
ITC − Dictionnaires − Corrigé
Page 1 / 8

PC/PSI
Année 2025-2026

TD n°2 Les dictionnaires − Corrigé
Informatique du Tronc Commun

Parcours possibles
Si vous avez des difficultés en python, notamment sur les dictionnaires : exercices n°1, n°2, n°3, n°4.

Si vous vous sentez moyennement à l’aise, mais pas en difficulté : exercices n°1, n°2 (Q2), n°4, n°6
Si vous êtes à l’aise : exercices n°4, n°6, n°5, n°7.

I Exercices fondamentaux sur les dictionnaires
Exercice n°1 Min-Max dans un dictionnaire

On pourra utiliser la fonction float(’inf’) qui permet de coder le plus grand flottant possible (il n’a pas
de valeur, mais il est supérieur à tous les flottants codables par python).
R1. Écrire une fonction max_dico(D:dict)->float qui prend en entrée le dictionnaire D et qui renvoie la valeur

maximale.
Indice : les valeurs dans le dictionnaire peuvent être positives ou négatives, et il n’y a pas d’ordre dans
un dictionnaire, on ne peut donc pas connaître la « première » valeur (comme on ferait avec les listes). Il
faut donc initialiser le maximum à une valeur qu’on sait nécessairement ne pas être plus grande qu’une des
valeurs du dictionnaire.

Solution:

1 def max_dico (D):
2 M=-float(’inf ’)
3 for c in D:
4 if D[c]>M:
5 M=D[c]
6 return M

R2. Écrire une fonction cle_min_dico(D:dict)->int qui prend en entrée le dictionnaire D et qui renvoie la clé
de valeur minimale.

Solution:

1 def cle_min_dico (D):
2 m=float(’inf ’)
3 for c in D:
4 if D[c]<m:
5 m=D[c]
6 cmin=c
7 return cmin

R3. Écrire une fonction min_max(L:list)->dict qui prend en argument une liste de nombres non vide et renvoie
un dictionnaire dont les clés sont les chaînes "min" et "max" avec pour valeurs respectives le minimum et le
maximum des nombres de la liste.
Par exemple : min_max([8,5,9,3,1,7]) renverra {"min":1,"max":9}.

ITC − Dictionnaires − Corrigé
Page 2 / 8

PC/PSI
Année 2025-2026

Solution:

1 def min_max (L):
2 m,M=L[0],L[0]
3 for i in range (1,len(L)):
4 if m<L[i]:
5 m=L[i]
6 if M>L[i]:
7 M=L[i]
8 return {"min":m,"max":M}

Exercice n°2 Occurrences
R1. Écrire une fonction occurrences(L:list)->dict qui prend en argument une liste de nombres et renvoie

un dictionnaire dont les clés sont les différents nombres de la liste avec pour valeur le nombre d’occurrences
de chaque nombre.
Par exemple occurrences([3,5,-2,3,3,-2]) renvoie {-2:2, 3:3, 5:1}.

Solution:

1 def occurrences (L):
2 d={}
3 for x in L:
4 if x not in d: # x n’a pas été encore rencontré
5 d[x]=1
6 else: # x apparaît une fois de plus
7 d[x]=d[x]+1
8 return d

R2. Écrire une fonction occurrences(ch:str)->dict qui prend en argument une chaîne de caractères et ren-
voie un dictionnaire dont les clés sont les différents caractères de la chaîne avec pour valeur le nombre
d’occurrences de chaque nombre.

Solution:

1 def occurrences (ch):
2 d={}
3 for x in ch:
4 if x not in d: # x n’a pas été encore rencontré
5 d[x]=1
6 else: # x apparaît une fois de plus
7 d[x]=d[x]+1
8 return d

Exercice n°3 Température
On dispose de noms de villes avec les températures moyennes relevées à une date donnée. Les données sont

enregistrées dans une liste de listes comme [["Paris",12],["Lyon",14],["Marseille",21],...] On note n
la longueur de la liste.
R1. On souhaite accéder à une donnée, la modifier, ou en ajouter une. Quelle est en fonction de n la complexité

en temps de chacune de ces opérations ?

Page 2

ITC − Dictionnaires − Corrigé
Page 3 / 8

PC/PSI
Année 2025-2026

Solution: Ces opérations sont de complexité linéaire en la longueur de la liste.

