
ITC − IA − Corrigé
Page 1 / 7

PC/PSI
Année 2025-2026

TD n°4 Intelligence artificielle − Corrigé
Informatique du Tronc Commun

Parcours possibles
Si vous avez des difficultés en python : exercices n°1, n°2.

Si vous vous sentez moyennement à l’aise, mais pas en difficulté : exercices n°1, n°2, n°3.
Si vous êtes à l’aise : exercices n°3, n°4, n°5.

I Les briques élémentaires
Exercice n°1 Distances
R1. Écrire la fonction dist(x:list,y:list)->float qui renvoie la distance euclidienne au carré entre les deux

vecteurs x et y de Rm.

Solution:

1 def dist(x,y):
2 d=0
3 for i in range(len(x)):
4 d=d+(x[i]-y[i]) **2
5 return d

R2. On connaît les coordonnées de Valence dans une liste val=[..,..,..], on souhaite connaître la distance
qui sépare Valence d’autres villes.
Nous avons une liste de listes villes de la forme [[’ville0’,[..,..,..]],[’ville1’,[..,..,..]],...].
Le premier élément de chaque sous-liste est le nom de la ville, le deuxième élément est la liste des coordonnées
de la ville.
Remarque : c’est une structure quasi identique à celle du cours.
Écrire la fonction liste_dist(val:list,villes:list[list])->list[list] qui renvoie une liste de listes
de deux éléments, le premier est le nom de la ville, le deuxième est la distance qui sépare cette ville à Valence.
Une structure possible pour la fonction, volontairement très détaillée pour vous guider (peut être écrite en
moins de lignes, en en regroupant) :

1 def liste_dist (val ,villes):
2 L = # initialisation de la liste des distances
3 for i in range (.......) : # pour chaque ville
4 d = .. # calcul de la

distance qui sépare Valence de la ville i, dont les coordonnées sont
dans la liste

5 N = # nom de la ville i
6 L.append([..... ,]) # on ajoute une liste de deux

éléments à L
7 return L

Solution:

1 def liste_dist (val ,villes):
2 L = []

ITC − IA − Corrigé
Page 2 / 7

PC/PSI
Année 2025-2026

3 for i in range(len(villes)): # pour chaque ville
4 d = dist(val ,villes[i][1]) # distance qui sépare la ville de

Valence
5 N = villes[i][0]
6 L.append ([N,d])
7 return L

R3. On connaît les coordonnées de Valence dans une liste val=[..,..,..], on souhaite connaître la distance
qui sépare Valence d’autres villes.
Nous possédons deux listes, l’une avec les noms de ville nom=[’ville0,’ville1’,...] et l’autre avec les
coordonnées de ces villes-là coord=[[..,..,..] , [..,..,..] , ...] dans le même ordre.
Écrire la fonction liste_dist(val:list,nom:list,coord:list)->list[list] qui renvoie une liste de
listes de deux éléments, le premier le nom de la ville, le deuxième la distance qui sépare cette ville à Valence.

Solution:

1 def liste_dist (val ,nom ,coord):
2 L = []
3 for i in range(len(villes)): # pour chaque ville
4 d = dist(val ,coord[i]) # distance qui sépare la ville de

Valence
5 N = nom[i]
6 L.append ([N,d])
7 return L

R4. Écrire la fonction dict_dist(val:list,nom:list,coord:list)->dict qui renvoie un dictionnaire dont
les clés sont le nom de la ville et les valeurs associées la distance qui sépare cette ville à Valence. Les
arguments de la fonction sont du même type que pour la question précédente.

Solution:

1 def dict_dist (val ,nom ,coord):
2 D = {}
3 for i in range(len(villes)): # pour chaque ville
4 d = dist(val ,coord[i]) # distance qui sépare la ville de

Valence
5 N = nom[i]
6 D[N] = d # on crée la clé et on lui associe la valeur
7 return D

Page 2

ITC − IA − Corrigé
Page 3 / 7

PC/PSI
Année 2025-2026

Exercice n°2 Maximum
R1. Écrire la fonction rang_max(L:list)->int qui prend en argument une liste L de flottants et renvoie le rang

du maximum des valeurs de L.

