ITC — Programmation dynamique — Complété PC/PSI
Page 1 / 13 Année 2025-2026

Informatique du Tronc Commun

Chapitre n°3 Programmation dynamique —
Compléteé

Introduction

1l

existe différentes stratégies pour résoudre un probléme. De nombreux algorithmes cherchent a décomposer un

probléme en sous-problémes (plus petits) afin de le résoudre. Vous en avez vu deux grandes familles ’an dernier :

les algorithmes gloutons : C’est I’algorithme utilisé pour rendre de la monnaie, ’objectif étant de, pour rendre
une somme donnée, de le faire avec le nombre minimal de piece.

les algorithmes de type diviser pour mieux régner : Vous avez rencontré ce type d’approche pour la dichotomie,
certains tris (notamment le tri rapide et le tri fusion).

Mais ces algorithmes ont des limites :

Les algorithmes gloutons sont parfois optimaux, par exemple pour le rendu de monnaie dans les systemes
monétaires bien pensés. Mais ils ne le sont pas toujours. L’avantage de l'algorithme glouton est d’avoir une
solution « pas trop mauvaise » en un temps court, mais sans l'assurance d’avoir trouvé la meilleure solution
au probléme.

L’approche diviser pour mieux régner est trés efficace pour des problemes dont les sous-problémes sont
indépendants. Mais parfois, des sous-problémes ont des sous-problémes en commun. L’approche est alors inef-
ficace puisqu’on résout plusieurs fois les mémes sous-probléemes, ce qui augmente considérablement la complexité
temporelle.

Afin de résoudre ces problémes, nous allons utiliser la programmation dynamique.

Objectifs

Pré-

Enoncer les principes de la programmation dynamique.
Distinguer cette méthode des approches gloutonnes et diviser pour régner.

Adapter récursivement les problemes traités avec 1’algorithme glouton.

requis

1*¢ année : Récursivité, Algorithme glouton, complexité.

Programme officiel

Notions Commentaires

Programmation dynamique. | de 'information calculée. La mémoisation peut étre implémentée a ’aide d’un dictionnaire.
Propriété de sous-structure | On souligne les enjeux de complexité en mémoire.

optimale. Chevauchement de | Exemples : partition équilibrée d’un tableau d’entiers positifs, ordonnancement de taches
sous-problémes. pondérées, plus longue sous-suite commune, distance d’édition (Levenshtein), distances dans

Calcul de bas en haut ou par mémoisation. Reconstruction d’une solution optimale a partir

un graphe (Floyd-Warshall).

Mise en ceuvre

Les exemples proposés ne forment une liste ni limitative ni impérative. Les cas les plus complexes de situations ou la
programmation dynamique peut étre utilisée sont guidés. On met en rapport le statut de la propriété de sous-structure
optimale en programmation dynamique avec sa situation en stratégie gloutonne vue en premiere année.

Plan du cours II Un autre exemple : Distance d’édition 7
II.1 Définitions 7

I Premier exemple : coefficients binomiaux 2 I1.2 Relation de récurrence 7
[.L1 Programmation récursive naive 2 IL.3 Intérét de la programmation dynamique . . 8

[.2 Nécessité de la programmation dynamique . 2 II.4 De haut en bas avec mémofisation 8

1.3 Récursif de haut en bas 3 II.5 De bas en haut avec un tableau 10
I.4 TItératif : de basenhaut 5 II.6 Reconstitution de la solution 11

ITC — Programmation dynamique — Complété PC/PSI
Page 2 / 13 Année 2025-2026

| Premier exemple : coefficients binomiaux

|.1 Programmation récursive naive

n
On souhaite écrire un algorithme permettant de calculer () Pour cela, on utilise la formule de récurrence

k

qui permet de construire le triangle de Pascal :

1 sik=nouk=0

e) e

E—1 k

def cb_rec(k,n):

"""Calcule la valeur de k parmi n de fagon récursive"""

if k==n or k==0:
return 1

elif k==1:
return n

else: # appels récursifs, utilisation de la relation de récurrence
return cb_rec(k-1,n-1)+cb _rec(k,n-1)

7 2 4
On constate que le calcul de <5> nécessite 4 fois le calcul de <1>, 3 fois celui de (3) ... Imaginez si nous

souhaitions calculer (45>, le nombre de calcul serait énorme et donc inenvisageable. On peut montrer qu’un tel

algorithme est de complexité exponentielle (en O(4%)).