R2. Afin de trouver la température d’une ville, on trie cette liste, à l’aide d’un algorithme de tri rapide (rappel :
il est de complexité O(n log2(n))), suivant les noms des villes en utilisant l’ordre lexicographique. Puis on
effectue une recherche dichotomique du nom de la ville. Quelle est la complexité de cette recherche de
température ?

Solution: La recherche dichotomique est de complexité logarithmique.

On souhaite stocker ces données dans un dictionnaire dont les clés sont les noms des villes et les valeurs les
températures.
R3. Écrire une fonction convert(L:list[list])->dict prenant en paramètre une liste comme ci-dessus et

renvoyant le dictionnaire correspondant.

Solution:

1 def convert (L):
2 d={}
3 for li in L:
4 d[li [0]]= li [1] # le nom de la ville (élément 0 de sous liste li

) est la clé , et la température la valeur
5 return d

On suppose posséder un dictionnaire d dont les clés sont les villes et les valeurs associées de la température
moyenne relevée à une date donnée.
R4. Écrire une fonction temperature(d:dict,ville:str)->float qui prend en argument un tel dictionnaire

et un nom de ville et renvoie la température correspondant à la ville.

Solution:

1 def temperature (d,ville):
2 return d[ville]

R5. Quelle est la complexité en temps d’une recherche ou d’une modification de température ?

Solution: C’est une recherche ou modification en temps constant, indépendant de la longueur du dic-
tionnaire.

R6. Écrire une fonction moyenne(d:dict)->float qui prend en argument un tel dictionnaire et qui renvoie la
température moyenne en France ce jour-là.

Solution:

1 def temperature (d):
2 S=0 # somme
3 for ville in d:
4 S=S+d[ville] # on somme les températures
5 return S/len(d) # moyenne

Page 3

ITC − Dictionnaires − Corrigé
Page 4 / 8

PC/PSI
Année 2025-2026

Exercice n°4 Inversion
Un graphe orienté est représenté par un dictionnaire. Les clés sont les sommets du graphe. La valeur associée

à une clé s est la liste des sommets extrémités des arêtes partant de s. On souhaite créer le graphe obtenu à
partir d’un graphe initial en inversant le sens des arêtes.

Écrire une fonction inverse(G:dict)->dict qui prend un graphe (représenté par le dictionnaire d’adjacence)
en paramètre et renvoie le graphe obtenu par l’inversion du sens des arêtes.

Par exemple :
1 >>> G = {’a’:[’b’,’c’,’e’] , ’b’:[’d’] , ’c’:[’e’] , ’d’:[’c’,’e’] , ’e’:[]}
2 >>> inverse (G)
3 {’a’:[] , ’b’:[’a’] , ’c’:[’a’,’d’] , ’d’:[’b’] , ’e’:[’a’,’c’,’d’] }

Solution:

1 def inverse (G):
2 Ginv ={}
3 for c in G:
4 for x in G[c]: # parcours des successeurs de c
5 if x not in Ginv: # si x n’est pas encore dans Ginv
6 Ginv[x]=[c] # on l’ajoute avec comme valeur associée la

liste qui contient c qui est un prédécesseur de x
7 else:
8 Ginv[x]. append(c) # si x est déjà dans Ginv , il suffit d’

ajouter c dans la liste des prédécesseurs de x
9 return Ginv

II Exercices d’approfondissements
Exercice n°5 Matrice

On s’intéresse ici aux matrices parcimonieuses, c’est-à-dire dont la plupart des coefficients sont nuls.
Une telle matrice M de dimensions (n, p) pourra être codée par un dictionnaire ayant pour couples clefs/va-

leurs :
— ’dim’ : (n,p) , qui donne les dimensions de la matrice ;
— (i,j) : M_{ij} , qui donne pour chaque couple (i, j), la valeur de l’élément Mi,j 6= 0 de la matrice.

R1. Donner le dictionnaire qui code la matrice :
(

0 0 0 0
0 0 4 0

)

Solution:

1 M={’dim ’: (2, 4), (1, 2): 4}

R2. Proposer une fonction d’addition somme_mat(M1:dict,M2:dict)->dict de deux matrices parcimonieuses.

