
ITC − Programmation dynamique − Complété
Page 1 / 13

PC/PSI
Année 2025-2026

Chapitre n°3 Programmation dynamique −
Complété

Informatique du Tronc Commun

Introduction
Il existe différentes stratégies pour résoudre un problème. De nombreux algorithmes cherchent à décomposer un

problème en sous-problèmes (plus petits) afin de le résoudre. Vous en avez vu deux grandes familles l’an dernier :
— les algorithmes gloutons : C’est l’algorithme utilisé pour rendre de la monnaie, l’objectif étant de, pour rendre

une somme donnée, de le faire avec le nombre minimal de pièce.
— les algorithmes de type diviser pour mieux régner : Vous avez rencontré ce type d’approche pour la dichotomie,

certains tris (notamment le tri rapide et le tri fusion).
Mais ces algorithmes ont des limites :

— Les algorithmes gloutons sont parfois optimaux, par exemple pour le rendu de monnaie dans les systèmes
monétaires bien pensés. Mais ils ne le sont pas toujours. L’avantage de l’algorithme glouton est d’avoir une
solution « pas trop mauvaise » en un temps court, mais sans l’assurance d’avoir trouvé la meilleure solution
au problème.

— L’approche diviser pour mieux régner est très efficace pour des problèmes dont les sous-problèmes sont
indépendants. Mais parfois, des sous-problèmes ont des sous-problèmes en commun. L’approche est alors inef-
ficace puisqu’on résout plusieurs fois les mêmes sous-problèmes, ce qui augmente considérablement la complexité
temporelle.

Afin de résoudre ces problèmes, nous allons utiliser la programmation dynamique.

Objectifs
— Énoncer les principes de la programmation dynamique.
— Distinguer cette méthode des approches gloutonnes et diviser pour régner.
— Adapter récursivement les problèmes traités avec l’algorithme glouton.

Pré-requis
— 1re année : Récursivité, Algorithme glouton, complexité.

Programme officiel
Notions Commentaires

Programmation dynamique.
Propriété de sous-structure
optimale. Chevauchement de
sous-problèmes.

Calcul de bas en haut ou par mémoïsation. Reconstruction d’une solution optimale à partir
de l’information calculée. La mémoïsation peut être implémentée à l’aide d’un dictionnaire.
On souligne les enjeux de complexité en mémoire.
Exemples : partition équilibrée d’un tableau d’entiers positifs, ordonnancement de tâches
pondérées, plus longue sous-suite commune, distance d’édition (Levenshtein), distances dans
un graphe (Floyd-Warshall).

Mise en œuvre
Les exemples proposés ne forment une liste ni limitative ni impérative. Les cas les plus complexes de situations où la
programmation dynamique peut être utilisée sont guidés. On met en rapport le statut de la propriété de sous-structure
optimale en programmation dynamique avec sa situation en stratégie gloutonne vue en première année.

Plan du cours
I Premier exemple : coefficients binomiaux 2

I.1 Programmation récursive naïve 2
I.2 Nécessité de la programmation dynamique . 2
I.3 Récursif de haut en bas 3
I.4 Itératif : de bas en haut 5

II Un autre exemple : Distance d’édition 7
II.1 Définitions 7
II.2 Relation de récurrence 7
II.3 Intérêt de la programmation dynamique . . 8
II.4 De haut en bas avec mémoïsation 8
II.5 De bas en haut avec un tableau 10
II.6 Reconstitution de la solution 11

ITC − Programmation dynamique − Complété
Page 2 / 13

PC/PSI
Année 2025-2026

I Premier exemple : coefficients binomiaux
I.1 Programmation récursive naïve

On souhaite écrire un algorithme permettant de calculer
(

n

k

)
. Pour cela, on utilise la formule de récurrence

qui permet de construire le triangle de Pascal :

(
n

k

)
=


1 si k = n ou k = 0
n si k = 1(

n− 1
k − 1

)
+
(

n− 1
k

)
sinon

1 def cb_rec(k,n):
2 """ Calcule la valeur de k parmi n de façon récursive """
3 if k==n or k==0:
4 return 1
5 elif k==1:
6 return n
7 else: # appels récursifs , utilisation de la relation de récurrence
8 return cb_rec(k-1,n -1)+cb_rec(k,n -1)

On constate que le calcul de
(

7
5

)
nécessite 4 fois le calcul de

(
2
1

)
, 3 fois celui de

(
4
3

)
. . . Imaginez si nous

souhaitions calculer
(

56
45

)
, le nombre de calcul serait énorme et donc inenvisageable. On peut montrer qu’un tel

algorithme est de complexité exponentielle (en O(4k)).