—1 —1
Le calcul de (Z) se ramene au calcul de (Z 1) et (n i >, a savoir deux sous-problémes, qui ne sont
. a4) n—1 (n—1\ , . n—2
pas indépendants, puisque les calculs de b1 et a I nécessitent tous les deux le calcul de r_1)

On dit que les sous-problémes se chevauchent. Cela est responsable de la complexité élevée puisque chaque
coefficient binomial est calculé un grand nombre de fois.

|.2 Nécessité de la programmation dynamique

Nous sommes typiquement dans un cas ou la programmation dynamique est utile : c¢’est un probléme
qui peut étre découpé en sous-problemes qui se chevauchent.

L’idée de la programmation dynamique est de ne calculer qu’une fois chaque sous-probléme. Pour
cela, il faut stocker les résultats et pouvoir y accéder rapidement.

ITC — Programmation dynamique — Complété PC/PSI
Page 3 / 13 Année 2025-2026

Déﬁnition : Sous-structure

| Une sous-structure est une restriction de notre probléme & un ensemble plus petit.

Déﬁnition : Propriété de sous-structure optimale

| Un probleme vérifie la propriété de sous-structure optimale si la solution optimale de tout sous-
probléme est une partie de la solution optimale du probleme de départ.

@ Utilisation de la programmation dynamique
La programmation dynamique est mise en ceuvre lorsque :

— le probleme posséde une propriété de sous-structure optimale;

— les sous-problémes se chevauchent, c’est-a-dire qu’une résolution récursive naive fait calculer
)
plusieurs fois les mémes sous-problemes, et conduit alors a une complexité temporelle élevée.

Déﬁnition : Equation de Bellmann

Lorsque I'on arrive a décomposer notre probléme en plusieurs sous-problemes plus simples, la relation liant
la solution optimale de notre probleme a celles des sous-problémes est appelée équation de Bellmann.

On peut utiliser deux facons pour programmer :
— De haut en bas, en adaptant légerement ’algorithme récursif en utilisant la mémoisation ,

— De bas en haut, avec un algorithme itératif.

1.3 De haut en bas (récursif) : utilisation de la mémoisation

On adapte ici I'algorithme récursif : on part du probleme que l'on veut résoudre, et on descend dans les
problemes plus petits. Pour ne pas recalculer un sous-probleme qui aurait déja été calculé, on teste s’il ne I’a pas
déja été. Sinon, on le calcule et on stocke sa valeur. Pour cela, il faut prévoir une structure de données dans
laquelle on sauvegarde toutes les solutions de sous-problémes déja rencontrés : ¢’est la mémoisation.
Nous utiliserons un dictionnaire, ce qui est avantageux car le test d’appartenance d’une clé se fait en
temps constant, indépendant de la taille du dictionnaire (cf chapitre précédent), contrairement & une liste,
pour laquelle le test d’appartenance est en temps linéaire avec la taille de la liste.

‘ , . . Ve e
Deﬁnltlon : Mémoiser
| Mémoiser consiste a conserver a la fin de 'exécution d’une fonction le résultat associé aux arguments
d’appels, pour ne pas avoir a recalculer ce résultat lors d’un autre appel récursif.

¥De haut en bas avec mémoisation
Lorsque I'on veut obtenir un résultat pour un sous-probleme :

1. on vérifie d’abord si on ’a déja calculé, et si c’est le cas on n’a rien a faire;
2. sinon, on lance un calcul récursif.
Pour faire cela, il faut souvent :
— prévoir une structure de données ad-hoc pour mémoiser les résultats des sous-problemes calculés ;

— s’organiser pour ne pas recopier les données du probléme, sans quoi la complexité spatiale peut
exploser.

