CAMILLEVIERNEET ITC — 14 — Corrigé PC/PSI

Page 1 /7 Année 2025-2026

& Informatique du Tronc Commun
TD n°4 Intelligence artificielle — Corrigé

Parcours possibles

d Si vous avez des difficultés en python : exercices n°1, n°2.
P P Sivous vous sentez moyennement a l’aise, mais pas en difficulté : exercices n°1, n°2, n°3.

P D P Sivous btes a l'aise : exercices n°3, n°4, n°5.

Les briques élémentaires

Exercice n°l Distances ¥

R1. Ecrire la fonction dist (x:1ist,y:1ist)->float qui renvoie la distance euclidienne au carré entre les deux

R2.

vecteurs x et y de R™.

Solution:

def dist(x,y):

2 d=0

3 for i in range(len(x)):
" d=d+(x[i]-y[i]) **2
5 return d

=

On connait les coordonnées de Valence dans une liste val=[..,..,..], on souhaite connaitre la distance
qui sépare Valence d’autres villes.

Nous avons une liste de listes villes dela forme [[’villeO’,[..,..,..11,[’villel’,[..,..,..11,...].
Le premier élément de chaque sous-liste est le nom de la ville, le deuxiéme élément est la liste des coordonnées
de la ville.

Remarque : c’est une structure quasi identique a celle du cours.

Ecrire la fonction liste dist(val:list,villes:1list[list])->1list[1list] qui renvoie une liste de listes
de deux éléments, le premier est le nom de la ville, le deuxieme est la distance qui sépare cette ville a Valence.
Une structure possible pour la fonction, volontairement tres détaillée pour vous guider (peut étre écrite en
moins de lignes, en en regroupant) :

def liste_dist(val,villes):
L= # initialisation de la liste des distances
for i in range(.......): # pour chaque ville
A = e # calcul de 1la
distance qui sépare Valence de la ville i, dont les coordonnées sont
dans la liste
N = # nom de la ville 1
L.append([..... s e]) # on ajoute une liste de deux
éléments & L
return L

Solution:

|def liste dist(val,villes):
2 L = []

ITC — IA — Corrigé PC/PSI

Page 2 /' 7 Année 2025-2026
for i in range(len(villes)): # pour chaque ville
d = dist(val,villes[i][1]) # distance qui sépare la ville de
Valence
5 N = villes[i] [0]
6 L.append ([N,d])

7 return L

R3. On connait les coordonnées de Valence dans une liste val=[..,..,..], on souhaite connaitre la distance
qui sépare Valence d’autres villes.
Nous possédons deux listes, I'une avec les noms de ville nom=[’ville0,’villel’,...] et l'autre avec les
coordonnées de ces villes-1a coord=[[..,..,..] , [..,..,..]1 , ...] dans le méme ordre.
Ecrire la fonction liste dist(val:list,nom:list,coord:list)->1list[list] qui renvoie une liste de
listes de deux éléments, le premier le nom de la ville, le deuxieme la distance qui sépare cette ville a Valence.

Solution:
|def liste_dist(val,nom,coord):
2 L = []
: for i in range(len(villes)): # pour chaque ville
1 d = dist(val,coord[i]) # distance qui sépare la ville de
Valence
5 N = nom[i]
6 L.append ([N,d])
7 return L

R4. Ecrire la fonction dict dist(val:list,nom:list,coord:list)->dict qui renvoie un dictionnaire dont
les clés sont le nom de la ville et les valeurs associées la distance qui sépare cette ville a Valence. Les
arqguments de la fonction sont du méme type que pour la question précédente.

Solution:
|def dict_dist(val,nom,coord):
2 D = {}
for i in range(len(villes)): # pour chaque ville
d = dist(val,coord[i]) # distance qui sépare la ville de
Valence
N = nom[i]
6 D[N] = d # on crée la clé et on lui associe la valeur
7 return D

ITC — IA — Corrigé PC/PSI
Page 3 / 7 Année 2025-2026

Exercice n°2 Maximum 4

R1. Ecrire la fonction rang max(L:1list)->int qui prend en argument une liste L de flottants et renvoie le rang
du maximum des valeurs de L.