Le calcul de
(

n

k

)
se ramène au calcul de

(
n− 1
k − 1

)
et
(

n− 1
k

)
, à savoir deux sous-problèmes, qui ne sont

pas indépendants, puisque les calculs de
(

n− 1
k − 1

)
et à

(
n− 1

k

)
nécessitent tous les deux le calcul de

(
n− 2
k − 1

)
.

On dit que les sous-problèmes se chevauchent. Cela est responsable de la complexité élevée puisque chaque
coefficient binomial est calculé un grand nombre de fois.

I.2 Nécessité de la programmation dynamique
Nous sommes typiquement dans un cas où la programmation dynamique est utile : c’est un problème

qui peut être découpé en sous-problèmes qui se chevauchent.
L’idée de la programmation dynamique est de ne calculer qu’une fois chaque sous-problème. Pour

cela, il faut stocker les résultats et pouvoir y accéder rapidement.

Page 2

ITC − Programmation dynamique − Complété
Page 3 / 13

PC/PSI
Année 2025-2026

Une sous-structure est une restriction de notre problème à un ensemble plus petit.
Définition : Sous-structure

Un problème vérifie la propriété de sous-structure optimale si la solution optimale de tout sous-
problème est une partie de la solution optimale du problème de départ.

Définition : Propriété de sous-structure optimale

La programmation dynamique est mise en œuvre lorsque :
— le problème possède une propriété de sous-structure optimale ;
— les sous-problèmes se chevauchent, c’est-à-dire qu’une résolution récursive naïve fait calculer

plusieurs fois les mêmes sous-problèmes, et conduit alors à une complexité temporelle élevée.

Utilisation de la programmation dynamique

Lorsque l’on arrive à décomposer notre problème en plusieurs sous-problèmes plus simples, la relation liant
la solution optimale de notre problème à celles des sous-problèmes est appelée équation de Bellmann.

Définition : Équation de Bellmann

On peut utiliser deux façons pour programmer :
— De haut en bas, en adaptant légèrement l’algorithme récursif en utilisant la mémoïsation ,
— De bas en haut, avec un algorithme itératif.

I.3 De haut en bas (récursif) : utilisation de la mémoïsation
On adapte ici l’algorithme récursif : on part du problème que l’on veut résoudre, et on descend dans les

problèmes plus petits. Pour ne pas recalculer un sous-problème qui aurait déjà été calculé, on teste s’il ne l’a pas
déjà été. Sinon, on le calcule et on stocke sa valeur. Pour cela, il faut prévoir une structure de données dans
laquelle on sauvegarde toutes les solutions de sous-problèmes déjà rencontrés : c’est lamémoïsation.
Nous utiliserons un dictionnaire, ce qui est avantageux car le test d’appartenance d’une clé se fait en
temps constant, indépendant de la taille du dictionnaire (cf chapitre précédent), contrairement à une liste,
pour laquelle le test d’appartenance est en temps linéaire avec la taille de la liste.

Mémoïser consiste à conserver à la fin de l’exécution d’une fonction le résultat associé aux arguments
d’appels, pour ne pas avoir à recalculer ce résultat lors d’un autre appel récursif.

Définition : Mémoïser

Lorsque l’on veut obtenir un résultat pour un sous-problème :
1. on vérifie d’abord si on l’a déjà calculé, et si c’est le cas on n’a rien à faire ;
2. sinon, on lance un calcul récursif.
Pour faire cela, il faut souvent :
— prévoir une structure de données ad-hoc pour mémoïser les résultats des sous-problèmes calculés ;
— s’organiser pour ne pas recopier les données du problème, sans quoi la complexité spatiale peut

exploser.