Pour cela, on utilise un dictionnaire qui stocke les coefficients calculés. La clé est le couple (i, j) et la valeur

associée & cette clé est le coefficient <j>
1

ITC — Programmation dynamique — Complété PC/PSI
Page 4 / 13 Année 2025-2026

WActivité n°1— A vous de jouer!

Rl.IEcﬁrelaibnctknlcb_mem(k,n,dico={}).

Dans les arguments de la fonction, on peut ajouter 'argument dico={2}, un dictionnaire local qui reste en
variable locale, et est conservé lors des appels récursifs.

Solution:

def cb mem(k,n,dico={}):
won
Arguments
k, n : entiers
dico : dictionnaire qui contient les valeurs déja calculées
Retours
¢ : valeur de k parmi n
won
if (k,n) in dico: # il a déja été calculé, on renvoie la valeur
return dico[(k,n)]
on traite les cas ou la valeur n’a pas déja été calculées
elif k==n or k==0:

else:

c=cb_mem(k-1,n-1)+cb_mem(k,n-1) # appels récursifs
dico[(k,n)]=c # on ajoute 1la valeur au dictionnaire
return c

Calcul instantané

R2. Pour programmer cette fonction, on peut aussi procéder avec deux fonctions 'une dans l'autre. Le dic-
tionnaire est alors défini localement au sein de la fonction principale et sert de variable globale pour une
fonction auxiliaire.

i|def cb _mem2(k,n):

Renvoie la valeur de k parmi n
dico={} # variable locale pour cb_mem2, variable globale pour cb
def cb(i,j):
nmnn
Fonction auxiliaire qui calcule la valeur de i parmi j et stocke
dans dico les valeurs de i parmi j calculées
if (i,j) in dico: # i1 a déja été calculé, on renvoie la valeur
return dicol[(i,j)]
on traite les cas ou la valeur n’a pas déja été calculées
elif i==j or i==
c
elif i==1:

Il
—

(@}
I
—

else:

c=cb_mem(i-1,j-1)+cb _mem(i,j-1) # appels récursifs
dico[(i,j)]=c # on ajoute 1la valeur au dictionnaire
return c

ITC — Programmation dynamique — Complété PC/PSI
Page 5 / 13 Année 2025-2026

return cb(k,n) # calcule k parmi n

L’inconvénient est qu’a chaque appel de la fonction, le dictionnaire est entierement recalculé.

. (3 .
Sur l'exemple précédent, une fois (2 calculé, il ne sera pas recalculé. Au fur et a mesure des nouveaux

coefficients calculés, ils sont ajoutés au dictionnaire et en cas de besoin, on va le chercher a la clé correspondante
(sans que cette étape coiite beaucoup de temps : cf chapitre précédent)...

! J

Le dictionnaire peut étre une variable globale, définie avant la fonction. L’inconvénient est de faire

appel, au sein de la fonction a une variable globale, qu’il faut donc veiller a définir systématiquement lors
de I'exécution de la fonction.

|.4 Garder en mémoire les résultats dans un tableau : de bas en haut (itératif)

De bas en haut

On effectue un calcul de bas en haut lorsque l'on utilise une programmation itérative, en partant
des cas de base (les plus petits problémes) et en construisant petit & petit les solutions des
sous-problemes de plus en plus grand, que ’on stocke au fur et & mesure dans un tableau,
jusqu’a arriver au probleme que 1’on souhaite résoudre.

Ici on stocke le triangle de Pascal dans un tableau & deux dimensions en le complétant de bas a haut,
c’est-a-dire des petites valeurs aux plus grandes valeurs.

WActivité n°2— A vous de jouer!

