
ITC − DS n°1
Page 1/ 5

PC/PSI
Année 2025-2026

Devoir Surveillé n°1
Mercredi 10 décembre 2025 − Durée : 2 heures

L’usage de la calculatrice est INTERDIT.

L’épreuve est à traiter en langage Python, sauf les questions sur les bases de données qui seront traitées
en langage SQL.

Les différents algorithmes doivent être rendus dans leur forme définitive sur la copie en respectant les
éléments de syntaxe du langage (les brouillons ne sont pas acceptés).

Il est demandé au candidat de bien vouloir rédiger ses réponses en précisant bien le numéro de la question
traitée et, si possible, dans l’ordre des questions.

La réponse ne doit pas se cantonner à la rédaction de l’algorithme sans explication, les programmes
doivent être expliqués et commentés.

Exercice n°1 Mise en jambe pythonesque (Durée ∼ 20 min)
L’utilisation de max, min, L.index(), L.sorted, d.keys, d.items, d.value, et des fonctions de la biblio-

thèque numpy est interdite dans cet exercice.
Q1. Écrire la fonction maximum(u:list)->(float,int) prenant en entrée une liste u d’entiers (ou flottants),

et renvoyant sa valeur maximale, et le premier indice de ce maximum.
Q2. Écrire une fonction occurrences(texte:str)->dict qui prend en argument une chaîne de caractère texte

et renvoie un dictionnaire dont les clés sont les lettres qui apparaissent dans le texte et les valeurs le nombre
d’occurrences de ces lettres.
Par exemple : occurrences(’ACCTAGCCCTA’) renverra {’A’:3,’C’:5,’T’:2,’G’:1}.

On souhaite écrire un algorithme permettant de calculer
(

n

k

)
. Pour cela, on utilise la formule de récurrence

suivante : (
n

k

)
=


1 si k = n ou k = 0
n si k = 1(

n− 1
k − 1

)
+
(

n− 1
k

)
sinon

On souhaite procéder de bas en haut en stockant les valeurs successives dans un tableau à deux dimensions
en le complétant de bas à haut, c’est-à-dire des petites valeurs aux plus grandes valeurs.

L’élément colonne i ∈ J0, kK ligne j ∈ J0, nK contient le coefficient
(

j

i

)
.

Q3. Compléter à la main le tableau sur le document réponse pour calculer
(

5
3

)
.

Q4. Dans quelle case du tableau se trouve le résultat de
(

5
3

)
? Généraliser pour

(
n

k

)
.

Q5. Écrire une fonction tableau_nul(p:int,m:int)->list[list] qui renvoie un tableau de p lignes et m
colonnes zéros.

Q6. Compléter la fonction Pascal(k:int,n:int)->int sur le document réponse qui complète le tableau

permettant de calculer le coefficient
(

n

k

)

ITC − DS n°1
Page 2/ 5

PC/PSI
Année 2025-2026

Exercice n°2 Festivals de musique (Durée ∼ 1h40)
L’objectif de ce sujet est d’étudier les festivals de musique :
— Partie I : étudie la préparation de son programme de festival en utilisant l’algorithme glouton ;
— Partie II : étudie la préparation de son programme du festival en utilisant la programmation dynamique ;
— Partie III : traite d’une base de données ;

Vous pouvez utiliser ultérieurement une fonction que vous l’ayez ou non écrite.

Partie I Réalisation de son programme du festival
Vous vous rendez dans un festival de musique.
Le concert d’indice i est défini par l’instant de début (di), l’instant de fin (fi) et son intérêt (à qui vous lui

avez attribué une valeur vi) : [di, fi, vi].
Ainsi la liste des n concerts est notée C = [[d0, f0, v0], ..., [dn−1, fn−1, vn−1]].
Vous souhaitez assister à un maximum de concerts tout en optimisant les intérêts que vous y portez. On

cherche à déterminer le sous-ensemble S de C tel que
∑
i∈S

vi est maximal.

Vous ne pouvez bien évidemment assister qu’à un concert à la fois, et vous n’assistez qu’à des concerts
entiers. L’intersection entre les intervalles de deux concerts auxquels vous assistez est l’ensemble vide ou limité
à un nombre (di = fj).
A - Questions préliminaires
Q1. Écrire une fonction valeur(C:list)->int qui prend en argument une liste C du format précédent (repré-

sentant un ensemble de concerts) et qui renvoie la valeur totale de l’ensemble des concerts.

