
ITC − DM n°5
Page 1 / 4

PC/PSI
Année 2025-2026

Devoir Maison n°5
À rendre LUNDI 5 janvier 2026

Partie I Travail à faire
� Si vous êtes en difficulté (soit environ moins de 8 au DS et/ou si vous vous sentez en difficulté en info) :

• Prévoir de travailler l’info trois fois dans les vacances, à 3-4 jours d’écart ;
• travailler sérieusement la fiche « Les indispensables » : parties II Listes ; III Les dictionnaires ;

◦ essayer d’écrire les fonctions demandées ;
◦ vérifier sur le corrigé en ligne ;
◦ refaire quelques jours plus tard ;
◦ jusqu’à y arriver parfaitement.

• Reprendre l’exercice 1 du DS, le refaire en s’aidant de la fiche « les indispensables » et du cours de
programmation dynamique.

• Reprendre les questions suivantes de SQL du DS, en s’appuyant sur le cours et les commentaires écrits
sur votre copie : Q12, Q13, Q15.

• Traiter la partie II ci-dessous.
• Traiter dans la partie III Révisions sur la récursivité, les questions Q1 et Q2.

� Sinon :

• Faire les questions de révision sur le range (partie II) sur la récursivité (partie III) ci-dessous.
• Reprendre le DS n°1.

◦ Exercice n°1.
— Q1 : on demandait le minimum et le rang ;
— Q6 : combien de cases a le tableau que l’on veut remplir ? quel est le dernier rang en ligne ? en

colonne ? quelle valeur indiquer dans le range pour parcourir toutes les lignes ? toutes les colonnes ?
◦ Exercice n°2. python Q1, Q2, Q5, Q9, Q11

— Q1 : c’est une somme !
— Q2 : reprendre le DM où ce tri a été révisé.
— Q9 : S(C, k) n’est pas une fonction ! et la fonction demandée s’appelle sol_rec qui est récursive, qui

doit donc s’appeler elle-même. C’est elle qui renvoie la valeur de S(C, k).
1 def sol_rec (C,k):
2 if ...=...: # condition d’arrêt
3 return
4 else :
5 vk = ... # valeur du concert k
6 a = # valeur totale si le concert k fait partie de la

solution optimale , avec appel récursif sur les concerts en allant
jusqu ’au rang du compatible avec le concert k

7 b = # valeur totale si le concert k ne fait partie de
la solution optimale , appel récursif au rang précédent du concert
k

8 return # on veut la valeur maximale entre les deux
possibilités précédentes

◦ Exercice n°2. SQL : Q12 à Q17.
— Q14 : attention, la première ligne est numérotée 0.

ITC − DM n°5
Page 2 / 4

PC/PSI
Année 2025-2026

— Q15, Q16, Q17 : attention aux noms de colonnes ambiguës lors des jointures. Et attention c’est
nom_table.nom_colonne.

— Q17 : traduction = « il faut compter le nombre de concerts par festivals » , puis récupérer ceux qui
en ont au moins 15. Il faut donc commencer par gr...er, et comme ensuite on impose une condition
sur un gr...ement, il faut utiliser H....G.

Partie II Et le range dans tout ça ?
Q1. Je dois parcourir une liste L entièrement.

(a) Quel est le premier rang ? Quelle est la valeur minimale de i pour L[i] ?
(b) Quel est le dernier rang ? Quelle est la valeur maximale de i pour L[i] ?
(c) Dans la boucle j’accède à L[i] uniquement, qu’indiquer dans le range ?

Q2. Je dois parcourir une liste L entièrement, dans la boucle je dois accéder à L[i] et L[i-1].
(a) Pour L[i] : quelle est la valeur minimale que peut prendre i ? quelle est la valeur maximale que peut

prendre i ?
(b) Pour L[i-1] :

Quelle est la valeur minimale que peut prendre i-1 ? et donc i ?
Quelle est la valeur maximale que peut prendre i-1 ? et donc i ?

(c) Par conséquent, compléter la boucle for suivante permettant de parcourir toute la liste sans en sortir :
for i in range(...,...):

Q3. Je dois parcourir une liste L entièrement, dans la boucle je dois accéder à L[i] et L[i+1].
(a) Pour L[i] : quelle est la valeur minimale que peut prendre i ? quelle est la valeur maximale que peut

prendre i ?
(b) Pour L[i+1] :

Quelle est la valeur minimale que peut prendre i+1 ? et donc i ?
Quelle est la valeur maximale que peut prendre i+1 ? et donc i ?