Solution:

|def rang max(L):

2 imax=0

3 for i in range(1l,len(L)):

| if L[i]J>L[imax]: # nouveau maximum trouvé
imax=1i

6 return imax

R2. Ecrire la fonction cle_dict _max(d:dict)->int qui prend en argument un dictionnaire d dont les clés sont
des chaines de caracteres ou des entiers, et dont les valeurs associées sont des nombres, et qui renvoie la clé
dont la valeur associée est maximale.

Solution:

def cle _dict _max(d):
o cmax = - float(’inf?)
for ¢ in d

1 if d[c]l>d[cmax]: # nouveau maximum trouvé
cmax = C
6 return cmax

- ‘ | ITC — IA — Corrigé PC/PSI
Page 4 /7 Année 2025-2026

[l Algorithme des k plus proches voisins

Exercice n°3 Les iris & &

NG e
/,‘ yr B I

Versicolor P AT a2 " ;" Setosa

On utilise les données disponibles de la bibliotheque Scikit-Learn sur les iris. Les caractéristiques numériques
(longueur du sépale, largeur du sépale, longueur du pétale, largeur du pétale) des iris de la base de données sont
contenues dans le tableau iris.data & deux dimensions. iris.data[i] est un vecteur de R* qui contient les
quatre caractéristiques de l'iris 1.
iris.target[i] est un entier (0, 1 ou 2) qui renvoie & la variété de l'iris i. Cet entier est le rang de la liste
iris.target_names des variétés.

from sklearn.datasets import load_iris

iris=load_iris ()

>>> iris.target_names

array ([’setosa’, ’versicolor’, ’virginica’], dtype=’<U10’)

5/>>> iris.feature_names # liste des caractéristiques prises en compte

[’sepal length(cm)’,’sepal width(cm)’,’petal length(cm)’,’petal width(cm) ’]
>>> iris.data # caractéristiques des différents iris
array ([[5.1, 3.5, 1.4, 0.2] ,
(4.9, 3. , 1.4, 0.2] , ... 1)
>>> iris.target # donne la variété de 1’iris (plus exactement son rang dans
la liste iris.target _names) dans le méme ordre que iris.data
array ([0, O ,... , 2, 2 1)

L’objectif est de déterminer la variété d’un iris inconnu, connaissant les quatre caractéristiques (longueur du
sépale, largeur du sépale, longueur du pétale, largeur du pétale.

R1. WEcrire la fonction dist (x:1list ,y:1list)->float qui renvoie la distance au carré entre les deux vecteurs
x et y de R%.

Solution:

def dist(x,y):

2 d=0

3 for i in range(len(x)):
’ d=d+(x[i]l-y[i]) *x*2
return d

=

R2. W Ecrire la fonction distances (C:array,V:array,X:array)->1list qui prend en arguments :

— C la liste de listes des caractéristiques des iris des données d’apprentissage (C est de la forme de
iris.data),

— V la liste des variétés des données d’apprentissage (V est de la forme de iris.target)
— X la liste (de quatre éléments) des caractéristiques de l'iris dont on souhaite déterminer la variété,
et qui renvoie la liste de listes D de deux éléments :

— le premier élément de D[i] est la distance au carré entre X et C[i],

ITC — IA — Corrigé PC/PSI
Page 5 / 7 Année 2025-2026

— et le deuxiéme élément est la variété de iris i.

La liste renvoyée sera triée par ordre de distance croissante. Pour cela, on pourra utiliser L.sort () qui trie
par ordre croissant L (par défaut, si L est une liste de listes, cela trie selon le premier élément de chaque
sous liste).

Solution:

def distances(C,V,X):
D=[]
for i in range(len(C)):
di=dist (C[i],X)
D.append ([di,i])
6 return D

[

R3. W Ecrire 1a fonction rang max(L:1ist)->int qui prend en argument une liste L de flottants et renvoie le
rang du maximum des valeurs de L.