Solution:

1 def rang_max (L):
2 imax =0
3 for i in range (1,len(L)):
4 if L[i]>L[imax]: # nouveau maximum trouvé
5 imax=i
6 return imax

R2. Écrire la fonction cle_dict_max(d:dict)->int qui prend en argument un dictionnaire d dont les clés sont
des chaines de caractères ou des entiers, et dont les valeurs associées sont des nombres, et qui renvoie la clé
dont la valeur associée est maximale.

Solution:

1 def cle_dict_max (d):
2 cmax = - float(’inf ’)
3 for c in d :
4 if d[c]>d[cmax]: # nouveau maximum trouvé
5 cmax = c
6 return cmax

Page 3

ITC − IA − Corrigé
Page 4 / 7

PC/PSI
Année 2025-2026

II Algorithme des k plus proches voisins
Exercice n°3 Les iris

On utilise les données disponibles de la bibliothèque Scikit-Learn sur les iris. Les caractéristiques numériques
(longueur du sépale, largeur du sépale, longueur du pétale, largeur du pétale) des iris de la base de données sont
contenues dans le tableau iris.data à deux dimensions. iris.data[i] est un vecteur de R4 qui contient les
quatre caractéristiques de l’iris i.
iris.target[i] est un entier (0, 1 ou 2) qui renvoie à la variété de l’iris i. Cet entier est le rang de la liste
iris.target_names des variétés.

1 from sklearn . datasets import load_iris
2 iris= load_iris ()
3 >>> iris. target_names
4 array ([’setosa ’, ’versicolor ’, ’virginica ’], dtype=’<U10 ’)
5 >>> iris. feature_names # liste des caractéristiques prises en compte
6 [’sepal length(cm)’,’sepal width(cm)’,’petal length(cm)’,’petal width(cm)’]
7 >>> iris.data # caractéristiques des différents iris
8 array ([[5.1 , 3.5, 1.4, 0.2] ,
9 [4.9 , 3. , 1.4, 0.2] , ...])

10 >>> iris.target # donne la variété de l’iris (plus exactement son rang dans
la liste iris. target_names) dans le même ordre que iris.data

11 array ([0, 0 ,... , 2, 2])

L’objectif est de déterminer la variété d’un iris inconnu, connaissant les quatre caractéristiques (longueur du
sépale, largeur du sépale, longueur du pétale, largeur du pétale.

R1. Écrire la fonction dist(x:list,y:list)->float qui renvoie la distance au carré entre les deux vecteurs
x et y de R4.

Solution:

1 def dist(x,y):
2 d=0
3 for i in range(len(x)):
4 d=d+(x[i]-y[i]) **2
5 return d

R2. Écrire la fonction distances(C:array,V:array,X:array)->list qui prend en arguments :
— C la liste de listes des caractéristiques des iris des données d’apprentissage (C est de la forme de

iris.data),
— V la liste des variétés des données d’apprentissage (V est de la forme de iris.target)
— X la liste (de quatre éléments) des caractéristiques de l’iris dont on souhaite déterminer la variété,

et qui renvoie la liste de listes D de deux éléments :
— le premier élément de D[i] est la distance au carré entre X et C[i],

Page 4

ITC − IA − Corrigé
Page 5 / 7

PC/PSI
Année 2025-2026

— et le deuxième élément est la variété de l’iris i.
La liste renvoyée sera triée par ordre de distance croissante. Pour cela, on pourra utiliser L.sort() qui trie
par ordre croissant L (par défaut, si L est une liste de listes, cela trie selon le premier élément de chaque
sous liste).

Solution:

1 def distances (C,V,X):
2 D=[]
3 for i in range(len(C)):
4 di=dist(C[i],X)
5 D.append ([di ,i])
6 return D

R3. Écrire la fonction rang_max(L:list)->int qui prend en argument une liste L de flottants et renvoie le
rang du maximum des valeurs de L.

Solution:

1 def rang_max (L):
2 imax =0
3 for i in range (1,len(L)):
4 if L[i]>L[imax]: # nouveau maximum trouvé
5 imax=i
6 return imax

R4. Écrire la fonction kppvoisin(C:array,V:array,X:array,k)->int qui prend en arguments C la liste des
listes des caractéristiques des iris des données d’apprentissage (C est de la forme de iris.data), V la liste
des variétés des données d’apprentissage (V est de la forme de iris.target), X la liste (de quatre éléments)
des caractéristiques de l’iris dont on souhaite déterminer la variété, et k un entier qui est le nombre de plus
proches voisins considérés, et qui renvoie la variété de l’iris inconnu (plus exactement son rang dans la liste
iris.target_names) en utilisant l’algorithme des k plus proches voisins.