On souhaite trier les concerts par heure de fin croissante en adaptant l’algorithme du tri rapide.
Principe : On choisit un élément de la liste, le premier élément de la liste, que l’on notera p, appelé pivot, on
partitionne la liste en deux sous listes : une liste contenant les concerts d’heure de fin strictement inférieure à celle
de p, et une liste contenant les concerts d’heure de fin strictement supérieure à celle de p. On trie récursivement
chacune des deux listes et on rassemble le tout.
Q2. Compléter sur le document réponse la fonction tri_rapide(C:list[list])->list[list] qui prend

en argument une liste C du type de la liste concerts que l’on souhaite trier par ordre d’instants de fin
croissant.

Pour toute la suite, on suppose que la liste C est triée par ordre d’instant de fin croissant.
Q3. Écrire une fonction compatible(C:list[list],k:int)->int qui détermine l’indice du concert (parmi la

liste C) compatible avec le concert d’indice k donné et qui se termine au plus près de ce concert k.
La fonction renvoie −1 si aucun concert n’est compatible avec le concert k.

B - Algorithme glouton
On souhaite envisager une solution exploitant un algorithme glouton.
On suppose qu’il n’y a pas deux concerts qui finissent à la même heure.
Pour la suite, on suppose que la liste C est triée par ordre d’instant de fin croissant.
On donne l’exemple de la liste des concerts suivante :
concerts=[[9,10,3],[9,13,2],[11,14,1],[11,15,3],[17,21,3],[19,22,2]].
Le principe de l’algorithme glouton mis en œuvre ici est le suivant : on choisit le concert se terminant le plus
tard, puis le concert se terminant au plus tard parmi ceux qui sont compatibles avec le premier, et ainsi de suite.
Q4. Mettre en œuvre l’algorithme glouton à la main pour déterminer le programme des concerts optimal. Quelle

est la valeur totale de ce programme ? Est-ce que la solution trouvée avec l’algorithme glouton est optimale ?
Peut-on trouver une meilleure solution ?

Q5. Compléter sur le document réponse la fonction glouton(C:list[list])->list qui prend en argument
une liste C des concerts sous le format défini précédemment, et renvoie la liste Cavoir des concerts à aller
voir en utilisant l’algorithme glouton décrit précédemment.
On pourra avantageusement utiliser la fonction compatible écrite précédemment.

Page 2

ITC − DS n°1
Page 3/ 5

PC/PSI
Année 2025-2026

Pour la liste donnée en exemple, glouton(concerts) renvoie [[19,22,2],[11,15,3],[9,10,3]]

Partie II Programmation dynamique
Vous avez des préférences en terme de concerts, et vous avez donc attribué une valeur (niveau de satisfaction) à
chaque concert. Vous souhaitez maximiser la valeur totale, c’est-à-dire déterminer le sous-ensemble D de C tel
que

∑
i∈D

vi est maximal.

On suppose qu’on a une liste des concerts du type concerts=[[d0,f0,v0],...] triés par heure de fin croissante.
On note S(C, k) la solution au problème, c’est-à-dire la somme maximale des valeurs des concerts qu’on peut
aller voir, quand on considère les concerts C0...Ck jusqu’au rang k inclus.
Q6. Pour quelle valeur de k obtient-on la solution à notre problème ?

On donne la relation de récurrence : S(C, k) =

 0 si k = −1
max

(
vk + S

(
C, compatible(C, k)

)
, S(C, k − 1)

)
sinon

Q7. Expliquer la valeur de S(C,−1).
Q8. Expliquer précisément la relation de récurrence pour k 6= −1.
Q9. Proposer une fonction récursive « naïve » sol_rec(C:list[list],k:int)->int à partir de la relation de

récurrence, qui renvoie la valeur totale maximale que l’on peut obtenir.
Q10. Quel est le problème de la fonction précédente ? Pourquoi est-il intéressant d’utiliser la programmation

dynamique ?
Q11. On souhaite améliorer la fonction récursive précédente en utilisant la mémoïsation.

Compléter sur le document réponse la fonction récursive sol_mem(C:list[list])->int .