De haut en bas avec mémoïsation

Pour cela, on utilise un dictionnaire qui stocke les coefficients calculés. La clé est le couple (i, j) et la valeur

associée à cette clé est le coefficient
(

j

i

)
.

Page 3

ITC − Programmation dynamique − Complété
Page 4 / 13

PC/PSI
Année 2025-2026

R1. Écrire la fonction cb_mem(k,n,dico={}).
Dans les arguments de la fonction, on peut ajouter l’argument dico={}, un dictionnaire local qui reste en
variable locale, et est conservé lors des appels récursifs.

Solution:

1 def cb_mem(k,n,dico ={}):
2 """
3 Arguments :
4 k, n : entiers
5 dico : dictionnaire qui contient les valeurs déjà calculées
6 Retours :
7 c : valeur de k parmi n
8 """
9 if (k,n) in dico: # il a déjà été calculé , on renvoie la valeur

10 return dico [(k,n)]
11 # on traite les cas où la valeur n’a pas déjà été calculées
12 elif k==n or k==0:
13 c=1
14 elif k==1:
15 c=n
16 else:
17 c=cb_mem(k-1,n -1)+cb_mem(k,n -1) # appels récursifs
18 dico [(k,n)]=c # on ajoute la valeur au dictionnaire
19 return c

Calcul instantané

R2. Pour programmer cette fonction, on peut aussi procéder avec deux fonctions l’une dans l’autre. Le dic-
tionnaire est alors défini localement au sein de la fonction principale et sert de variable globale pour une
fonction auxiliaire.

1 def cb_mem2 (k,n):
2 """
3 Renvoie la valeur de k parmi n
4 """
5 dico ={} # variable locale pour cb_mem2 , variable globale pour cb
6 def cb(i,j):
7 """
8 Fonction auxiliaire qui calcule la valeur de i parmi j et stocke

dans dico les valeurs de i parmi j calculées
9 """

10 if (i,j) in dico: # il a déjà été calculé , on renvoie la valeur
11 return dico [(i,j)]
12 # on traite les cas où la valeur n’a pas déjà été calculées
13 elif i==j or i==0:
14 c=1
15 elif i==1:
16 c=j
17 else:
18 c=cb_mem(i-1,j -1)+cb_mem(i,j -1) # appels récursifs
19 dico [(i,j)]=c # on ajoute la valeur au dictionnaire
20 return c

Activité n°1− À vous de jouer !

Page 4

ITC − Programmation dynamique − Complété
Page 5 / 13

PC/PSI
Année 2025-2026

21 return cb(k,n) # calcule k parmi n

L’inconvénient est qu’à chaque appel de la fonction, le dictionnaire est entièrement recalculé.

Sur l’exemple précédent, une fois
(

3
2

)
calculé, il ne sera pas recalculé. Au fur et à mesure des nouveaux

coefficients calculés, ils sont ajoutés au dictionnaire et en cas de besoin, on va le chercher à la clé correspondante
(sans que cette étape coûte beaucoup de temps : cf chapitre précédent)...

REMARQUES
Le dictionnaire peut être une variable globale, définie avant la fonction. L’inconvénient est de faire
appel, au sein de la fonction à une variable globale, qu’il faut donc veiller à définir systématiquement lors
de l’exécution de la fonction.

I.4 Garder en mémoire les résultats dans un tableau : de bas en haut (itératif)

On effectue un calcul de bas en haut lorsque l’on utilise une programmation itérative, en partant
des cas de base (les plus petits problèmes) et en construisant petit à petit les solutions des
sous-problèmes de plus en plus grand, que l’on stocke au fur et à mesure dans un tableau,
jusqu’à arriver au problème que l’on souhaite résoudre.

De bas en haut

Ici on stocke le triangle de Pascal dans un tableau à deux dimensions en le complétant de bas à haut,
c’est-à-dire des petites valeurs aux plus grandes valeurs.