7
R1. Compléter le tableau ci-dessous pour calculer . en commencant par remplir la premiere colonne et la

diagonale (i = j) sans utiliser le triangle de Pascal.

i
Le tableau contient (k + 1) colonnes et (n + 1) lignes, soit (n 4 1) x (k + 1) éléments.

L’élément de la colonne i € [0, k] et la ligne j € [0,n] contient le coefficient <‘7>

: -
Pour calculer 1’élément <‘7>, on utilise les éléments (‘7 1) (colonne précédente, ligne précédente) et
7 i —

) — 1
(‘7 .) (case juste au dessus).
i

n 5 01 2 3
0 1
. 1 1 1
Solution: 5 1 92 1
3 1 3 3 1
4 1 4 6 4
5 1 5 10 10

R2. Pour une ligne j donnée, quelles sont les colonnes qui doivent étre remplies ? Traduire le rang maximal de
la colonne a devoir étre remplie en fonction de k et de j.

Solution: On remplit la ligne j jusqu’a la colonne ¢ = j — 1 (la colonne j = i a déja été remplie) tant
que j est inférieur a k, sinon jusqu’a la colonne k incluses.
Ainsi il faut remplir la ligne j de la colonne 1 a la colonne min(j — 1, k)

ITC — Programmation dynamique — Complété PC/PSI
Page 6 / 13 Année 2025-2026

R3. Ecrire une fonction cb_asc(k,n) en utilisant 'approche ascendante. On utilisera un tableau tab qui
stockera les valeurs successives nécessaires a calculer.

On peut initialiser une liste de m listes de n zéros ainsi : [[0 for i in range(n)] for j in range(m)],
ce qui donne un tableau de m lignes et n colonnes.

Solution:

def cb_asc(k,n):

o

Arguments
4 k, n : entiers

Renvoi : tab[n][k], ol tab est un tableau de n+l1 lignes et k+l1
colonnes qui va stocker les valeurs successives de i parmi j
7 tab=[[0 for i in range(k+1)] for j in range(n+1)] # n+l1 lignes
de k+1 colonnes de O
s for j in range(O,n+1): # remplissage de la premiére colonne (i=0)
o tab[jl[0] = 1
o for j in range(O0,k+1): # remplissage de la diagonale
1|1 tab[J][J] =1
12 for j in range(2 , n+l): # remplissage des lignes (les 2
premiéres sont déja remplies)
13 for i in range(1, min(j-1,k)+1): # remplissage des colonnes
4 tab[jl[il=tab[j-1][il+tab[j-1][i-1]
5 return tab[n] [k]

R4. Evaluer la complexité en temps de cet algorithme. Commenter.

Solution:

La fonction est beaucoup plus rapide que la précédente.
n

Pour la ligne 4, on compléte au plus &+ 1 éléments, par conséquent on effectuer C(k,n) = Z(k +1) =

=0
(n+1)x (k+1)
Ainsi la complexité est en O(kn). C’est nettement mieux que la complexité exponentielle précédente !

R5. Evaluer la complexité en mémoire de cet algorithme. Commenter.

Solution:
On stocke un tableau de (n + 1) x (k + 1) éléments, donc la complexité est en O(kn).

Chaque ligne est déduite uniquement de la ligne précédente, il n’est donc pas nécessaire de calculer tout le

tableau a deux dimensions. Un tableau a une dimension est suffisant, en écrasant successivement I'unique

ligne stockée. Ce qui permet d’améliorer grandement la complexité spatiale.

ITC — Programmation dynamique — Complété PC/PSI
Page 7 / 13 Année 2025-2026

Il Un autre exemple : Distance d'édition

1.1 Définitions

Les séquences de caracteres peuvent encoder de nombreuses informations de nature différente, par exemple
du texte, de la voix ou des séquences ADN. L’alignement de deux chaines des caracteres consiste a comparer
deux séquences de caracteres afin d’évaluer la similarité entre les deux.

