ITC — DM n°5 PC/PSI
Page 1 / 4 Année 2025-2026

? A rendre LUNDI 5 janvier 2026
Devoir Maison n°5

Partie | Travail a faire

B Si vous étes en difficulté (soit environ moins de 8 au DS et/ou si vous vous sentez en difficulté en info)

e Prévoir de travailler 'info trois fois dans les vacances, a 3-4 jours d’écart ;
e travailler sérieusement la fiche « Les indispensables » : parties II Listes; III Les dictionnaires;
o essayer d’écrire les fonctions demandées ;
o vérifier sur le corrigé en ligne;
o refaire quelques jours plus tard;
o jusqu’a y arriver parfaitement.

e Reprendre l'exercice 1 du DS, le refaire en s’aidant de la fiche « les indispensables » et du cours de
programmation dynamique.

e Reprendre les questions suivantes de SQL du DS, en s’appuyant sur le cours et les commentaires écrits
sur votre copie : Q12, Q13, Q15.

e Traiter la partie II ci-dessous.
e Traiter dans la partie IIT Révisions sur la récursivité, les questions Q1 et Q2.
B Sinon :
e Faire les questions de révision sur le range (partie II) sur la récursivité (partie III) ci-dessous.
e Reprendre le DS n°1.
o Exercice n°1.
— Q1 : on demandait le minimum et le rang;

— Q6 : combien de cases a le tableau que l'on veut remplir? quel est le dernier rang en ligne? en
colonne ? quelle valeur indiquer dans le range pour parcourir toutes les lignes 7 toutes les colonnes ?

o Exercice n°2. python Q1, Q2, Q5, Q9, Q11

— Q1 : c’est une somme!

— Q2 : reprendre le DM ou ce tri a été révisé.

— Q9 : S(C, k) n’est pas une fonction! et la fonction demandée s’appelle sol_rec qui est récursive, qui
doit donc s’appeler elle-méme. C’est elle qui renvoie la valeur de S(C, k).

i|def sol _rec(C,k):

2 if ...=...: # condition d’arrét
3 return
1 else
vk = ... # valeur du concert k
6 a = # valeur totale si le concert k fait partie de la

solution optimale, avec appel récursif sur les concerts en allant
jusqu’au rang du compatible avec le concert k

7 b = # valeur totale si le concert k ne fait partie de
la solution optimale, appel récursif au rang précédent du concert
k

8 return # on veut la valeur maximale entre les deux

possibilités précédentes

o Exercice n°2. SQL : Q12 a Q17.

— Q14 : attention, la premiere ligne est numérotée 0.

ITC — DM n°5 PC/PSI
Page 2 / 4 Année 2025-2026

— Q15, Q16, Q17 : attention aux noms de colonnes ambigués lors des jointures. Et attention c’est
nom_table.nom_colonne.

— Q17 : traduction = « il faut compter le nombre de concerts par festivals » , puis récupérer ceux qui
en ont au moins 15. Il faut donc commencer par gr...er, et comme ensuite on impose une condition
sur un gr...ement, il faut utiliser H....G.

Partie Il Et le range dans tout ca?
Q1. Je dois parcourir une liste L entierement.
(a) Quel est le premier rang ? Quelle est la valeur minimale de i pour L[i] ?
(b) Quel est le dernier rang ? Quelle est la valeur maximale de i pour L[i] 7
(c) Dans la boucle j'accede a L[i] uniquement, qu’indiquer dans le range ?
Q2. Je dois parcourir une liste L entierement, dans la boucle je dois accéder a L[i] et L[i-1].

(a) Pour L[i] : quelle est la valeur minimale que peut prendre i ? quelle est la valeur maximale que peut
prendre i 7

(b) Pour L[i-1] :
Quelle est la valeur minimale que peut prendre i-17 et donc i ?

Quelle est la valeur maximale que peut prendre i-17 et donc i 7

(c) Par conséquent, compléter la boucle for suivante permettant de parcourir toute la liste sans en sortir :
for i in range(...,...):
Q3. Je dois parcourir une liste L entierement, dans la boucle je dois accéder a L[i] et L[i+1].

(a) Pour L[i] : quelle est la valeur minimale que peut prendre i 7 quelle est la valeur maximale que peut
prendre i 7

(b) Pour L[i+1] :
Quelle est la valeur minimale que peut prendre i+17 et donc i ?