Solution:

1 def kppvoisin (C,V,X,k):
2 D = distances (C,V,X) # liste des distances entre X et C
3 D.sort () # on trie D par ordre de distance croissante
4 n=[0]*3 # liste du nombre de voisins par variété
5 for i in range(k): # parcours des k plus proches voisins
6 v=D[i][1] # variété du voisin i
7 n[v]+=1 # ajout de 1 à la variété
8 # variété la plus représentée
9 var_max = rang_max (n) # variété la plus représentée dans les k plus

proches voisins
10 return var_max

R5. Rappeler la définition de la matrice de confusion. Quelle est sa taille pour la situation qui nous intéresse ?
Quelle information donnent les éléments sur la diagonale ? hors de la diagonale ?

Solution: En ligne sont présents la variété réelle des données de test, et en colonne la variété prédite
par l’algorithme.

Page 5

ITC − IA − Corrigé
Page 6 / 7

PC/PSI
Année 2025-2026

Ici, nous avons trois variétés, donc la matrice de confusion est une matrice 3× 3.
Sur la diagonale se trouvent le nombre de prédictions conforment à la variété réelle. Hors de la diagonale
est prédiction fausse.

R6. On obtient la matrice suivante :

20 0 0
0 12 7
0 2 9

. Commenter.

Solution: L’algorithme détermine la bonne variété 20 + 12 + 9 = 41 fois sur 20 + 12 + 9 + 7 + 2 = 50,
c’est-à-dire 82% des tests.
7 iris versicolor ont été prédits en virginica, et 2 virginicas ont étés prédits en versicolor. Ces deux
variétés doivent être proches en terme de caractéristiques, et des confusions peuvent survenir.

Les données numériques sont d’ordres de grandeur différents selon les caractéristiques. Par conséquent, la lon-
gueur des sépales a une plus grande importance dans le classement que la largeur des pétales. Pour éviter cela,
il faut normaliser les données, soit les ramener dans l’intervalle [0, 1].
Pour cela, on envisage une normalisation linéaire telle que la largeur du sépale de l’iris i est modifiée comme
suit :

d′i = di − dmin

dmax − dmin

, où dmin est la valeur minimale des largeurs des sépales de l’ensemble des iris, et dmax sa valeur maximale.
On adaptera la formule précédente pour toutes les caractéristiques.

R7. Écrire une fonction min_max(T:list[list],i:int)->[float,float] qui prend en argument un tableau
T (liste de listes), et un entier i et qui renvoie une liste de deux éléments : la valeur minimale et la valeur
maximale de la colonne de rang i de T.

Solution:

1 def min_max (T,i):
2 m = T[0][i]
3 M = T[0][i]
4 for j in range(len(T)):
5 if T[j][i] > M :
6 M = T[j][i]
7 elif T[j][i] < m :
8 m = T[j][i]
9 return [m,M]

R8. Proposer une fonction normaliser qui prend en argument la liste des données, et renvoie une
nouvelle liste de même nature et dans le même ordre qui contient les données normalisées.

Solution:

1 def normaliser (L):
2 Lnorm = [[0 for i in range(len(L[0]))] for j in range(len(L))]
3 for i in range(len(L[0])) : # colonne
4 m , M = min_max (L,i) # min , max de la colonne i
5 for j in range(len(L)): # lignes de la colonne i
6 Lnorm[j][i] = (L[j][i] - m) / (M-m)
7 return Lnorm

Page 6

ITC − IA − Corrigé
Page 7 / 7

PC/PSI
Année 2025-2026

Exercice n°4 Harry Potter
À l’entrée à l’école de Poudlard, le Choixpeau magique répartit les élèves dans les différentes maisons (Gryf-

fondor, Serdaigle, Serpentard et Poufsouffle) en fonction de leur courage, leur loyauté, leur sagesse et leur malice.
Le Choixpeau magique se souvient de tous les anciens élèves depuis la création de Poudlard ainsi que de leurs
caractéristiques.