R1. Compléter le tableau ci-dessous pour calculer
(

7
5

)
en commençant par remplir la première colonne et la

diagonale (i = j) sans utiliser le triangle de Pascal.

L’élément de la colonne i ∈ J0, kK et la ligne j ∈ J0, nK contient le coefficient
(

j

i

)
.

Le tableau contient (k + 1) colonnes et (n + 1) lignes, soit (n + 1)× (k + 1) éléments.

Pour calculer l’élément
(

j

i

)
, on utilise les éléments

(
j − 1
i− 1

)
(colonne précédente, ligne précédente) et(

j − 1
i

)
(case juste au dessus).

Solution:

n
k 0 1 2 3

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4
5 1 5 10 10

R2. Pour une ligne j donnée, quelles sont les colonnes qui doivent être remplies ? Traduire le rang maximal de
la colonne à devoir être remplie en fonction de k et de j.

Solution: On remplit la ligne j jusqu’à la colonne i = j − 1 (la colonne j = i a déjà été remplie) tant
que j est inférieur à k, sinon jusqu’à la colonne k incluses.
Ainsi il faut remplir la ligne j de la colonne 1 à la colonne min(j − 1, k)

Activité n°2− À vous de jouer !

Page 5

ITC − Programmation dynamique − Complété
Page 6 / 13

PC/PSI
Année 2025-2026

R3. Écrire une fonction cb_asc(k,n) en utilisant l’approche ascendante. On utilisera un tableau tab qui
stockera les valeurs successives nécessaires à calculer.
On peut initialiser une liste de m listes de n zéros ainsi : [[0 for i in range(n)] for j in range(m)],
ce qui donne un tableau de m lignes et n colonnes.

Solution:

1 def cb_asc(k,n):
2 """
3 Arguments :
4 k, n : entiers
5 Renvoi : tab[n][k], où tab est un tableau de n+1 lignes et k+1

colonnes qui va stocker les valeurs successives de i parmi j
6 """
7 tab =[[0 for i in range(k+1)] for j in range(n+1)] # n+1 lignes

de k+1 colonnes de 0
8 for j in range (0,n+1): # remplissage de la première colonne (i=0)
9 tab[j][0] = 1

10 for j in range (0,k+1): # remplissage de la diagonale
11 tab[j][j] = 1
12 for j in range(2 , n+1): # remplissage des lignes (les 2

premières sont déjà remplies)
13 for i in range(1, min(j-1,k)+1): # remplissage des colonnes
14 tab[j][i]= tab[j -1][i]+ tab[j -1][i -1]
15 return tab[n][k]

R4. Évaluer la complexité en temps de cet algorithme. Commenter.

Solution:
La fonction est beaucoup plus rapide que la précédente.

Pour la ligne i, on complète au plus k + 1 éléments, par conséquent on effectuer C(k, n) =
n∑

i=0
(k + 1) =

(n + 1)× (k + 1)
Ainsi la complexité est en O(kn). C’est nettement mieux que la complexité exponentielle précédente !

R5. Évaluer la complexité en mémoire de cet algorithme. Commenter.

Solution:
On stocke un tableau de (n + 1)× (k + 1) éléments, donc la complexité est en O(kn).

REMARQUES
Chaque ligne est déduite uniquement de la ligne précédente, il n’est donc pas nécessaire de calculer tout le
tableau à deux dimensions. Un tableau à une dimension est suffisant, en écrasant successivement l’unique
ligne stockée. Ce qui permet d’améliorer grandement la complexité spatiale.

Page 6

ITC − Programmation dynamique − Complété
Page 7 / 13

PC/PSI
Année 2025-2026

II Un autre exemple : Distance d’édition
II.1 Définitions

Les séquences de caractères peuvent encoder de nombreuses informations de nature différente, par exemple
du texte, de la voix ou des séquences ADN. L’alignement de deux chaînes des caractères consiste à comparer
deux séquences de caractères afin d’évaluer la similarité entre les deux.

