| ITC — DM n°6
Page 1 /6

PC/PSI
Année 2025-2026

? A rendre LUNDI 2 février 2026 (au plus tard)
Devoir Maison n°6 — Graphes

Travail a faire :
— Retravailler les cours et les TP de MPSI/PCSI sur les graphes.

— Vous aider de la fiche « Révisions sur les graphes. »

— Si vous n’étes pas a l'aise sur les graphes : exercice n°1
— Si vous étes plutot a 'aise sur les graphes : exercice n°2.

En cas de difficulté, me poser des question via cahier de prépa ou par mail.

Exercice n°1 La base des graphes

Partie | Représentation des graphes
Q1. On considere le graphe :

(a) Ecrire la liste d’adjacence.
(b) Ecrire le dictionnaire en python pour représenter ce graphe.

(c) Ecrire la matrice d’adjacence.

Q2. Tracer le graphe de la matrice M; =

Q3. Tracer le graphe de la matrice M3 =

O R = RFE)E OO K

OO, O == OO
_ 0 o == OO
OO, O OO

Partie Il Degré d'un sommet

On considere dans cette partie un graphe non orienté, qui peut étre pondéré.

Q4. Ecrire une fonction degre dico(d:dict,s:str)->int qui prend en argument un graphe dont la liste
d’adjacence est implémentée par un dictionnaire d et un sommet s, et renvoie le degré du sommet s.

Q5. Ecrire une fonction degres(d:dict)->dict qui prend en argument un graphe dont la liste d’adjacence est
implémentée par un dictionnaire d et renvoie un dictionnaire dont les clés sont les sommets et les valeurs

les degrés de chaque sommet.

Q6. Ecrire une fonction degre mat(M:list,s:int)->int qui prend en argument un graphe représenté par sa

matrice d’adjacence M et un sommet s, et renvoie le degré du sommet s.

ITC — DM n°6
Page 2 / 6

PC/PSI
Année 2025-2026

Partie Il Liste des voisins d'un sommet
On considere dans cette partie un graphe non orienté, pouvant étre pondéré.

Q7. Ecrire une fonction voisin_dico(d,s) qui prend en entrée une liste d’adjacence représentée par un dic-
tionnaire et un sommet s, et renvoie la liste des voisins du sommet s.

Q8. Ecrire une fonction voisin mat(M:1list,s:int)->1list qui prend en entrée une matrice d’adjacence et un
sommet s, et renvoie la liste des voisins du sommet s.

Q9. Ecrire une fonction est_voisin mat(M:1list,sl:int:int,s2:int)->1list qui prend en entrée une matrice
d’adjacence et deux sommets s1 et s2, et renvoie True s’il y a une aréte entre s1 et s2, False sinon.

Partie IV Graphe orienté

On considere la liste des successeurs d’un graphe orienté représenté a 1’aide d’un dictionnaire G.
Par exemple

Q10. Ecrire le dictionnaire des successeurs du graphe de ci-dessus.

Q11. On étudie le code ci-dessous :

def mystere(G:dict)->dict:
G2 = {s:[] for s in G}

3 for s in G:

, for v in G[s]

G2 [v].append(s)

6 return G2

-

N

(a) ligne 2 : que fait cette ligne ?
Donner G2 a cette étape, si on étudie le graphe de Q10.

b

ligne 3 : que parcourt cette boucle for 7 quelles seront les « valeurs » successives prises par s ?

d) ligne 5 : que représente G[v] ? que fait cette ligne ?
e) Recopier et remplir le tableau ci-dessous aux différentes étapes si on considere le graphe de Q10.
étape n° S v G2
0 (ligne 2) | rien rien a compléter
1 A B G2={A:[1,B:[A]l,C:[1,D:[1,E:[1}
2 B A a compléter
3 B D a compléter
4 B E a compléter
5 C | a compléter a compléter
a poursuivre

(f) Représenter le graphe G2 ainsi obtenu.

(g) Conclure sur ce que renvoie cette fonction.

(b)
(c) ligne 4 : que représente G[s] ? que parcourt cette boucle for ?
(d)
(e)

ITC — DM n°6 PC/PSI
Page 3 / 0 Année 2025-2026

Exercice n°2 Tournée d'un orchestre

La cheffe d’orchestre d’un grand orchestre symphonique Valentinois est en train d’organiser sa future tournée.

L’orchestre doit se rendre dans un certain nombre de villes. Elle réfléchit a organiser I'ordre des concerts afin de
réduire les temps de trajet et les cotits liés au transport.