Déﬁnition : Distance d’édition (de Levenshtein)

La distance d’édition ou distance de Levenshtein * est une mesure de la similarité entre deux chaines
de caracteres (chl et ch2). Cette distance est le nombre minimal d’opérations élémentaires a
effectuer pour transformer la premiere chaine en la seconde. Ces opération sont :

e insertion d’'un caractere de ch2 dans chl;
e remplacement d’un caractere de ch2 dans chl;

e suppression d'un caractere de chl.

a. Congue en 1965 par le scientifique russe LEVENSHTEIN

Cette distance est majorée par la longueur de la plus grande chaine. C’est une distance au sens mathématique
du terme, donc elle vérifie les propriétés :

e distance(chl,ch2)> 0;
e distance(chl,ch2)=0 < chl=ch2;
e distance(chl,ch2)=distance(ch2,chl)

R1. La distance d’édition de « chien » a « niches » vaut 4. Expliquer pourquoi.

Solution: On cherche les modifications minimales sur niche pour arriver a chien :
— supprimer 2 lettres (n et i)
— substituer 2 lettres (c et h) : ne cotitent rien, puisque les lettres a substituer sont identiques.
— insérer 1 lettre (i)
— substituer 1 lettre (e) : ne cofite rien, puisque la lettre a substituer est identique
— insérer 1 lettre (n)

La distance est donc de 2 + 1 + 1 = 4.
On cherche les modifications minimales sur chien pour arriver a niche :

— insérer 2 lettres (n et i)

— substituer 2 lettres (c et h) : ne cotitent rien, puisque les lettres a substituer sont identiques.
— supprimer 1 lettre (i)

— substituer 1 lettre (e) : ne cofite rien, puisque la lettre a substituer est identique

— supprimer 1 lettre (n)

La distance est doncde 2 + 1 4+ 1 = 4.
Le chien se retrouve donc a une distance de 4 metres de sa niche!

[1.2 Relation de récurrence

On suppose que supprimer un caractere, insérer un caractere, substituer un caractére sont des opérations qui
ont toute un coflit unitaire. Si le caractere est identique, la substitution ne cotite rien.

R2. Que vaut d.("”,ch2)? d.(chl,””)? Remplir les deux premiers cas.

R3. Si les premieres lettres de chl et ch2 sont identiques, exprimer la valeur de d.(chl,ch2) en fonction de
d.(chl1[l :], ch2][1 :]).

ITC — Programmation dynamique — Complété PC/PSI
Page 8 / 13 Année 2025-2026

R4. Dans le cas général (si les premieres lettres sont différentes), c’est un peu plus complexe. On attend a
chacune des réponses suivantes une forme récursive.

(a) Exprimer d.(chl,ch2) dans le cas ou l'on veut supprimer ch1[0] (premiere lettre de chl).
b) Méme question dans le cas d’une insertion de ch2[0] (premiere lettre de ch2) devant chl.

(b)
(c) Méme question dans le cas de la substitution de ch1[0] par ch2[0] (les premieres lettres).
(d)

d) Compléter la relation de récurrence :
len(ch2) si len(ch1)=0
len(chl) si len(ch2)=0
d_e(chl[1 :],ch2[1 :]) si ch1[0]=ch2[0]
d.(chl,ch2) =
d__e(chl[1 :],ch2) suppression de ch1[0]
I+ __ _min d_e(chl,ch2[1 :]) insertion de ch2[0] au début de chl
d__e(chl[1 :],ch2[1 :]) substitution de ch1[0] par ch2[0]

11.3 Intérét de la programmation dynamique

Le probleme de la recherche de la distance d’édition entre deux mots s’exprime en fonction de sous-problemes
plus simples. Ces sous-problemes se chevauchent : au fur et a mesure des différentes possibilités nous allons
retomber sur des comparaisons de deux chaines de caractéres qui ont déja effectuées au préalable.

C’est une situation ou les sous-problémes se chevauchent et font partie de la solution optimale (cf relation de
récurrence) : faire appel a la programmation dynamique est pertinent.