La distance d’édition ou distance de Levenshtein a est une mesure de la similarité entre deux chaînes
de caractères (ch1 et ch2). Cette distance est le nombre minimal d’opérations élémentaires à
effectuer pour transformer la première chaine en la seconde. Ces opération sont :
• insertion d’un caractère de ch2 dans ch1 ;
• remplacement d’un caractère de ch2 dans ch1 ;
• suppression d’un caractère de ch1.

a. Conçue en 1965 par le scientifique russe Levenshtein

Définition : Distance d’édition (de Levenshtein)

Cette distance est majorée par la longueur de la plus grande chaine. C’est une distance au sens mathématique
du terme, donc elle vérifie les propriétés :
• distance(ch1,ch2)≥ 0 ;
• distance(ch1,ch2)=0 ⇔ ch1=ch2 ;
• distance(ch1,ch2)=distance(ch2,ch1)
R1. La distance d’édition de « chien » à « niches » vaut 4. Expliquer pourquoi.

Solution: On cherche les modifications minimales sur niche pour arriver à chien :
— supprimer 2 lettres (n et i)
— substituer 2 lettres (c et h) : ne coûtent rien, puisque les lettres à substituer sont identiques.
— insérer 1 lettre (i)
— substituer 1 lettre (e) : ne coûte rien, puisque la lettre à substituer est identique
— insérer 1 lettre (n)

La distance est donc de 2 + 1 + 1 = 4.
On cherche les modifications minimales sur chien pour arriver à niche :
— insérer 2 lettres (n et i)
— substituer 2 lettres (c et h) : ne coûtent rien, puisque les lettres à substituer sont identiques.
— supprimer 1 lettre (i)
— substituer 1 lettre (e) : ne coûte rien, puisque la lettre à substituer est identique
— supprimer 1 lettre (n)

La distance est donc de 2 + 1 + 1 = 4.
Le chien se retrouve donc à une distance de 4 mètres de sa niche !

II.2 Relation de récurrence
On suppose que supprimer un caractère, insérer un caractère, substituer un caractère sont des opérations qui
ont toute un coût unitaire. Si le caractère est identique, la substitution ne coûte rien.
R2. Que vaut de(””, ch2) ? de(ch1, ””) ? Remplir les deux premiers cas.
R3. Si les premières lettres de ch1 et ch2 sont identiques, exprimer la valeur de de(ch1, ch2) en fonction de

de(ch1[1 :], ch2[1 :]).

Page 7

ITC − Programmation dynamique − Complété
Page 8 / 13

PC/PSI
Année 2025-2026

R4. Dans le cas général (si les premières lettres sont différentes), c’est un peu plus complexe. On attend à
chacune des réponses suivantes une forme récursive.
(a) Exprimer de(ch1, ch2) dans le cas où l’on veut supprimer ch1[0] (première lettre de ch1).
(b) Même question dans le cas d’une insertion de ch2[0] (première lettre de ch2) devant ch1.
(c) Même question dans le cas de la substitution de ch1[0] par ch2[0] (les premières lettres).
(d) Compléter la relation de récurrence :

de(ch1, ch2) =



len(ch2) si len(ch1)=0

len(ch1) si len(ch2)=0

d_e(ch1[1 :],ch2[1 :]) si ch1[0]=ch2[0]

1 + min


d_e(ch1[1 :],ch2)

d_e(ch1,ch2[1 :])

d_e(ch1[1 :],ch2[1 :])

suppression de ch1[0]

insertion de ch2[0] au début de ch1

substitution de ch1[0] par ch2[0]

II.3 Intérêt de la programmation dynamique
Le problème de la recherche de la distance d’édition entre deux mots s’exprime en fonction de sous-problèmes
plus simples. Ces sous-problèmes se chevauchent : au fur et à mesure des différentes possibilités nous allons
retomber sur des comparaisons de deux chaînes de caractères qui ont déjà effectuées au préalable.
C’est une situation où les sous-problèmes se chevauchent et font partie de la solution optimale (cf relation de
récurrence) : faire appel à la programmation dynamique est pertinent.

