
ITC − DM n°6
Page 1 / 6

PC/PSI
Année 2025-2026

Devoir Maison n°6 − Graphes
À rendre LUNDI 2 février 2026 (au plus tard)

Travail à faire :
— Retravailler les cours et les TP de MPSI/PCSI sur les graphes.
— Vous aider de la fiche « Révisions sur les graphes. »
— Si vous n’êtes pas à l’aise sur les graphes : exercice n°1
— Si vous êtes plutôt à l’aise sur les graphes : exercice n°2.

En cas de difficulté, me poser des question via cahier de prépa ou par mail.

Exercice n°1 La base des graphes
Partie I Représentation des graphes
Q1. On considère le graphe :

(a) Écrire la liste d’adjacence.
(b) Écrire le dictionnaire en python pour représenter ce graphe.
(c) Écrire la matrice d’adjacence.

Q2. Tracer le graphe de la matrice M1 =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0



Q3. Tracer le graphe de la matrice M3 =


0 0 0 1
1 0 1 1
0 1 0 1
0 1 0 0



Partie II Degré d’un sommet
On considère dans cette partie un graphe non orienté, qui peut être pondéré.
Q4. Écrire une fonction degre_dico(d:dict,s:str)->int qui prend en argument un graphe dont la liste

d’adjacence est implémentée par un dictionnaire d et un sommet s, et renvoie le degré du sommet s.
Q5. Écrire une fonction degres(d:dict)->dict qui prend en argument un graphe dont la liste d’adjacence est

implémentée par un dictionnaire d et renvoie un dictionnaire dont les clés sont les sommets et les valeurs
les degrés de chaque sommet.

Q6. Écrire une fonction degre_mat(M:list,s:int)->int qui prend en argument un graphe représenté par sa
matrice d’adjacence M et un sommet s, et renvoie le degré du sommet s.

ITC − DM n°6
Page 2 / 6

PC/PSI
Année 2025-2026

Partie III Liste des voisins d’un sommet
On considère dans cette partie un graphe non orienté, pouvant être pondéré.
Q7. Écrire une fonction voisin_dico(d,s) qui prend en entrée une liste d’adjacence représentée par un dic-

tionnaire et un sommet s, et renvoie la liste des voisins du sommet s.
Q8. Écrire une fonction voisin_mat(M:list,s:int)->list qui prend en entrée une matrice d’adjacence et un

sommet s, et renvoie la liste des voisins du sommet s.
Q9. Écrire une fonction est_voisin_mat(M:list,s1:int:int,s2:int)->list qui prend en entrée une matrice

d’adjacence et deux sommets s1 et s2, et renvoie True s’il y a une arête entre s1 et s2, False sinon.

Partie IV Graphe orienté
On considère la liste des successeurs d’un graphe orienté représenté à l’aide d’un dictionnaire G.
Par exemple

Q10. Écrire le dictionnaire des successeurs du graphe de ci-dessus.
Q11. On étudie le code ci-dessous :

1 def mystere (G:dict)->dict:
2 G2 = {s:[] for s in G}
3 for s in G:
4 for v in G[s] :
5 G2[v]. append(s)
6 return G2

(a) ligne 2 : que fait cette ligne ?
Donner G2 à cette étape, si on étudie le graphe de Q10.

(b) ligne 3 : que parcourt cette boucle for ? quelles seront les « valeurs » successives prises par s ?
(c) ligne 4 : que représente G[s] ? que parcourt cette boucle for ?
(d) ligne 5 : que représente G[v] ? que fait cette ligne ?
(e) Recopier et remplir le tableau ci-dessous aux différentes étapes si on considère le graphe de Q10.

étape n° s v G2
0 (ligne 2) rien rien à compléter

1 A B G2={A:[],B:[A],C:[],D:[],E:[]}
2 B A à compléter
3 B D à compléter
4 B E à compléter
5 C à compléter à compléter

à poursuivre
(f) Représenter le graphe G2 ainsi obtenu.
(g) Conclure sur ce que renvoie cette fonction.

Page 2

ITC − DM n°6
Page 3 / 6

PC/PSI
Année 2025-2026

Exercice n°2 Tournée d’un orchestre
La cheffe d’orchestre d’un grand orchestre symphonique Valentinois est en train d’organiser sa future tournée.

L’orchestre doit se rendre dans un certain nombre de villes. Elle réfléchit à organiser l’ordre des concerts afin de
réduire les temps de trajet et les coûts liés au transport.