Solution:

1 def somme_mat (M1 ,M2):
2 assert M1[’dim ’]== M2[’dim ’] , "les deux matrices doivent être de

même dimension "
3 M={’dim ’:M1[’dim ’]}
4 for c1 in M1:
5 if c1!="dim":

Page 4

ITC − Dictionnaires − Corrigé
Page 5 / 8

PC/PSI
Année 2025-2026

6 if c1 in M2:
7 M[c1]=M1[c1]+M2[c1]
8 else:
9 M[c1]=M1[c1]

10 for c2 in M2:
11 if c2!="dim" :
12 if c2 not in M:
13 M[c2]=M2[c2]
14 return M

R3. Si la première matrice contient c coefficients non nuls, et la seconde c′, quelle est la complexité temporelle
de cet algorithme ?

Solution: en O(c, c′). Sinon, pour une matrice écrite avec une liste de liste c’est en O(np) (deux boucles
for imbriquées.

Exercice n°6 Double hachage
Le double hachage est l’une des meilleures méthodes connues pour l’adressage ouvert. Il utilise une fonction

de hachage de la forme :
h : N× N −→ J0, m− 1K

(k, i) 7→
(

h1(k) + i× h2(k)
)
mod m

où h1 et h2 sont des fonctions de hachages.
i prend les valeurs suivantes :
— Par défaut, i = 0.
— S’il y a collision, on incrémente i de 1, jusqu’à ne plus avoir de collision pour la clé considérée.
— Il reprend la valeur 0 pour la clé suivantes . . .

R1. Insérer les clés : 5, 28, 19, 15, 20, 33, 12, 17, 10 dans un tableau de taille m = 13 avec h1(k) = k mod 13 et
h2(k) = 1 +

(
k mod 12

)
.

Solution:

• 5 : h1(5) = 5%13 = 5 ; h2(5) = 1 + (5%12) = 6 ; h(5) = (5 + 0× 6)%13 = 5
• 28 : h1(28) = 28%13 = 2 ; h2(28) = 1 + (28%12) = 5 ; h(28) = (2 + 0× 5)%13 = 2
• 19 : h1(19) = 19%13 = 6 ; h2(19) = 1 + (19%12) = 8 ; h(19) = (6 + 0× 8)%13 = 6
• 15 : h1(15) = 15%13 = 2 ; h2(15) = 1 + (15%12) = 4 ; h(15) = (2 + 0× 4)%13 = 2.

Il y a collision, on incrémente i de 1, i = 1.
h(15) = (2 + 1× 4)%13 = 6, il y a collision, on incrémente i de 1 : i = 2
h(15) = (2 + 2× 4)%13 = 10, ok
• 20 : h1(20) = 20%13 = 7 ; h2(20) = 1 + (20%12) = 9 ; h(20) = (7 + 0× 9)%13 = 7
• 33 : h1(33) = 33%13 = 7 ; h2(33) = 1 + (33%12) = 10 ; h(33) = (7 + 0× 10)%13 = 7

Il y a collision, on incrémente i de 1, i = 1.
h(33) = (7 + 1× 10)%13 = 4.
• 12 : h1(12) = 12%13 = 12 ; h2(12) = 1 + (12%12) = 1 ; h(12) = (12 + 0× 1)%13 = 12
• 17 : h1(17) = 17%13 = 4 ; h2(17) = 1 + (17%12) = 6 ; h(17) = (4 + 0× 6)%13 = 4

Il y a collision, on incrémente i de 1, i = 1.
h(17) = (4 + 1× 6)%13 = 10, il y a collision, on incrémente de 1 : i = 2
h(17) = (4 + 2× 6)%13 = 3

Page 5

ITC − Dictionnaires − Corrigé
Page 6 / 8

PC/PSI
Année 2025-2026

• 10 : h1(10) = 10%13 = 10 ; h2(10) = 1 + (10%12) = 11 ; h(10) = (10 + 0× 11)%13 = 10
Il y a collision, on incrémente i de 1, i = 1.
h(10) = (10 + 1× 11)%13 = 8.

indice 0
indice 1
indice 2 28
indice 3 17
indice 4 33
indice 5 5
indice 6 19
indice 7 20
indice 8 10
indice 9
indice 10 15
indice 11
indice 12 12

R2. Proposer une fonction en Python qui prend en argument une clé c (entier) et la taille m de la table, et
renvoie la valeur de h(c).