Voici un tableau qui récapitule quelques élèves :

Nom Courage Loyauté Sagesse Malice Maison
Hermione 8 6 6 6 Gryffondor
Drago 6 6 5 8 Serpentard
Cho 7 6 9 6 Serdaigle

Cédric 7 10 5 6 Poufsouffle
. . ..

Vous venez d’intégrer Poudlard, et le Choixpeau magique doit vous orienter dans la bonne maison.
La liste des élèves est supposée stockée dans un dictionnaire eleves où les clés sont le nom des élèves et

les valeurs sont des tuples où la première coordonnée est une liste des valeurs des différentes caractéristiques de
chaque élève et la deuxième coordonnée est la maison qui lui est attribuée. Ainsi :

1 eleves = { ’Hermione ’ : ([8 ,6 ,6 ,6] , ’Gryffondor ’) ,
2 ’Drago ’ : ([6 ,6 ,5 ,8] , ’Serpentard ’),
3}

Afin de résoudre ce problème, nous allons appliquer la méthode des k plus proches voisins pour vous attribuer
la maison majoritaire.

Nous définissons comme distance entre deux élèves la somme des valeurs absolues des différences de
chaque caractéristique. Par exemple, la distance entre Cho et Cédric est de 8 car |7−7|+|6−10|+|9−5|+|6−6| = 8
R1. Écrire une fonction dist(L1:list,L2:list)->float qui prend en argument deux listes de caractéristiques

de deux élèves différents, et renvoie la distance entre ces deux élèves.

Solution:

1 def dist(L1 ,L2):
2 d = 0
3 for i in range (4):
4 d = d + abs(L1[i]-L2[i])
5 return d

R2. Écrire une fonction liste_dist(eleves:dict,vous:list)->list[list] qui prend en argument le dic-
tionnaire eleves de la liste des élèves qui renvoie une liste de listes où chaque élément D[i] est une liste
de la forme [d, nom_maison] où d est la distance entre un élève du dictionnaire et vous.

Solution:

1 def liste_dist (eleves ,vous):
2 D = []
3 for e in eleves :
4 d = dist(vous ,eleves[e][0])
5 D.append ([d,eleves[e][1]])
6 return D

R3. Écrire une fonction dic_nom_maison(v:list[list])->dict qui prend en argument une liste v dont chaque
élément v[i] est une liste [d, nom_maison] et qui renvoie un dictionnaire dont les clés sont les maisons et
la valeur est le nombre d’élèves appartenant à cette maison dans la liste v.

Page 7

ITC − IA − Corrigé
Page 8 / 7

PC/PSI
Année 2025-2026

Solution:

1 def dic_nom_maison (v):
2 dico = {}
3 for i in range(len(v)):
4 = v[i][1]
5 if n_mai in dico :
6 dico[n_mai]+=1
7 else:
8 dico[n_mai]=1
9 return dico

R4. Écrire une fonction maximum(D:dict)->str qui prend en argument un dictionnaire D et qui renvoie la clé
dont la valeur est maximale.

Solution:

1 def maximum (D):
2 M = - float(’inf ’)
3 for c in D:
4 if D[c]>M:
5 M = D[c]
6 cle_M = c
7 return cle_M

R5. Écrire une suite d’instructions (on n’attend pas une fonction) qui permet de savoir dans quel maison vous
vous retrouverez dans le cas on nous considérons les 5 plus proches voisins.

Solution:

1 D = liste_dist (eleves ,vous) # liste des distances
2 D.sort () # trie de la liste D par ordre croissant de distance
3 dic_maison = dic_nom_maison (D[:5]) # 5 premiers élèves les plus proches

de vous
4 votre_maison = maximum (dic_maison)

III Algorithme des k moyennes
Exercice n°5 Compression d’image

Image initiale : 267549 couleurs Réduction avec 8 couleurs Réduction avec 16 couleurs
On considère une photo de m× n pixels (m lignes, n colonnes).
Chaque pixel est représenté par un triplet (r, g, b) où r, g et b sont des entiers codés sur 8 bits (donc entre

0 et 255) représentants la quantité de rouge, vert et bleu du pixel. L’image est représentée en machine par un

Page 8

ITC − IA − Corrigé
Page 9 / 7

PC/PSI
Année 2025-2026

tableau numpy à trois dimensions : le pixel de la ligne i et de la colonne j est représenté par une liste de trois
entiers [r, g, b] qui est l’élément de rang j de la liste de rang i.
R1. Écrire un script python qui calcule le nombre de couleurs différentes utilisées dans cette image.