Les villes sont les sommets du graphe, et les distances entre les villes sont les poids des arêtes. Le graphe
n’est pas orienté. Les villes sont numérotées de 0 à 7 afin de renseigner les sommets des graphes avec un entier
plutôt qu’une chaîne de caractère.

Paris (1)

Lille (2)

Strasbourg (3)

Lyon (4)

Valence (0)

Clermont-Ferrand (5)

Toulouse (6)
Marseille (7)

20
0

500

500400

150

10
0

200

400
60
0

40
0

550

Partie I Représentations d’un graphe
Q1. Écrire la dictionnaire d’adjacence en Python qui représente le graphe précédent : la clé est le sommet

considéré et la valeur une liste de listes du même format que les sous-liste de liste_adj.
Q2. Écrire la matrice de pondération (pas en python) du graphe précédent. Pourquoi la matrice est-elle symé-

trique ?
Comment peut-on la représenter en python ? (on ne demande pas le code)

Q3. Écrire une fonction degres(G:dict)->dict qui prend en argument un graphe représenté par son diction-
naire d’adjacence et qui renvoie le dictionnaire dont les clés sont les sommets et les valeurs le degré de
chaque sommet.

Q4. Écrire une fonction voisins(G:list)->dict) qui prend en argument un graphe représenté par sa matrice
d’adjacence et qui renvoie le dictionnaire des voisins de chaque sommet, les clés sont les sommets, les valeurs
les listes des voisins de chaque sommet.

Partie II Distance sur un graphe

Q5. Écrire la fonction distance_parcourue_mat(G:list[list],tournee:list)->float qui prend en argu-
ment le graphe G représenté par une matrice d’adjacence et la liste tournee qui est la liste des villes de la
tournée, dans l’ordre de la tournée, et qui renvoie la distance parcourue.
Cette fonction renverra −1 si le parcours proposé n’est pas possible (deux villes successives ne sont pas
reliées par une arête).

Q6. Écrire la fonction distance_parcourue_dict(G:dict,tournee:list)->float qui prend en argument le
graphe G représenté par un dictionnaire d’adjacence et la liste tournee qui est la liste des villes de la tournée,
dans l’ordre de la tournée, et qui renvoie la distance parcourue.
Cette fonction renverra −1 si le parcours proposé n’est pas possible (deux villes successives ne sont pas
reliées par une arête).

Page 3

ITC − DM n°6
Page 4 / 6

PC/PSI
Année 2025-2026

Partie III Parcours d’un graphe
Les graphes peuvent être parcourus en largeur ou en profondeur.
Q7. Mettre en œuvre à la main le parcours du graphe, à partir de Valence en largeur, et puis en profondeur.

Le parcours en largeur passe par tous les voisins d’un sommet avant de parcourir les descendants de ces voisins.
Les sommets passent dans une file d’attente, c’est-à-dire structure de données de type First In First Out.
Pour cela, on opère en marquant les sommets du graphe à visiter et les sommets du graphes déjà découverts.
Lorsqu’un sommet est découvert, il intègre l’ensemble des éléments à visiter, c’est-à-dire la file d’attente attente :
attente.append(). Lorsque le sommet a été traité, il quitte la file : attente.popleft().
Il est donc également nécessaire de garder la trace du passage sur un sommet afin de ne pas traiter plusieurs
fois un même sommet : si un sommet a été visité alors il intègre l’ensemble des éléments découverts marque.
On utilise pour cela un dictionnaire, car c’est plus efficace pour vérifier si un sommet a déjà été visité (accès en
temps constant, alors qu’avec une liste, l’accès est de complexité linéaire).
Q8. Recopier et compléter la fonction suivante qui effectue de façon itérative le parcours en largeur d’un graphe

représenté par un dictionnaire l’adjacence.
1 def parcours_largeur (G,s0):
2 visite =[] # liste des voisins visités
3 marque ={} # dictionnaire
4 attente =deque () # file qui garde les sommets en attente
5 ... # on ajoute au sommet de la file le sommet de départ
6 while ... : # tant que la file n’est pas vide
7 s=... # on visite le sommet au début de la file
8 if ... : # si le sommet n’a pas déjà été visité
9 # on l’ajoute à la liste des sommets visités