Solution:

def rang_max(L):

2 imax=0

3 for i in range(l,len(L)):

| if L[i]J>L[imax]: # nouveau maximum trouvé
5 imax=1i

return imax

R4. Ecrire la fonction kppvoisin(C:array,V:array,X:array,k)->int qui prend en arguments C la liste des
listes des caractéristiques des iris des données d’apprentissage (C est de la forme de iris.data), V la liste
des variétés des données d’apprentissage (V est de la forme de iris.target), X la liste (de quatre éléments)
des caractéristiques de l'iris dont on souhaite déterminer la variété, et k un entier qui est le nombre de plus
proches voisins considérés, et qui renvoie la variété de l'iris inconnu (plus exactement son rang dans la liste
iris.target_names) en utilisant 'algorithme des k plus proches voisins.

Solution:

def kppvoisin(C,V,X,k):

2 D = distances(C,V,X) # liste des distances entre X et C
3 D.sort() # on trie D par ordre de distance croissante

1 n=[0]*3 # liste du nombre de voisins par variété

5 for i in range(k): # parcours des k plus proches voisins
6 v=D[i] [1] # variété du voisin 1

7 nlv]l]+=1 # ajout de 1 & la variété

S #variété la plus représentée

0 var_max=rang max(n) # variété la plus représentée dans les k plus
proches voisins

1o return var_max

R5. Rappeler la définition de la matrice de confusion. Quelle est sa taille pour la situation qui nous intéresse ?
Quelle information donnent les éléments sur la diagonale ? hors de la diagonale ?

Solution: En ligne sont présents la variété réelle des données de test, et en colonne la variété prédite
par l'algorithme.

ITC — IA — Corrigé PC/PSI
Page 6 / 7 Année 2025-2026

Ici, nous avons trois variétés, donc la matrice de confusion est une matrice 3 x 3.

Sur la diagonale se trouvent le nombre de prédictions conforment a la variété réelle. Hors de la diagonale
est prédiction fausse.

20 0 O
R6. On obtient la matrice suivante : | 0 12 7 |. Commenter.
0 2 9

Solution: L’algorithme détermine la bonne variété 20 + 12 4+ 9 = 41 fois sur 20+ 12+ 9+ 7+ 2 = 50,
c’est-a-dire 82% des tests.

7 iris versicolor ont été prédits en virginica, et 2 virginicas ont étés prédits en versicolor. Ces deux
variétés doivent étre proches en terme de caractéristiques, et des confusions peuvent survenir.

Les données numériques sont d’ordres de grandeur différents selon les caractéristiques. Par conséquent, la lon-
gueur des sépales a une plus grande importance dans le classement que la largeur des pétales. Pour éviter cela,
il faut normaliser les données, soit les ramener dans I'intervalle [0, 1].

Pour cela, on envisage une normalisation linéaire telle que la largeur du sépale de l'iris 7 est modifiée comme
suit :

di - dmin

dmax - dmin

1

, OU dpi, est la valeur minimale des largeurs des sépales de ’ensemble des iris, et d. sa valeur maximale.

On adaptera la formule précédente pour toutes les caractéristiques.

R7. W Ecrire une fonction min max(T:1list[list],i:int)->[float,float] qui prend en argument un tableau
T (liste de listes), et un entier i et qui renvoie une liste de deux éléments : la valeur minimale et la valeur
maximale de la colonne de rang i de T.

Solution:

def min max(T,i):

> m = T[O0][i]

M = T[0][il]

for j in range(len(T)):
if TLj1[0i] > M

6 M = T[J][l]
7 elif T[j][i] < m
. m = T[j][i]

o return [m,M]

Rg. 22D Proposer une fonction normaliser qui prend en argument la liste des données, et renvoie une
nouvelle liste de méme nature et dans le méme ordre qui contient les données normalisées.

Solution:

def normaliser (L):

> Lnorm = [[O for i in range(len(L[0]))] for j in range(len(L))]
3 for i in range(len(L[0])) : # colonne

| m , M = min max(L,i) # min, max de la colonne i

5 for j in range(len(L)): # lignes de la colonne i

6 Lnorm[j][i] = C L[jJ[i] - m) / (M-m)

7 return Lnorm

N

ITC — IA — Corrigé PC/PSI
Page 7/ 7 Année 2025-2026

Exercice n°4 Harry Potter & 2 b

A Dentrée a I’école de Poudlard, le Choixpeau magique répartit les éleves dans les différentes maisons (Gryf-
fondor, Serdaigle, Serpentard et Poufsouffle) en fonction de leur courage, leur loyauté, leur sagesse et leur malice.
Le Choixpeau magique se souvient de tous les anciens éléves depuis la création de Poudlard ainsi que de leurs
caractéristiques.