II.4 De haut en bas avec mémoïsation
On va ici utiliser un dictionnaire qui va stocker les distances déjà calculées afin de ne pas les calculer à nouveau.
Pour cela on place dans les arguments de la fonction récursive un dictionnaire (variable locale) qui va être
modifiée à chaque récursion. La clé est le couple de mots et la valeur la distance qui les sépare.
La première chose est de tester si la distance entre les deux mots a déjà ou non été calculée. Si oui, il n’y a qu’à
renvoyer la distance. Si non, il faut tester laquelle des trois possibilités (suppression, insertion ou substitution)
demande le moins de modification.
R5. Écrire une fonction récursive de_mem(ch1:str,ch2:str,dico={})->int avec mémoïsation qui renvoie la

distance d’édition entre ch1 et ch2.

Solution:

1 def de_mem(ch1 ,ch2 ,dico ={}):
2 """
3 dico : dictionnaire qui stocke pour chaque couple de chaines

pouvant être testée la distance {(a,b):de(a,b) ,...}
4 """
5 n1 ,n2=len(ch1),len(ch2)
6 if (ch1 ,ch2) in dico: # la distance a déjà été calculée
7 return dico [(ch1 ,ch2)] # on renvoie la valeur déjà calculée
8 else :
9 if n1 ==0 or n2 ==0:

10 d=max(n1 ,n2) # si l’une des deux est vide , la distance d’
édition est la longueur de l’autre chaine

11 elif ch1 [0]== ch2 [0]:

Page 8

ITC − Programmation dynamique − Complété
Page 9 / 13

PC/PSI
Année 2025-2026

12 d=de_mem(ch1 [1:] , ch2 [1:] , dico) # deux caractères identiques
, la de est la distance entre les deux chaines privées de leur
premier élément

13 else: # on cherche la distance minimale entre les trois
possibilités :

14 a=de_mem(ch1 [1:] ,ch2 ,dico) # supprime ch1 [0]
15 b=de_mem(ch1 ,ch2 [1:] , dico) # insertion de ch2 [0]
16 c=de_mem(ch1 [1:] , ch2 [1:] , dico) # substitution de ch1 [0] et

ch2 [0]
17 d=1+ min(a,b,c)
18 dico [(ch1 ,ch2)]=d # on ajoute l’élément constitué de la clé (

ch1 ,ch2) et de valeur , la distance calculée entre ch1 et ch2
19 return dico [(ch1 ,ch2)]
20 >>> de_mem(’niche ’,"chien")
21 4
22 >>> de_mem(" physique "," informatique ")
23 8
24 >>> de_mem("AGTTC","AGCTC")
25 1

Page 9

ITC − Programmation dynamique − Complété
Page 10 / 13

PC/PSI
Année 2025-2026

II.5 De bas en haut avec un tableau
On souhaite utiliser la programmation dynamique de bas en haut à l’aide d’un tableau. On construit un tableau
de len(ch1)+1 lignes et de len(ch2)+1 colonnes.
La case (i, j) (ligne i et colonne j) contient la distance d’édition entre la chaines de caractères des i premiers
caractères de ch1, et la chaines de caractères des j premiers caractères de ch2, c’est-à-dire de(ch1[:i],ch2[:j]).
Elle contient donc le nombre de modifications à effectuer pour passer de ch1[:i] à ch2[:j].
R6. On souhaite compléter le tableau ci-dessous pour calculer la distance d’édition entre chien et niche.

Solution:

i
j 0
∅

1
N

2
I

3
C

4
H

5
E

0 ∅ 0 1i 2i 3 4 5
1 C 1 1 2 2s 3 4
2 H 2 2 2 3 2s 3
3 I 3 3 2 3 3x 4
4 E 4 4 3 3 4 3s
5 N 5 4 4 4 4 4i

Suppression : x , insertion : i , substitution : s.