10 # on l’ajoute au dictionnaire marque
11 ... : # il faut visiter les voisins du sommet
12 if v not in : # le voisin v de s n’a pas déjà été visité
13 ... # on le place dans la file des sommets en attente

d’être visité
14 return visite

Le parcours en profondeur s’exprime de façon presque identique avec le parcours en utilisant une pile (à la place
de la file) afin gérer la découverte des voisins dans l’ordre de la profondeur du graphe.
Q9. Recopier et compléter la fonction suivante qui effectue de façon itérative le parcours en profondeur d’un

graphe représenté par un dictionnaire d’adjacence.
1 def parcours_profondeur (G,s0):
2 visite =[] # liste des voisins visités
3 marque ={} # dictionnaire des voisins visités
4 attente =[] # pile qui garde les sommets en attente
5 # on ajoute au sommet de la pile le sommet de départ
6 while ... : # tant que la pile n’est pas vide
7 s=... # on visite le sommet au fin de la pile
8 if ... : # si le sommet n’a pas déjà été visité
9 # on l’ajoute à la liste des sommets visités

10 ... # on l’ajoute au dictionnaire
11 for v in G[s] : # pour les voisins de sommet
12 if v not in ... : # le voisin v de n’a pas déjà été

visité
13 ... # on le place dans la pile des sommets en attente

d’être visité
14 return visite

Page 4

ITC − DM n°6
Page 5 / 6

PC/PSI
Année 2025-2026

Partie IV Plus petite distance sur un graphe
L’orchestre étant Valentinois, le départ de la tournée se fait depuis Valence.
On rappelle ici l’algorithme de Dijkstra qui permet de déterminer, depuis un sommet (Valence ici), la distance
minimale qui le sépare des autres sommets.
On commence par affecter une valeur très grande à chacun des autres sommets, disons infinie, et la valeur 0 au
sommet de départ (Valence dans notre exemple).
À chaque étape, on effectue le meilleur choix possible : c’est un algorithme glouton. Tout au long de l’algorithme
on va garder en mémoire le chemin le plus court depuis Valence pour chacune des autres points dans un tableau.
On répète toujours le même processus :
1. On choisit le sommet accessible de distance minimale comme sommet à explorer.
2. À partir de ce sommet, on explore ses voisins et on met à jour les distances pour chacun. On ne met à jour

la distance que si elle est inférieure à celle que l’on avait auparavant.
3. On répète jusqu’à ce qu’on arrive au point d’arrivée ou jusqu’à ce que tous les sommets aient été explorés.

Q10. Mettre en œuvre l’algorithme précédent pour déterminer l’ordre de la tournée, et la distance parcourue
par l’orchestre depuis Valence pour se rendre dans chaque ville.
Pour cela, recopier et remplir le tableau.
En déduire les chemins les plus courts depuis Valence vers chaque ville.
Étape Valence Paris Lille Strasbourg Lyon Clermont Toulouse Marseille

0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 ×
2 ×
3 ×
4 ×
5 ×
6 ×
7 ×
8 ×

Pour écrire le programme, nous allons utiliser un dictionnaire dont les clés sont les sommets et les valeurs
sont les distances respectives entre chaque sommet et le sommet de départ, comme dans le tableau complété
précédemment.
Q11. Nous avons pour cela besoin d’une fonction qui calcule le minimum des valeurs contenues dans un diction-

naire et renvoie la clé correspondante.
Écrire la fonction minimum(D:dict).
Pour initialiser la valeur du minimum, on pourra utiliser float(’inf’).

Page 5

ITC − DM n°6
Page 6 / 6

PC/PSI
Année 2025-2026

Q12. Recopier et compléter le programme dijkstra ci-dessous.
1 def dijkstra (G,s0):
2 """
3 arguments :
4 G : dictionnaire qui représente le graphe
5 s0 : sommet de départ
6 retour :
7 dictionnaire des distances minimales entre s0 et les différents

sommets
8 """
9 distances ={} # dictionnaire des sommets visités et de leurs distances

minimales depuis s
10 d={k:float(’inf ’) for k in dico} # initialisation des distances à l’

infini des sommets restants à visiter
11 d[s0] = ... # distance 0 au sommet s de départ
12 while ... # fini quand d est vide
13 k= ... # choix du sommet restant à visiter situé à la

distance minimale
14 for j ... # visite tous les voisins de k
15 # v un voisin de k, et c la distance entre k et v :
16 v,c = ...
17 if ... # si v n’a pas déjà été atteint
18 # distance minimale entre la précédente , et celle pour

arriver à v depuis k (utiliser la fonction min(a,b)) :
19 d[v] = ...
20 distances [k]= ... # copie le sommet et la distance dans distances
21 del d[k] # supprime le sommet de d
22 return distances

Page 6

	La base des graphes
	Représentation des graphes
	Degré d'un sommet
	Liste des voisins d'un sommet
	Graphe orienté

	Tournée d'un orchestre
	Représentations d'un graphe
	Distance sur un graphe
	Parcours d'un graphe
	Plus petite distance sur un graphe