Solution:

1 import numpy as np
2 m=13
3 tab_h=np.zeros(m) # table de hachage initialisée
4

5 def double_hachage (c,m):
6 if c==0:
7 tab_h [0]=c
8 return 0
9 i=0

10 h1=c%m
11 h2 =1+(c%(m -1))
12 h=(h1+i*h2)%m
13 while tab_h[h]!=0: # si coefficient non nul dans le tableau , il y a

collision
14 i=i+1 # incrémente i de un
15 h=(h1+i*h2)%m # on calcule la nouvelle valeur de hachage
16 tab_h[h]=c # ajout de c dans la case h
17 return h
18

19 L=[5 ,28 ,19 ,15 ,20 ,33 ,12 ,17 ,10]
20 for x in L:
21 double_hachage (x ,13)
22 >>> tab_h
23 array ([0., 0., 28., 17., 33., 5., 19., 20., 10., 0., 15., 0.,

12.])

Exercice n°7 Polynôme
On considère des polynômes non nuls à coefficients entiers de degré quelconque mais qui ne contiennent pas

plus de cinq monômes. On utilise un tableau de longueur 16 = 8× 2 pour stocker les couples (degré, coefficient)
dans lequel on pourrait stocker au maximum huit couples. Les places non occupées contiennent la valeur −1.

Page 6

ITC − Dictionnaires − Corrigé
Page 7 / 8

PC/PSI
Année 2025-2026

La fonction de hachage h est la fonction identité : pour tout n ∈ N, h(n) = n. Donc à un degré qui vaut 10, on
associe le nombre 10, soit h(10) = 10.
Ensuite, on écrit le degré (la clé), suivi du coefficient(la valeur) à l’indice (10 mod 8) = 2.
Par exemple, le polynôme 8 + 3x10 − 5x12 est stocké dans un tableau de la forme :

indice 0 0 8
indice 1 −1 −1
indice 2 10 3
indice 3 −1 −1
indice 4 12 −5
indice

R1. Donner le tableau correspondant au stockage du polynôme 2x5 − 3x34 + 4x105.

Solution:
degré 5 : h(5) = 5, puis 5%8=5
degré 34 : h(34) = 34, puis 34%8=2
degré 105 : h(105) = 105, puis 105%8=1

indice 0 −1 −1
indice 1 105 4
indice 2 34 −3
indice 3 −1 −1
indice 4 −1 −1
indice 5 5 2

R2. Quel est le problème avec par exemple le polynôme 8− 5x2 + 3x10 ?

Solution:
degré 0 : 0%8=0
degré 2 : 2%8=2
degré 10 : 10%8=2 => collision !

R3. En cas de collision, on décide d’utiliser la première place libre suivante. Les monômes sont entrés dans
le tableau suivant l’ordre de lecture. Donner un exemple de polynôme de degré minimum qui génère une
collision pour chaque monôme excepté le premier.

Solution: Il y a collision, si tous les restes des divisions euclidiennes des degrés sont égaux.
Par exemple : x + x2 + x10 + x26 + x34

R4. On envisage une autre possibilité de stockage avec deux tableaux, un tableau pour les couples (degré,
coefficient) et un tableau pour les indices, les deux tableaux ayant pour capacité 8.
Avec le polynôme 4x3 − 2x5 + 4x9, on obtient les deux tableaux de la manière suivante :
• dans le premier tableau, on écrit chaque degré avec le coefficient correspondant suivant l’ordre des degrés

et on complète le tableau avec des 0 ;
• dans le second tableau, on calcule (d mod 8) où d est un degré et on place à l’indice trouvé l’indice où on

trouve le couple (degré,coefficient) dans le premier tableau. On complète le tableau avec des −1. Extraits
des tableaux :

indice 0 3 4
indice 1 5 −2
indice 2 9 4
indice 3 0 0
indice

indice 0 −1
indice 1 2
indice 2 −1
indice 3 0
indice 4 −1
indice 5 1

Page 7

ITC − Dictionnaires − Corrigé
Page 8 / 8

PC/PSI
Année 2025-2026

Donner les deux tableaux correspondant au stockage du polynôme 3x5 − x18 + 7x20.

Solution:
indice 0 5 3
indice 1 18 −1
indice 2 20 7
indice 3 0 0
indice 4 0 0
indice 5 0 0
indice 6 0 0
indice 7 0 0

indice 0 −1
indice 1 −1
indice 2 1
indice 3 0
indice 4 2
indice 5 −1
indice 6 −1
indice 7 −1

5%8=3 18%8=2 20%8=4

Page 8

	Exercices fondamentaux sur les dictionnaires
	Min-Max dans un dictionnaire
	Occurrences
	Température
	Inversion

	Exercices d'approfondissements
	Matrice
	Double hachage
	Polynôme