(c) Par conséquent, compléter la boucle for suivante permettant de parcourir toute la liste sans en sortir :
for i in range(...,...):

Partie III Révisions sur la récursivité

Une fonction récursive est une fonction qui s’appelle elle-même.
1 def f_rec(a,b,c):
2 if a==25 : # condition d’arrêt qui porte sur a ou b ou c
3 return 0 # valeur pour a=25
4 else :
5 return f(a+1,b,c) # appel récursif de f_rec sur un rang

précédent de a ou b ou c

À retenir

Q1. Écrire la fonction récursive factorielle(n:int)->int qui renvoie la valeur de n!, en exploitant le fait que
n! = n × (n − 1)!, et 0! = 1.

1 def factorielle (n):
2 if : # condition d’arrêt
3 return
4 else :
5 return # appel récursif

Page 2

ITC − DM n°5
Page 3 / 4

PC/PSI
Année 2025-2026

Comment ça fonctionne ? Les instructions en attente sont empilées, avant d’être dépilées (la structure
informatique derrière est une pile).
> factorielle(3) demande 3*factorielle(2)
− − > factorielle(2) demande 2*factorielle(1)
− − − > factorielle(1) demande 1*factorielle(0)
− − − > calcul de 1!
− − > calcul de 2!
> calcul de 3!

Q2. Écrire la fonction récursive fibo(n:int)->int qui renvoie la valeur de Fn de la suite de Fibonacci définie
par F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

1 def fibo(n):
2 if : # condition d’arrêt
3 return
4 elif : # condition d’arrêt
5 return
6 else :
7 return # appel récursif

Q3. Une suite (cn) plus subtile : c0 = 2 et cn+1 =


cn

2 si cn est pair
3cn + 1 si cn est impair

Que l’on peut réécrire, pour n ≥ 1 : cn =


cn−1

2 si cn−1 est pair
3cn−1 + 1 si cn−1 est impair

Rappel, n%2 renvoie le reste de la division euclidienne par 2.
1 def suite(n):
2 if : # condition d’arrêt
3 return
4 else :
5 prec = # valeur de c_(n -1) récupéré via appel récursif
6 if :# si pair
7 return
8 else :
9 return

Q4. Un tri récursif : le tri fusion. On suppose avoir une fonction fusion(L1:list,L2:list)->list qui à partir
des deux listes L1 et L2 triées dans le même ordre, renvoi une liste triée dans le même ordre.
Écrire une fonction récursive tri_fusion(L:list)->list qui trie par ordre croissant la liste L sur le
principe : la liste L est coupée en deux au milieu, chaque moitié est triée récursivement, puis on fusionne les
listes grâce à la fonction fusion.
Indice : le milieu d’une liste de longueur est le quotient de la division euclidienne de la longueur de la liste
par 2.

1 def tri_fusion (L):
2 n = len(L)
3 if : # condition d’arrêt si L a moins d’un élément , elle est

déjà triée
4 return ...
5 else :
6 L0 = (L [0:...]) # tri récursif de la première moitié de L
7 L1 = (L[...:]) # tri récursif deuxième moitié de L
8 return (L0 ,L1) # fusion des deux listes triées

Ce tri n’est pas en place (la liste L n’est pas modifiée, une autre est créée), de complexité moyenne
O(n ln(n)).

Page 3

ITC − DM n°5
Page 4 / 4

PC/PSI
Année 2025-2026

Q5. Un autre tri récursif : le tri bulle. À chaque parcours de la liste, on fait monter la plus grande valeur de la
partie qui reste à trier, au bout de la partie qui reste à trier.

1 def tri_bulle (L:list)->list:
2 n = len(L)
3 if : # condition d’arrêt si L a moins d’un élément , elle est

déjà triée
4 return ...
5 else : # il faut parcourir la liste jusqu ’au dernier rang , pour y

placer la plus grande valeur de la liste L
6 for i in range (... ,...) : # parcours de L ATTENTION à la valeur

maximale de i dans le range vue le contenu de la boucle
7 if L[i]>L[i+1]: # l’élément précédent est plus grand que le

suivant
8 , = , # permutation des éléments

de rang i et i+1
9 # à la fin de la boucle , le plus grand élément de L est arrivé au

rang n-1 de L
10 return (L [:...]) + [L[...]] # appel récursif sur la

liste L privée de son dernier élément (qui est à la bonne place), avec
concaténation de ce dernier élément .

C’est un tri en place (=modification de la liste L), de complexité quadratique.

Joyeuses Fêtes !

Page 4

	Travail à faire
	Et le range dans tout ça ?
	Révisions sur la récursivité