Quelle est la valeur maximale que peut prendre i+17 et donc i 7

(c) Par conséquent, compléter la boucle for suivante permettant de parcourir toute la liste sans en sortir :
for i in range(...,...):

Partie Ill Révisions sur la récursivité

VYA retenir
Une fonction récursive est une fonction qui s’appelle elle-méme.

|def f rec(a,b,c):

2 if a==25 : # condition d’arrét qui porte sur a ou b ou c

3 return 0 # valeur pour a=25b

t else

5 return f(a+l,b,c) # appel récursif de f_rec sur un rang
précédent de a ou b ou c

Q1. Ecrire la fonction récursive factorielle(n:int)->int qui renvoie la valeur de n!, en exploitant le fait que
nl=nx(n—1) et 0l =1.

1|def factorielle(n):

2 if ... # condition d’arrét
3 return

| else

return # appel récursif

ITC — DM n°5 PC/PSI
Page 3 / 4 Année 2025-2026

Comment ¢a fonctionne? Les instructions en attente sont empilées, avant d’étre dépilées (la structure
informatique derriére est une pile).

> factorielle(3) demande 3*factorielle(2)

— — > factorielle(2) demande 2*factorielle(1)

— — — > factorielle(1) demande 1*factorielle(0)

— — — > calcul de 1!

— — > calcul de 2!

> calcul de 3!

Q2. Ecrire la fonction récursive fibo(n:int)->int qui renvoie la valeur de F;, de la suite de Fibonacci définie
par Fo =0, F1 =1, I}, = F,, 1 + Fy .

i|def fibo(n):

2 if : # condition d’arrét

3 return

1 elif : # condition d’arrét

5 return

6 else

7 return # appel récursif

Cn . .
— 1 est
Q3. Une suite (¢,) plus subtile : ¢g =2 et ¢,11 = { 2 S G oSt pal

3¢, +1 si ¢, est impair

2
3¢h_1+1 si c¢,_1 est impair

Cn—1 . .
, s S1 Cp—1 €St pair
Que l'on peut réécrire, pour n > 1 : ¢, =

Rappel, n%2 renvoie le reste de la division euclidienne par 2.

def suite(n):
if ... @ # condition d’arrét
return

N

| else

prec = # valeur de c_(n-1) récupéré via appel récursif
6 if ... :# si pair

7 return

8 else

9 return

Q4. Un tri récursif : le tri fusion. On suppose avoir une fonction fusion(L1:1ist,L2:1ist)->1list qui a partir
des deux listes L1 et L2 triées dans le méme ordre, renvoi une liste triée dans le méme ordre.
Ecrire une fonction récursive tri_fusion(L:1list)->list qui trie par ordre croissant la liste L sur le
principe : la liste L est coupée en deux au milieu, chaque moitié est triée récursivement, puis on fusionne les
listes grace a la fonction fusion.
Indice : le milieu d'une liste de longueur est le quotient de la division euclidienne de la longueur de la liste
par 2.

|def tri fusion(L):

2 n = len(L)

3 if ..., : # condition d’arrét si L a moins d’un élément, elle est
déja triée

4 return

5 else

6 LO = (L[O:...]) # tri récursif de la premiére moitié de L

7 L1 = (LL...:]) # tri récursif deuxiéme moitié de L

8 return (LO,L1) # fusion des deux listes triées

Ce tri n’est pas en place (la liste L n’est pas modifiée, une autre est créée), de complexité moyenne

O(nln(n)).

CAMILLE VIERNET ITC — DM n75 PC/PSI

Page 4 / 4 Année 2025-2026

Q5.

¥

10

~

Un autre tri récursif : le tri bulle. A chaque parcours de la liste, on fait monter la plus grande valeur de la
partie qui reste a trier, au bout de la partie qui reste a trier.

def tri_bulle(L:1list)->1list:

n = len(L)
if ..., : # condition d’arrét si L a moins d’un élément, elle est
déja triée
return
else : # il faut parcourir la liste jusqu’au dernier rang, pour y
placer la plus grande valeur de la liste L
for i in range(... ,...) : # parcours de L ATTENTION & la valeur

maximale de i dans le range vue le contenu de la boucle
if L[i]>L[i+1]: # 1’é&lément précédent est plus grand que le
suivant
= # permutation des éléments
de rang i et i+l
& la fin de la boucle, le plus grand élément de L est arrivé au
rang n-1 de L
return (LL:...1) + [LL...] 1 # appel récursif sur la
liste L privée de son dernier élément (qui est & la bonne place), avec
concaténation de ce dernier élément.

C’est un tri en place (=modification de la liste L), de complexité quadratique.

Joyeuses Fétes

	Travail à faire
	Et le range dans tout ça ?
	Révisions sur la récursivité