Les villes sont les sommets du graphe, et les distances entre les villes sont les poids des arétes. Le graphe

n’est pas orienté. Les villes sont numérotées de 0 a 7 afin de renseigner les sommets des graphes avec un entier
plutot qu’une chaine de caractere.

Lille (2)
S
N
Paris (1) oU0 Strasbourg (3)
D
S
50
Clermont-Ferrand (5) Lyon (4)
)
=
S Valence (0
E)
DO
S
]
Toulouse (6) 400

—— 40 |
Marseille (7)

Partie | Représentations d'un graphe

Q1.

Q2.

Q3.

Q4.

Ecrire la dictionnaire d’adjacence en Python qui représente le graphe précédent : la clé est le sommet
considéré et la valeur une liste de listes du méme format que les sous-liste de 1iste_adj.

Ecrire la matrice de pondération (pas en python) du graphe précédent. Pourquoi la matrice est-elle symé-
trique ?
Comment peut-on la représenter en python? (on ne demande pas le code)

Ecrire une fonction degres(G:dict)->dict qui prend en argument un graphe représenté par son diction-
naire d’adjacence et qui renvoie le dictionnaire dont les clés sont les sommets et les valeurs le degré de
chaque sommet.

Ecrire une fonction voisins(G:1ist)->dict) qui prend en argument un graphe représenté par sa matrice
d’adjacence et qui renvoie le dictionnaire des voisins de chaque sommet, les clés sont les sommets, les valeurs
les listes des voisins de chaque sommet.

Partie Il Distance sur un graphe

Q5.

Q6.

Ecrire la fonction distance_parcourue_mat(G:list[list],tournee:1list)->float qui prend en argu-
ment le graphe G représenté par une matrice d’adjacence et la liste tournee qui est la liste des villes de la
tournée, dans 'ordre de la tournée, et qui renvoie la distance parcourue.

Cette fonction renverra —1 si le parcours proposé n’est pas possible (deux villes successives ne sont pas
reliées par une aréte).

Ecrire la fonction distance_parcourue_dict(G:dict,tournee:list)->float qui prend en argument le
graphe G représenté par un dictionnaire d’adjacence et la liste tournee qui est la liste des villes de la tournée,
dans l'ordre de la tournée, et qui renvoie la distance parcourue.

Cette fonction renverra —1 si le parcours proposé n’est pas possible (deux villes successives ne sont pas
reliées par une aréte).

ITC — DM n°6 PC/PSI
Page 4 / 6 Année 2025-2026

Partie Il Parcours d'un graphe

Les graphes peuvent étre parcourus en largeur ou en profondeur.

Q7. Mettre en ceuvre a la main le parcours du graphe, a partir de Valence en largeur, et puis en profondeur.

Le parcours en largeur passe par tous les voisins d’un sommet avant de parcourir les descendants de ces voisins.
Les sommets passent dans une file d’attente, c¢’est-a-dire structure de données de type First In First Out.
Pour cela, on opere en marquant les sommets du graphe a visiter et les sommets du graphes déja découverts.
Lorsqu’un sommet est découvert, il integre I’ensemble des éléments a visiter, ¢’est-a-dire la file d’attente attente :
attente.append (). Lorsque le sommet a été traité, il quitte la file : attente.popleft().
Il est donc également nécessaire de garder la trace du passage sur un sommet afin de ne pas traiter plusieurs
fois un méme sommet : si un sommet a été visité alors il integre 'ensemble des éléments découverts marque.
On utilise pour cela un dictionnaire, car c¢’est plus efficace pour vérifier si un sommet a déja été visité (acces en
temps constant, alors qu’avec une liste, 'acces est de complexité linéaire).
Q8. Recopier et compléter la fonction suivante qui effectue de fagon itérative le parcours en largeur d’un graphe
représenté par un dictionnaire ’adjacence.

def parcours_largeur (G,s0):

2 visite=[] # liste des voisins visités

3 marque={} # dictionnaire

4 attente=deque () # file qui garde les sommets en attente
5 ... # on ajoute au sommet de la file le sommet de départ

Jun

6 while ... : # tant que la file n’est pas vide
7 s=... # on visite le sommet au début de la file
8 if ... : # si le sommet n’a pas déja été visité

9 # on l’ajoute & la liste des sommets visités

10 # on l’ajoute au dictionnaire marque

11 ... # 11 faut visiter les voisins du sommet

12 if v not in : # le voisin v de s n’a pas déja été visité
13 ... # on le place dans la file des sommets en attente
d’étre visité

14 return visite

Le parcours en profondeur s’exprime de fagon presque identique avec le parcours en utilisant une pile (& la place

de la file) afin gérer la découverte des voisins dans 1'ordre de la profondeur du graphe.