1.4 De haut en bas avec mémoisation

On va ici utiliser un dictionnaire qui va stocker les distances déja calculées afin de ne pas les calculer a nouveau.
Pour cela on place dans les arguments de la fonction récursive un dictionnaire (variable locale) qui va étre
modifiée & chaque récursion. La clé est le couple de mots et la valeur la distance qui les sépare.

La premiere chose est de tester si la distance entre les deux mots a déja ou non été calculée. Si oui, il n’y a qu’a
renvoyer la distance. Si non, il faut tester laquelle des trois possibilités (suppression, insertion ou substitution)
demande le moins de modification.

R5. Ecrire une fonction récursive de_mem(chl:str,ch2:str,dico={})->int avec mémoisation qui renvoie la

distance d’édition entre chl et ch2.

Solution:

def de mem(chl,ch2,dico={}):

3 dico : dictionnaire qui stocke pour chaque couple de chaines
pouvant étre testée la distance {(a,b):de(a,b),...}

n nnn

5 nl ,n2=1len(chl),len(ch2)

6 if (chl,ch2) in dico: # la distance a déja été calculée

7 return dico[(chl,ch2)] # on renvoie la valeur déja calculée

s else

0 if n1==0 or n2==0:

o d=max(nl,n2) # si 1l’une des deux est vide, la distance d’
édition est la longueur de 1l’autre chaine

if1 elif chil [O]==Ch2 [O] 5

ITC — Programmation dynamique — Complété PC/PSI
Page 9 / 13 Année 2025-2026

1|4

>>> de mem(’niche’,"chien")
>>> de_mem("physique","informatique")
8

4| >>> de_mem ("AGTTC","AGCTC")
5 1

d=de _mem(ch1[1:],ch2[1:],dico) # deux caractéres identiques
, la de est la distance entre les deux chaines privées de leur
premier élément
else: # on cherche la distance minimale entre les trois
possibilités
a=de_mem(ch1[1:],ch2,dico) # supprime chil [0]
b=de _mem(chl,ch2[1:],dico) # insertion de ch2[0]
c=de mem(ch1[1:],ch2[1:],dico) # substitution de chl[0] et
ch2 [0]
d=1+min(a,b,c)
dico[(chl,ch2)]=d # on ajoute 1’é&lément constitué de la clé (
chl,ch2) et de valeur, la distance calculée entre chl et ch2
return dico[(chl,ch2)]

ITC — Programmation dynamique — Complété PC/PSI
Page 10 / 15 Année 2025-2026

[1.5 De bas en haut avec un tableau

On souhaite utiliser la programmation dynamique de bas en haut a ’aide d’un tableau. On construit un tableau
de len(ch1)+1 lignes et de len(ch2)+1 colonnes.

La case (i,7) (ligne i et colonne j) contient la distance d’édition entre la chaines de caracteres des ¢ premiers
caracteres de chl, et la chaines de caractéres des j premiers caractéres de ch2, ¢’est-a-dire d.(ch1[:1],ch2[:j]).
Elle contient donc le nombre de modifications a effectuer pour passer de ch1[:i] a ch2[:j].

R6. On souhaite compléter le tableau ci-dessous pour calculer la distance d’édition entre chien et niche.

710 1 2 3 4)
1 0 N I C H E
00 |0 1i 2i 3 4 5
. 1C |1 1 2 2s 3 4
Solution: 9 | 2 9 9 3 95 3
31 |3 3 2 3 3x 4
4E |4 4 3 3 4 3s
5N |5 4 4 4 4
Suppression : x , insertion : i , substitution : s.
m'l “ A GJI’W

—>

0
1('¢)
2 ("cl’)

Mr‘ N 3 (" Ch_i_")

,Qig‘».s 4 ("chie")

| 5 (chien")

(a) Remplir la premieére ligne et la premiére colonne.
(b) Remplir la suite du tableau case par case en choisissant :
e Sich1[i-1]=ch2[j-1], alors T[i] [j1=T[i-1][j-1]
e Sichi[i-1]#ch2[j-1], il faut choisir entre la valeur minimale parmi :
o la suppression de ch1[i-1] : T[i] [j]1=T[i-1][j]1+1
o l'insertion de ch2[j-1] ala fin de ch1[:i] : T[i] [j1=1+T[i] [j-1]
o la substitution de ch1[i-1] par ch2[j-1] : T[i] [j1=T[i-1] [j-1]1+1
R7. Ou se trouve la distance d’édition dans le tableau? En déduire sa valeur.

