TD13, TD14, TD15 Ex 1

Révisions pour le DS numéro 6 du 19/03 : Chapitres 10, 11, 12, 13 ; TD12, TD13, TD14, TD15.