Voici un tableau qui récapitule quelques éleves :

Nom Courage | Loyauté | Sagesse | Malice Maison
Hermione 8 6 6 6 Gryffondor
Drago 6 6 5 8 Serpentard
Cho 7 6 9 6 Serdaigle
Cédric 7 10 5) 6 Poufsouffle

Vous venez d’intégrer Poudlard, et le Choixpeau magique doit vous orienter dans la bonne maison.

La liste des éléves est supposée stockée dans un dictionnaire eleves ou les clés sont le nom des éleves et
les valeurs sont des tuples ot la premiere coordonnée est une liste des valeurs des différentes caractéristiques de
chaque éleve et la deuxieme coordonnée est la maison qui lui est attribuée. Ainsi :

eleves = { ’Hermione’ : ([8,6,6,6] , ’Gryffondor’) ,
’Drago’ : ([6,6,5,8] , ’Serpentard’),
.+

Afin de résoudre ce probleme, nous allons appliquer la méthode des k plus proches voisins pour vous attribuer
la maison majoritaire.

Nous définissons comme distance entre deux éléves la somme des valeurs absolues des différences de
chaque caractéristique. Par exemple, la distance entre Cho et Cédric est de 8 car |7—7|+|6—10|4|9—5|+]6—6| = 8

R1. Ecrire une fonction dist(L1:1ist,L2:1ist)->float qui prend en argument deux listes de caractéristiques
de deux éleves différents, et renvoie la distance entre ces deux éleves.

Solution:
|def dist(L1,L2):
2 d = O

3 for i in range (4):
| d = d + abs(L1[i]l-L2[il)
5 return d

R2. Ecrire une fonction liste dist(eleves:dict,vous:list)->list[list] qui prend en argument le dic-
tionnaire eleves de la liste des éleves qui renvoie une liste de listes ou chaque élément D[i] est une liste
de la forme [d, nom_maison] ou d est la distance entre un éleve du dictionnaire et vous.

Solution:

def liste _dist(eleves,vous):
D = []
for e in eleves
d = dist(vous,eleves[e] [0])
D.append ([d,eleves[e] [1]])
6 return D

[

R3. Ecrire une fonction dic_nom maison(v:list[list])->dict qui prend en argument une liste v dont chaque
élément v[i] est une liste [d, nom_maison] et qui renvoie un dictionnaire dont les clés sont les maisons et
la valeur est le nombre d’éleves appartenant a cette maison dans la liste v.

CAMILLIEVERNIEET ITC — IA — Corrigé PC/PSI

Page 8 /' 7 Année 2025-2026
Solution:
i|def dic_nom _maison(v):
2 dico = {}
3 for i in range(len(v)):
4 = v[i][1]
5 if n_mai in dico
6 dico[n_mai]+=1
7 else:
5 dico[n _mail=1
9 return dico

R4. Ecrire une fonction maximum(D:dict)->str qui prend en argument un dictionnaire D et qui renvoie la clé
dont la valeur est maximale.

Solution:

1|def maximum(D) :

2 M = - float(’inf’)
3 for ¢ in D:

4 if D[c]>M:

5 M = D[c]

6 cle M = ¢
7 return cle M

R5. Ecrire une suite d’instructions (on n’attend pas une fonction) qui permet de savoir dans quel maison vous
vous retrouverez dans le cas on nous considérons les 5 plus proches voisins.

Solution:

/D = liste_dist(eleves,vous) # liste des distances

2/D.sort() # trie de la liste D par ordre croissant de distance

sdic_maison = dic_nom_maison(D[:5]) # 5 premiers éléves les plus proches
de vous

|votre _maison = maximum(dic_maison)

[l Algorithme des & moyennes

Exercice n°5 Compression d'image & & &

E : v v~‘- h,\(? A/:‘t ; \',__’ff,_ ':“-(v ‘ A P ‘
Image initiale : 267549 couleurs Réduction avec 8 couleurs Réduction avec 16 couleurs
On consideére une photo de m x n pixels (m lignes, n colonnes).