Q9. Recopier et compléter la fonction suivante qui effectue de fagon itérative le parcours en profondeur d’un
graphe représenté par un dictionnaire d’adjacence.

|def parcours_profondeur (G,s0):
2 visite=[] # liste des voisins visités
3 marque={} # dictionnaire des voisins visités

4 attente=[] # pile qui garde les sommets en attente

5 # on ajoute au sommet de la pile le sommet de départ

6 while ... : # tant que la pile n’est pas vide

7 s=... # on visite le sommet au fin de la pile

8 if ... : # si le sommet n’a pas déja été visité

9 # on 1l’ajoute & la liste des sommets visités

10 ... # on 1’ajoute au dictionnaire

11 for v in G[s] : # pour les voisins de sommet

12 if v not in ... : # le voisin v de n’a pas déja été
visité

13 ... # on le place dans la pile des sommets en attente
d’étre visité
14 return visite

ITC — DM n°6 PC/PSI
Page 5 / 0 Année 2025-2026

Partie IV Plus petite distance sur un graphe

L’orchestre étant Valentinois, le départ de la tournée se fait depuis Valence.

On rappelle ici 'algorithme de Dijkstra qui permet de déterminer, depuis un sommet (Valence ici), la distance
minimale qui le sépare des autres sommets.

On commence par affecter une valeur tres grande a chacun des autres sommets, disons infinie, et la valeur 0 au
sommet de départ (Valence dans notre exemple).

A chaque étape, on effectue le meilleur choix possible : ¢’est un algorithme glouton. Tout au long de Palgorithme
on va garder en mémoire le chemin le plus court depuis Valence pour chacune des autres points dans un tableau.

On répete toujours le méme processus :
1. On choisit le sommet accessible de distance minimale comme sommet a explorer.

2. A partir de ce sommet, on explore ses voisins et on met a jour les distances pour chacun. On ne met a jour
la distance que si elle est inférieure a celle que 'on avait auparavant.

3. On répete jusqu'a ce qu’on arrive au point d’arrivée ou jusqu’a ce que tous les sommets aient été explorés.

Q10. Mettre en ceuvre l'algorithme précédent pour déterminer l'ordre de la tournée, et la distance parcourue
par 'orchestre depuis Valence pour se rendre dans chaque ville.

Pour cela, recopier et remplir le tableau.
En déduire les chemins les plus courts depuis Valence vers chaque ville.

Etape | Valence | Paris | Lille | Strasbourg | Lyon | Clermont | Toulouse | Marseille
0 0 %9 00 00 00 00 00 %)
1 X
2 X
3 X
4 X
) X
6 X
7 X
8 X

Pour écrire le programme, nous allons utiliser un dictionnaire dont les clés sont les sommets et les valeurs
sont les distances respectives entre chaque sommet et le sommet de départ, comme dans le tableau complété
précédemment.

Q11. Nous avons pour cela besoin d’une fonction qui calcule le minimum des valeurs contenues dans un diction-
naire et renvoie la clé correspondante.
Ecrire la fonction minimum(D:dict).

Pour initialiser la valeur du minimum, on pourra utiliser float (’inf’).

CAMILLE VIERNET ITC — DM n°6 PC/PSI

Page 6 / 6 Année 2025-2026

Q12. Recopier et compléter le programme dijkstra ci-dessous.

-

10

20

21

22

def dijkstra(G,sO0):

arguments

G : dictionnaire qui représente le graphe
sO0 : sommet de départ
retour

dictionnaire des distances minimales entre sO et les différents
sommets

nnn

distances={} # dictionnaire des sommets visités et de leurs distances
minimales depuis s

d={k:float(’inf’) for k in dico} # initialisation des distances a 1’
infini des sommets restants a visiter

d[s0] = ... # distance 0 au sommet s de départ
while ... # fini quand d est vide
k= ... # choix du sommet restant a visiter situé a la
distance minimale
for j ... # visite tous les voisins de k
v un voisin de k, et ¢ la distance entre k et v
v,c =
if ... # si v n’a pas déja été atteint

distance minimale entre la précédente, et celle pour
arriver a v depuis k (utiliser la fonction min(a,b))
dlv] =
distances[k]= ... # copie le sommet et la distance dans distances
del d[kl] # supprime le sommet de d
return distances

	La base des graphes
	Représentation des graphes
	Degré d'un sommet
	Liste des voisins d'un sommet
	Graphe orienté

	Tournée d'un orchestre
	Représentations d'un graphe
	Distance sur un graphe
	Parcours d'un graphe
	Plus petite distance sur un graphe