(a) Remplir la première ligne et la première colonne.
(b) Remplir la suite du tableau case par case en choisissant :
• Si ch1[i-1]=ch2[j-1], alors T[i][j]=T[i-1][j-1]
• Si ch1[i-1]6=ch2[j-1], il faut choisir entre la valeur minimale parmi :
◦ la suppression de ch1[i-1] : T[i][j]=T[i-1][j]+1
◦ l’insertion de ch2[j-1] à la fin de ch1[:i] : T[i][j]=1+T[i][j-1]
◦ la substitution de ch1[i-1] par ch2[j-1] : T[i][j]=T[i-1][j-1]+1

R7. Où se trouve la distance d’édition dans le tableau ? En déduire sa valeur.
R8. Écrire une fonction de_bas_haut(ch1:str,ch2:str)->int qui calcule la distance d’édition de deux chaînes

de caractères par programmation dynamique de bas en haut.

Solution:

1 def de_bas_haut (ch1 ,ch2):
2 n1 ,n2=len(ch1),len(ch2)
3 T=[[0 for j in range(n2 +1)] for i in range(n1 +1)] # tableau que l’

on va compléter
4 for i in range(n1 +1):
5 T[i][0]=i # si ch2 vide : distance d’édition = lg de ch1 [0:i]

Page 10

ITC − Programmation dynamique − Complété
Page 11 / 13

PC/PSI
Année 2025-2026

6 for j in range(n2 +1):
7 T[0][j]=j # si ch1 vide : distance d’édition = lg de ch2 [0:j]
8 for i in range (1,n1 +1):
9 for j in range (1,n2 +1):

10 if ch1[i -1]== ch2[j -1]: # caractère identique
11 # attention décalage entre le rang dans la chaine de

caractère et le rang dans le tableau
12 T[i][j]=T[i -1][j -1] # la distance d’édition est celle

qui sépare les deux chaînes de caractères jusqu ’à i-1, et j-1
13 else: # on cherche la distance minimale entre
14 a=T[i -1][j] # suppression
15 b=T[i][j -1] # insertion
16 c=T[i -1][j -1] # substitution
17 T[i][j]=1+ min(a,b,c)
18 return T[n1 ,n2]
19 >>> de_bas_haut ("niche","chien")
20 4.0
21 # Tableau T: (en ajoutant un print juste avant le return)
22 >>> de_bas_haut ("chien","niche")
23 [[0. 1. 2. 3. 4. 5.]
24 [1. 1. 2. 2. 3. 4.]
25 [2. 2. 2. 3. 2. 3.]
26 [3. 3. 2. 3. 3. 3.]
27 [4. 4. 3. 3. 4. 3.]
28 [5. 4. 4. 4. 4. 4.]]

Complexités temporelle et spatiale O(n1n2).

II.6 Reconstitution de la solution
Les deux algorithmes précédents ont permis de déterminer la distance minimale entre les deux mots, mais pas
les modifications qui ont permis de passer de l’un à l’autre.
Cet algorithme nous permet même de retrouver la suite d’opérations à effectuer pour passer d’un mot à l’autre :
on part de la case en bas à droite et on monte en haut à gauche en choisissant toujours le nombre le plus faible
disponible, parmi les trois directions nord, nord-ouest et ouest (il est interdit de prendre les directions nord ou
ouest si la valeur des cases de descend pas de 1). On peut alors reconstruire la suite d’opérations en suivant ce
chemin à l’envers (du coin supérieur au coin inférieur) :
• Aller à droite (+1) =⇒ insérer la lettre de la colonne visée ;
• Aller en diagonale (+1) =⇒ remplacer la lettre de la ligne visée par celle de la colonne visée ;
• Aller en diagonale (+0) =⇒ ne rien faire puisque les lettres sont les mêmes ;
• Aller en bas (+1) =⇒ supprimer la lettre de la ligne visée.
D’une case à l’autre, on peut voir le coût de l’opération en faisant la différence des cellules.

REMARQUES
— Seules les diagonales peuvent conserver la valeur entre deux cases le long du chemin. C’est logique

puisque dans notre code, une insertion ou une suppression correspondent NÉCESSAIREMENT à un
coût de 1.

— Un segment horizontal (insertion), mais dont la valeur ne s’incrémente pas, ne correspond donc à
aucune transformation réelle. Idem pour un segment vertical (suppression).

R9. À partir du tableau complété précédemment, recopié ci-dessous, reconstituer la chaine des modifications
pour passer de chien à niches. Plusieurs solutions sont possibles.