Chaque pixel est représenté par un triplet (r, g,b) o 7, g et b sont des entiers codés sur 8 bits (donc entre
0 et 255) représentants la quantité de rouge, vert et bleu du pixel. L'image est représentée en machine par un

ITC — IA — Corrigé PC/PSI
Page 9 / 7 Année 2025-2026

tableau numpy a trois dimensions : le pixel de la ligne i et de la colonne j est représenté par une liste de trois
entiers [r, g, b] qui est I’élément de rang j de la liste de rang i.
R1. Ecrire un script python qui calcule le nombre de couleurs différentes utilisées dans cette image.
On pourra créer un dictionnaire, dont les clés seront les 3-uplet caractérisant la couleur des pixels. Si la
couleur n’a pas déja été rencontrée (c’est-a-dire si le 3-uplet n’est pas dans le dictionnaire), il sera ajouté
au dictionnaire (avec la valeur associée 1 par exemple).
Il restera a renvoyer la longueur du dictionnaire.

Solution: Un pixel est caractérisé par une liste de 3 entiers. Pour ne pas choisir plusieurs fois le méme
pixel, il faut vérifier qu’il n’a pas déja été choisi. Pour cela, on stocke les pixels choisis dans un dictionnaire

dont la clé est le pixel.
Cependant on ne peut pas placer une liste comme clé d’un dictionnaire. Une possibilité est de convertir

la liste en chalne de caractéres avec str().

i|def nb_couleurs (img):

n,m = len(img) , len(img([0])

d={} # dictionnaire qui stocke les couleurs (ie les triplets (r,g,b
)) déja rencontrées
) # clés de d : la couleur du pixel (r,g,b) ; valeurs : True (ou 1)
for i in range(mn):
6 for j in range(m):
7 if str(imgl[i]l[j]) not in d: # accés en temps constant
dlstr(imgl[ilJ[jl)]=1 # on ajoute la couleur au

o

dictionnaire
return len(d) # le nombre de couleurs est le nombre d’éléments dans

le dictionnaire

Les photos contiennent un tres grand nombre de couleurs différentes. Notre objectif est de réduire ce nombre
a seulement 16 couleurs. Pour ce faire, nous allons appliquer 'algorithme des k-moyennes pour regrouper les
différents pixels en 16 classes, calculer la couleur moyenne de chacune de ces 16 classes, puis attribuer cette
valeur moyenne a chacun des pixels de la classe correspondante.

La variable img est un tableau numpy a 3 dimensions : m X n x 3 et représente la photo que ’'on veut compresser.

R2. Ecrire une fonction dist (p,q) qui prend pour arguments deux pixels p et q (représentés par deux vecteurs
dans R?) et renvoie la distance euclidienne entre ces deux vecteurs.

Solution:

def dist(p,q):
d=0
3 for i in range(3):
1 d=d+(qlil-p[i]) **2
5 return np.sqrt(d)

R3. Ecrire une fonction initialise(img,k) qui prend pour arguments une image img, un entier k et renvoie
un tableau numpy de k cases, chacune d’elles contenant un pixel tiré au hasard dans l'image.
On pourra utiliser la fonction randint (a,b) de la bibliotheque random qui renvoie aléatoirement un entier
compris entre a inclus et b inclus.
Rq : on commencera par créer une liste de k éléments que I'on remplira comme indiqué, puis on finira par
convertir la liste en tableau numpy avec np.array(liste).

ITC — IA — Corrigé PC/PSI
Page 10 /7 Année 2025-2026

R4.

R5.

Solution: Un pixel est caractérisé par une liste de 3 entiers. Pour ne pas choisir plusieurs fois le méme
pixel, il faut vérifier qu’il n’a pas déja été choisi. Pour cela, on stocke les pixels choisis dans un dictionnaire
dont la clé est le pixel.

Cependant on ne peut pas placer une liste comme clé d’un dictionnaire. Une possibilité est de convertir
la liste en chaine de caracteres avec str().

def initialise (img,k):
n , m = len(img) , len(imgl[O0])
L=[]
while len(L)<k:
i,j=randint (0,n-1) ,randint (0,m-1)
if img[i][j] not in L : # vérifier qu’on n’a pas déja tiré ce
pixel
L.append(img[i][j]) # on ajoute le pixel & tab
return np.array(tab)

Ecrire une fonction barycentre (img,s) qui prend pour argument une image img et un ensemble s de coor-
données (x,y) et renvoie un pixel (c’est-a-dire un triplet [r, g, b]) égal au barycentre (en terme de couleurs)
des pixels de I'image dont les coordonnées appartiennent a s.