R8. Ecrire une fonction de_bas_haut (chl:str,ch2:str)->int qui calcule la distance d’édition de deux chaines
de caracteres par programmation dynamique de bas en haut.

Solution:

|def de _bas_haut (chl,ch2):

nl ,n2=1len(chl),len(ch2)

3 T=[[0 for j in range(n2+1)] for i in range(nl+1)] # tableau que 1’
on va compléter

4 for i in range(nl+1):

5 T[i]J[0]=1i # si ch2 vide : distance d’édition = 1lg de ch1[0:1i]

ITC — Programmation dynamique — Complété PC/PSI
Page 11 / 13 Année 2025-2026

6 for j in range(n2+1):

7 T[OJ[jl=j # si chl vide : distance d’édition = 1lg de ch2[0:j]
5 for i in range(l,nl+1):

9 for j in range(1,n2+1):

o if chl1[i-1]==ch2[j-1]: # caractére identique

1 # attention décalage entre le rang dans la chaine de
caractére et le rang dans le tableau

2 TLilJ[j]1=T[i-1]1[j-1] # la distance d’édition est celle
qui sépare les deux chalines de caractéres jusqu’a i-1, et j-1

13 else: # on cherche la distance minimale entre
la a=T[i-1]1[j] # suppression
1|5 b=T[i][j-1] # insertion

6 c=T[i-1][j-1] # substitution
|7 Tlil[j]l=1+min(a,b,c)

s return T[nl1,n2]

| >>> de_bas_haut("niche","chien")
‘_(l4.0

4|# Tableau T: (en ajoutant un print juste avant le return)
4| >>> de_bas_haut("chien","niche")
s 0. 1. 2. 3. 4. 5.]

4 [1. 1. 2. 2. 3. 4.]

+ [2. 2. 2. 3. 2. 3.]

6/ [3. 3. 2. 3. 3. 3.]

| [4. 4. 3. 3. 4. 3.]

w [6. 4. 4. 4. 4. 4.]]

Complexités temporelle et spatiale O(nins).

1.6 Reconstitution de la solution

Les deux algorithmes précédents ont permis de déterminer la distance minimale entre les deux mots, mais pas
les modifications qui ont permis de passer de 'un a 'autre.

Cet algorithme nous permet méme de retrouver la suite d’opérations a effectuer pour passer d’'un mot a l'autre :

on part de la case en bas a droite et on monte en haut a gauche en choisissant toujours le nombre le plus faible

disponible, parmi les trois directions nord, nord-ouest et ouest (il_est interdit dms directions nord ou

ouest si la valeur des cases de descend pas de 1). On peut alors reconstruire la suite d’opérations en suivant ce
Tchemin & Penvers (du coin supérieur au coin inférieur) :

Aller & droite (+1) = insérer la lettre de la colonne visée;

Aller en diagonale (+1) = remplacer la lettre de la ligne visée par celle de la colonne visée ;

Aller en diagonale (+0) == ne rien faire puisque les lettres sont les mémes;

Aller en bas (4+1) = supprimer la lettre de la ligne visée.

D’une case a 'autre, on peut voir le cotit de 'opération en faisant la différence des cellules.

— Seules les diagonales peuvent conserver la valeur entre deux cases le long du chemin. C’est logique
puisque dans notre code, une insertion ou une suppression correspondent NECESSAIREMENT a un

cout de 1.