Page 11

ITC − Programmation dynamique − Complété
Page 12 / 13

PC/PSI
Année 2025-2026

i

j 0
∅

1
N

2
I

3
C

4
H

5
E

6
S

0 ∅ 0 1 2 3 4 5 6

1 C 1 1 2 2 3 4 5

2 H 2 2 2 3 2 3 4

3 I 3 3 2 3 3 3 4

4 E 4 4 3 3 4 3 4

5 N 5 4 4 4 4 4 4

On propose ici la fonction python le faisant :
1. construire le tableau, en adaptant la fonction de_bas_haut pour qu’elle renvoie T (et non uniquement sa

dernière valeur),
2. remonter dans le tableau du bas à droite en haut à gauche, enregistrer les déplacements à chaque étape

gardée,
3. reconstruire la suite des opérations.

Page 12

ITC − Programmation dynamique − Complété
Page 13 / 13

PC/PSI
Année 2025-2026

1 def de_sol(ch1 ,ch2):
2 n1 ,n2=len(ch1),len(ch2)
3 T=de_tab(ch1 ,ch2) # fonction identique à de_bas_haut mais qui renvoie le

tableau complet et non la dernière valeur
4 dep =[]
5 i,j=n1 ,n2
6 while i>0 and j >0: # tant qu’on n’a pas atteint la 1ière ligne ou la 1

ière colonne
7 # on cherche l’opération qui coûte le moins ,
8 if T[i -1][j -1]==T[i][j]-1:
9 op=f" substitution de {ch1[i -1]} par {ch2[j -1]}"

10 i,j=i-1,j-1
11 dep.append ((1,1,op))
12 elif T[i -1][j]==T[i][j]-1:
13 op=f" suppression de {ch1[i -1]}"
14 i=i-1 # vers le haut
15 dep.append ((1,0,op))
16 elif T[i][j -1]==T[i][j]-1:
17 op=f" insertion de {ch2[j -1]}"
18 j=j-1 # vers la gauche
19 dep.append ((0,1,op))
20 elif T[i -1][j -1]==T[i][j]: # aucun changement à effectuer
21 op=f"{ch1[i -1]} inchangé "
22 i,j=i-1,j-1
23 dep.append ((1,1,op))
24 while j!=0: # i=0, on est dans la 1ière ligne
25 op=f" insertion de {ch2[j -1]}"
26 j=j-1 # vers la gauche
27 dep.append ((0,1,op))
28 while i!=0: # j=0, on est dans la 1ière colonne
29 op=f" suppression de {ch1[i -1]}"
30 i=i-1 # vers le haut
31 dep.append ((1,0,op))
32 # 3è étape : solution
33 dep=dep [:: -1] # on inverse la liste des opérations
34 sol =[]
35 i,j=0,0
36 for k in range(len(dep)):
37 di ,dj ,op=dep[k]
38 i=i+di
39 j=j+dj
40 sol.append(op)
41 return sol
42 >>> de_sol("chien","niche")
43 [’insertion de n’, ’insertion de i’, ’c inchangé ’, ’h inchangé ’, ’

suppression de i’, ’e inchangé ’, ’suppression de n’]
44 >>> de_sol("chien","niches")
45 [’insertion de n’, ’insertion de i’, ’c inchangé ’, ’h inchangé ’, ’

suppression de i’, ’e inchangé ’, ’substitution de n par s’]
46 >>> de_sol(" carotte ","patate")
47 [’substitution de c par p’, ’a inchangé ’, ’substitution de r par t’, ’

substitution de o par a’, ’t inchangé ’, ’suppression de t’, ’e inchangé ’]

Page 13

	Premier exemple : coefficients binomiaux
	Programmation récursive naïve
	Nécessité de la programmation dynamique
	Récursif de haut en bas
	Itératif : de bas en haut

	Un autre exemple : Distance d'édition
	Définitions
	Relation de récurrence
	Intérêt de la programmation dynamique
	De haut en bas avec mémoïsation
	De bas en haut avec un tableau
	Reconstitution de la solution