Partie III Base de données des festivals
On considère une base de données qui regroupe les informations concernant les festivals qui ont lieu tout au
long de l’année, les groupes et musiciens y participant.
On considère la base de données suivante :
Festivals (id, nom, ville, tarif, debut, fin)
Concerts (id, idgroupe, idfest, date)
Groupes (id, nom)
Musiciens (id, nom, prénom, nationalité, idgroupe)
Les attributs id sont des entiers. L’attribut tarif est un flottant. Les attributs date, debut (date de début),
fin (date de fin) sont des entiers du format aaaammjj (par exemple pour aujourd’hui : 20251210). Les autres
attributs sont des chaînes de caractères.
idgroupe est une clé étrangère des tables Musiciens et Concerts en relation avec la clé primaire id de la
table Groupes. idfest de la table Concerts est une clé étrangère en relation avec la clé primaire id de la table
Festivals.
Q12. Écrire la requête SQL qui renvoie la liste des noms des festivals ayant lieux entièrement entre le 20 juillet

2026 (fin des concours) et le 31 août 2026 (entrée en école) classés par tarif décroissant.
Q13. Écrire la requête SQL qui renvoie le nombre de musiciens pour chaque nationalité.
Q14. Écrire la requête SQL qui renvoie le nom du troisième et quatrième festival les moins chers.
Q15. Écrire la requête SQL qui renvoie la liste des musiciens (nom, prénom) du groupe « Quatuor Debussy ».
Q16. Écrire la requête SQL qui renvoie la liste des noms des groupes participants au festival « Les vieilles

charrues ».
Q17. Écrire la requête SQL qui renvoie les festivals proposant au moins 15 concerts.
Q18. Écrire la requête SQL qui renvoie le pourcentage de festivals de prix supérieur au prix moyen de l’ensemble

des festivals.

Page 3

ITC − DS n°1
Page 4/ 5

PC/PSI
Année 2025-2026

DOCUMENT RÉPONSE À RENDRE
NOM : Prénom :

Q3

j

i
0 1 2 3

0

1

2

3

4

5

Q6

1 def Pascal(k,n):

2 tab = .. # initialisation du

tableau

3 for j in range(..... ,) : # remplissage de la première colonne

4 tab [.....][.....] =

5 for j in range(..... ,) : # remplissage de la diagonale

6 tab [.....][.....] =

7 for j in range(..... ,) : # remplissage des autres lignes

8 for i in range(..... ,) : # remplissage des autres colonnes

9 tab [.....][.....] =

10 return

Q2

1 def tri_rapide (C):

2 if len(C) <=1 : # cas de base

3 return

4 p=C[0] # choix du pivot , le premier élément de C

5 Cinf ,Csup =[] ,[] # Cinf (Csup) liste des objets de C de valeurs

inférieures (supérieures) à la valeur du pivot

6 for : # parcours des éléments de C

7 if :

8

9 else :

10

11 return + [p] + # appels

récursifs et concaténation

Page 4

ITC − DS n°1
Page 5/ 5

PC/PSI
Année 2025-2026

Q5

1 def glouton (C):

2 Cavoir = [] # liste des concerts à voir

3 i = # rang du concert terminant le plus tard

4 # ajout à Cavoir du concert terminant

le plus tard

5 i = # concert précédent compatible

6 while : # tant qu’il y a un concert compatible

7 # ajout du concert i

8 # recherche d’un concert précédent

compatible

9 return

Q11

1 def sol_mem (C):

2 """ renvoie la valeur totale maximales concerts de C pouvant être vus """

3 dico = { -1:0} # variable locale pour sol_mem , globale pour mem

4 def mem(i):

5 """ Fonction récursive qui calcule S(C,i) """

6 if : # la solution a déjà été calculée

7 return

8 else:

9 vi = # valeur du concert i

10 a = # si le concert i ne fait

pas partie de la solution optimale

11 b = # si le concert i fait

partie de la solution optimale

12 s = # S(C,i) est la solution

optimale parmi les deux précédentes

13 dico[i]= # on mémoïse

14 return # renvoie S(C,i)

15 return # appel de mem au rang ... pour avoir la

solution du problème

Page 5

	Mise en jambe pythonesque (Durée 20 min)
	Festivals de musique (Durée 1h40)
	Réalisation de son programme du festival
	Questions préliminaires
	Algorithme glouton

	Programmation dynamique
	Base de données des festivals