— Un segment horizontal (insertion), mais dont la valeur ne s’incrémente pas, ne correspond donc a
aucune transformation réelle. Idem pour un segment vertical (suppression).

R9. A partir du tableau complété précédemment, recopié ci-dessous, reconstituer la chaine des modifications
pour passer de chien a niches. Plusieurs solutions sont possibles.

ITC — Programmation dynamique — Complété - PC/PSI
Page 12 / 13 Année 2025-2026

» N ? Cc H E S CYWIEN

2H |2 2 2 3113

31 |3 3 2 3

3,
-
o/

-A4 ‘\h C\)‘*‘
ED
5N |5 4 4 4 4 bg,ﬂ*%

&
On propose ici la fonction python le faisant :

4E |4 4

<

1. construire le tableau, en adaptant la fonction de_bas_haut pour qu’elle renvoie T (et non uniquement sa
derniere valeur),

2. remonter dans le tableau du bas a droite en haut a gauche, enregistrer les déplacements a chaque étape
gardée,

3. reconstruire la suite des opérations.

ITC — Programmation dynamique — Complété PC/PSI
Page 13 / 15 Année 2025-2026

def de_sol(chl,ch2):
nl,n2=1len(chl),len(ch2)
T=de_tab(chl,ch2) # fonction identique & de_bas_haut mais qui renvoie le
tableau complet et non la derniére valeur
dep=1[]
i,j=nl,n2
while i>0 and j>0: # tant qu’on n’a pas atteint la liére ligne ou la 1
iére colonne
on cherche 1’opération qui colite le moins,
if T[i-11[j-11==T[i][j]1-1:
op=f"substitution de {chi[i-1]} par {ch2[j-1]1}"
i,j=1i-1,j-1
dep.append ((1,1,0p))
elif T[i-1]1[jl==T[il[jl-1:
op=f"suppression de {chi[i-1]}"
i=i-1 # vers le haut
dep.append ((1,0,0p))
elif T[i][j-1]1==T[il[j]1-1:
op=f"insertion de {ch2[j-1]}"
j=j-1 # vers la gauche
dep.append ((0,1,0p))
elif T[i-1]1[j-11==T([i]J[j]l: # aucun changement & effectuer
op=f"{ch1[i-1]} inchangé"
i,j=i-1,j-1
dep.append ((1,1,0p))
while j!=0: # i=0, on est dans la liére ligne
op=f"insertion de {ch2[j-1]}"
j=j-1 # vers la gauche
dep.append ((0,1,0p))
while i!=0: # j=0, on est dans la 1liére colonne
op=f"suppression de {chi[i-1]}"
i=i-1 # vers le haut
dep.append ((1,0,0p))

3é étape : solution

dep=dep[::-1] # on inverse la liste des opérations
sol=[]

i,j=0,0

for k in range(len(dep)):
di,dj,op=dep [k]
i=i+di
j=j+dj
sol.append (op)

return sol

2| >>> de_sol("chien","niche")
[’insertion de n’, ’insertion de i’, ’c inchangé’, ’h inchangé’, ’

suppression de i’, ’e inchangé’, ’suppression de n’]

| >>> de_sol("chien","niches")

s/ [’insertion de n’, ’insertion de i’, ’c inchangé’, ’h inchangé’, °’
suppression de i’, ’e inchangé’, ’substitution de n par s’]

5| >>> de_sol("carotte","patate")

| [’substitution de ¢ par p’, ’a inchangé’, ’substitution de r par t’, ’

substitution de o par a’, ’t inchangé’, ’suppression de t’, ’e inchangé’]

	Premier exemple : coefficients binomiaux
	Programmation récursive naïve
	Nécessité de la programmation dynamique
	Récursif de haut en bas
	Itératif : de bas en haut

	Un autre exemple : Distance d'édition
	Définitions
	Relation de récurrence
	Intérêt de la programmation dynamique
	De haut en bas avec mémoïsation
	De bas en haut avec un tableau
	Reconstitution de la solution