On pourra créer un dictionnaire, dont les clés seront les 3-uplet caractérisant la couleur des pixels. Si la
couleur n’a pas déjà été rencontrée (c’est-à-dire si le 3-uplet n’est pas dans le dictionnaire), il sera ajouté
au dictionnaire (avec la valeur associée 1 par exemple).
Il restera à renvoyer la longueur du dictionnaire.

Solution: Un pixel est caractérisé par une liste de 3 entiers. Pour ne pas choisir plusieurs fois le même
pixel, il faut vérifier qu’il n’a pas déjà été choisi. Pour cela, on stocke les pixels choisis dans un dictionnaire
dont la clé est le pixel.
Cependant on ne peut pas placer une liste comme clé d’un dictionnaire. Une possibilité est de convertir
la liste en chaîne de caractères avec str().

1 def nb_couleurs (img):
2 n,m = len(img) , len(img [0])
3 d={} # dictionnaire qui stocke les couleurs (ie les triplets (r,g,b

)) déjà rencontrées
4 # clés de d : la couleur du pixel (r,g,b) ; valeurs : True (ou 1)
5 for i in range(n):
6 for j in range(m):
7 if str(img[i][j]) not in d: # accès en temps constant
8 d[str(img[i][j])]=1 # on ajoute la couleur au

dictionnaire
9 return len(d) # le nombre de couleurs est le nombre d’éléments dans

le dictionnaire

Les photos contiennent un très grand nombre de couleurs différentes. Notre objectif est de réduire ce nombre
à seulement 16 couleurs. Pour ce faire, nous allons appliquer l’algorithme des k-moyennes pour regrouper les
différents pixels en 16 classes, calculer la couleur moyenne de chacune de ces 16 classes, puis attribuer cette
valeur moyenne à chacun des pixels de la classe correspondante.
La variable img est un tableau numpy à 3 dimensions : m×n×3 et représente la photo que l’on veut compresser.
R2. Écrire une fonction dist(p,q) qui prend pour arguments deux pixels p et q (représentés par deux vecteurs

dans R3) et renvoie la distance euclidienne entre ces deux vecteurs.

Solution:

1 def dist(p,q):
2 d=0
3 for i in range (3):
4 d=d+(q[i]-p[i]) **2
5 return np.sqrt(d)

R3. Écrire une fonction initialise(img,k) qui prend pour arguments une image img, un entier k et renvoie
un tableau numpy de k cases, chacune d’elles contenant un pixel tiré au hasard dans l’image.
On pourra utiliser la fonction randint(a,b) de la bibliothèque random qui renvoie aléatoirement un entier
compris entre a inclus et b inclus.
Rq : on commencera par créer une liste de k éléments que l’on remplira comme indiqué, puis on finira par
convertir la liste en tableau numpy avec np.array(liste).

Page 9

ITC − IA − Corrigé
Page 10 / 7

PC/PSI
Année 2025-2026

Solution: Un pixel est caractérisé par une liste de 3 entiers. Pour ne pas choisir plusieurs fois le même
pixel, il faut vérifier qu’il n’a pas déjà été choisi. Pour cela, on stocke les pixels choisis dans un dictionnaire
dont la clé est le pixel.
Cependant on ne peut pas placer une liste comme clé d’un dictionnaire. Une possibilité est de convertir
la liste en chaîne de caractères avec str().

1 def initialise (img ,k):
2 n , m = len(img) , len(img [0])
3 L=[]
4 while len(L)<k:
5 i,j= randint (0,n -1) ,randint (0,m -1)
6 if img[i][j] not in L : # vérifier qu’on n’a pas déjà tiré ce

pixel
7 L.append(img[i][j]) # on ajoute le pixel à tab
8 return np.array(tab)

R4. Écrire une fonction barycentre(img,s) qui prend pour argument une image img et un ensemble s de coor-
données (x, y) et renvoie un pixel (c’est-à-dire un triplet [r, g, b]) égal au barycentre (en terme de couleurs)
des pixels de l’image dont les coordonnées appartiennent à s.