Solution:

def barycentre (img,s):
bar = [0,0,0]
for i in range(3):
for j in range(len(s)):
X , §y =8
bar [i] = bar[i] + img[x][y][i]
bar[i] = bar[il//len(s) # il faut des entiers
return bar
def barycentre(img,s):
bar = [0,0,0]
for i in range(3):
for pi in s:
bar[i] = bar[i] + imgl[pi[0]][pil1]]
bar[i] = bar[il//len(s) # il faut des entiers
return bar

Ecrire une fonction PlusProchePixel (p,mu) qui prend pour argument un pixel p (c’est-a~dire une liste
[r,g,b] et une liste mu de pixels [uo, ..., tr—1] et qui renvoie l'indice j qui minimise la distance ||p — ;]|

Solution:

def PlusProchePixel (p,mu):
dmin=dist (p,mul[0])
jmin=0
for j in range(l,len(mu)):
d=dist(p,mul[j]) # distance entre le pixel p et le barycentre j
if d<dmin:
dmin=d
jmin=j
return jmin
def PlusProchePixel (p,mu):

ITC — IA — Corrigé PC/PSI
Page 11 /7 Année 2025-2026
i D =[] # liste des distances entre p et mul[il]
o k = len(mu)

s for i in range(k):

1 D.append (dist(p,muli]))
115 jmin =0

16 for j in range(1l,k):

|7 if D[jl1<D[jmin]:

I8 jmin = j

1o return jmin

R6. En déduire une fonction kmoyennes(img, k) qui prend pour arguments une image img et un entier k et
qui renvoie un tableau s de longueur k, chacun de ses éléments étant un ensemble de coordonnées (x,y) des

pixels obtenu par 'algorithme des k-moyennes.

Solution:

def kmoyennes (img,k):
n , m = len(img) , len(imgl[O0])
mu = initialise(img,k)
4 test = True # variable qui passe & False si ¢ca n’évolue plus
while test: # tant que c¢ca évolue
6 s=[[] for i in range(k)] # on crée k classes
7 for i in range(n):
5 for j in range(m):

o

0 # pour chaque point de 1’image
o pi=img[i] [j] # pixel correspondant
i ppp=PlusProchePixel (pi,mu) # on cherche le rang du
pixel dans mu le plus proche
s [ppp] . append ([i,j])
s new_mu=[] # barycentres des nouvelles classes
fa for i in range(k):
5 new_mu.append (barycentre (img,s[i]))
o if np.array(new_mu).all()==np.array(mu).all():
7 test = False # pas d’évolution
Is else:

o test = True # ligne inutile !
%0 mu=deepcopy(new_mu) # copie en profondeur dans mu
11 return s

Une fois la partition obtenue, il reste a calculer la couleur moyenne de chacune des classes et attribuer cette

couleur a chacun des pixels de la classe.

R7. Rédiger une fonction reduire(img, k) qui prend pour argument une image et renvoie une nouvelle image

dans laquelle seules k couleurs sont utilisées.

Solution:

def reduire(img,k):

[

future nouvelle image ; tableau de 0O de la taille de img
s = kmoyennes(img,k) # k classes de couleurs
4 for i in range(k): # parcours des k classes

img2 = [[0 for i in range(len(img([0]))] for j in range(len(img))] #

CAMILLEVIERNEET ITC — 14 —~ Corrigé PC/PSI

Page 12 / 7 Année 2025-2026

coul _moy = barycentre(img,s[i]) # couleur moyenne de la partie
s[i]
for j in range(len(s[i])): # parcours des points de cette
classe on attribue la couleur moyenne & tous les points de cette
classe
x,y = sl[i][j]
img2 [x] [y] = coul_moy
return img?2

	Les briques élémentaires
	Distances
	Maximum

	Algorithme des k plus proches voisins
	Les iris
	Harry Potter

	Algorithme des k moyennes
	Compression d'image