Solution:

1 def barycentre (img ,s):
2 bar = [0 ,0 ,0]
3 for i in range (3):
4 for j in range(len(s)):
5 x , y = s
6 bar[i] = bar[i] + img[x][y][i]
7 bar[i] = bar[i]// len(s) # il faut des entiers
8 return bar
9 def barycentre (img ,s):

10 bar = [0 ,0 ,0]
11 for i in range (3):
12 for pi in s:
13 bar[i] = bar[i] + img[pi [0]][pi [1]]
14 bar[i] = bar[i]// len(s) # il faut des entiers
15 return bar

R5. Écrire une fonction PlusProchePixel(p,mu) qui prend pour argument un pixel p (c’est-à-dire une liste
[r,g,b] et une liste mu de pixels [µ0, ..., µk−1] et qui renvoie l’indice j qui minimise la distance ‖p− µj‖.

Solution:

1 def PlusProchePixel (p,mu):
2 dmin=dist(p,mu [0])
3 jmin =0
4 for j in range (1,len(mu)):
5 d=dist(p,mu[j]) # distance entre le pixel p et le barycentre j
6 if d<dmin:
7 dmin=d
8 jmin=j
9 return jmin

10 def PlusProchePixel (p,mu):

Page 10

ITC − IA − Corrigé
Page 11 / 7

PC/PSI
Année 2025-2026

11 D = [] # liste des distances entre p et mu[i]
12 k = len(mu)
13 for i in range(k):
14 D.append(dist(p,mu[i]))
15 jmin = 0
16 for j in range (1,k):
17 if D[j]<D[jmin]:
18 jmin = j
19 return jmin

R6. En déduire une fonction kmoyennes(img, k) qui prend pour arguments une image img et un entier k et
qui renvoie un tableau s de longueur k, chacun de ses éléments étant un ensemble de coordonnées (x, y) des
pixels obtenu par l’algorithme des k-moyennes.

Solution:

1 def kmoyennes (img ,k):
2 n , m = len(img) , len(img [0])
3 mu = initialise (img ,k)
4 test = True # variable qui passe à False si ça n’évolue plus
5 while test: # tant que ça évolue
6 s=[[] for i in range(k)] # on crée k classes
7 for i in range(n):
8 for j in range(m):
9 # pour chaque point de l’image

10 pi=img[i][j] # pixel correspondant
11 ppp= PlusProchePixel (pi ,mu) # on cherche le rang du

pixel dans mu le plus proche
12 s[ppp]. append ([i,j])
13 new_mu =[] # barycentres des nouvelles classes
14 for i in range(k):
15 new_mu.append(barycentre (img ,s[i]))
16 if np.array(new_mu).all ()==np.array(mu).all ():
17 test = False # pas d’évolution
18 else:
19 test = True # ligne inutile !
20 mu= deepcopy (new_mu) # copie en profondeur dans mu
21 return s

Une fois la partition obtenue, il reste à calculer la couleur moyenne de chacune des classes et attribuer cette
couleur à chacun des pixels de la classe.
R7. Rédiger une fonction reduire(img, k) qui prend pour argument une image et renvoie une nouvelle image

dans laquelle seules k couleurs sont utilisées.

Solution:

1 def reduire (img ,k):
2 img2 = [[0 for i in range(len(img [0]))] for j in range(len(img))] #

future nouvelle image ; tableau de 0 de la taille de img
3 s = kmoyennes (img ,k) # k classes de couleurs
4 for i in range(k): # parcours des k classes

Page 11

ITC − IA − Corrigé
Page 12 / 7

PC/PSI
Année 2025-2026

5 coul_moy = barycentre (img ,s[i]) # couleur moyenne de la partie
s[i]

6 for j in range(len(s[i])): # parcours des points de cette
classe on attribue la couleur moyenne à tous les points de cette
classe

7 x,y = s[i][j]
8 img2[x][y] = coul_moy
9 return img2

Page 12

	Les briques élémentaires
	Distances
	Maximum

	Algorithme des k plus proches voisins
	Les iris
	Harry Potter

	Algorithme des k moyennes
	Compression d'image

