
ITC − DM n°5 − Corrigé
Page 1 / 4

PC/PSI
Année 2025-2026

Devoir Maison n°5 − Corrigé
À rendre LUNDI 5 janvier 2026

Partie I Travail à faire
Partie II Et le range dans tout ça ?
R1. Je dois parcourir une liste L entièrement.

(a) Quel est le premier rang ? Quelle est la valeur minimale de i pour L[i] ?

Solution: Premier rang : 0 ; Valeur minimale de i : 0

(b) Quel est le dernier rang ? Quelle est la valeur maximale de i pour L[i] ?

Solution: Dernier rang : len(L)-1 ; Valeur maximale de i : len(L)-1

(c) Dans la boucle où j’accède à L[i] uniquement, qu’indiquer dans le range ?

Solution: range(0,len(L)) ou range(len(L))

R2. Je dois parcourir une liste L entièrement, dans la boucle je dois accéder à L[i] et L[i-1].
(a) Pour L[i] : quelle est la valeur minimale que peut prendre i ? quelle est la valeur maximale que peut

prendre i ?

Solution: 0 ≤ i ≤ len(L) − 1

(b) Pour L[i-1] :
Quelle est la valeur minimale que peut prendre i-1 ? et donc i ?
Quelle est la valeur maximale que peut prendre i-1 ? et donc i ?

Solution: 0 ≤ i − 1 ≤ len(L) − 1, donc 1 ≤ i ≤ len(L)

(c) Par conséquent, compléter la boucle for suivante permettant de parcourir toute la liste sans en sortir :
for i in range(...,...):

Solution: Dans la boucle, on accède à la fois à L[i] et L[i-1], donc 1 ≤ i ≤ len(L) − 1, donc
1 ≤ i < len(L) : for i in range(1,len(L)):

R3. Je dois parcourir une liste L entièrement, dans la boucle je dois accéder à L[i] et L[i+1].
(a) Pour L[i] : quelle est la valeur minimale que peut prendre i ? quelle est la valeur maximale que peut

prendre i ?

Solution: 0 ≤ i ≤ len(L) − 1

(b) Pour L[i+1] :
Quelle est la valeur minimale que peut prendre i+1 ? et donc i ?
Quelle est la valeur maximale que peut prendre i+1 ? et donc i ?

Solution:
0 ≤ i + 1 ≤ len(L) − 1, donc −1 ≤ i ≤ len(L) − 2

ITC − DM n°5 − Corrigé
Page 2 / 4

PC/PSI
Année 2025-2026

(c) Par conséquent, compléter la boucle for suivante permettant de parcourir toute la liste sans en sortir :
for i in range(...,...):

Solution: Dans la boucle, on accède à la fois à L[i] et L[i+1], donc, 0 ≤ i ≤ len(L) − 2, donc
0 ≤ i < len(L) − 1, donc for i in range(0,len(L)-1): (pour aller jusqu’à len(L)-2 inclus.

Partie III Révisions sur la récursivité

Une fonction récursive est une fonction qui s’appelle elle-même.
1 def f_rec(a,b,c):
2 if a==25 : # condition d’arrêt qui porte sur a ou b ou c
3 return 0 # valeur pour a=25
4 else :
5 return f(a+1,b,c) # appel récursif de f_rec sur un rang

précédent de a ou b ou c

À retenir

R1. Écrire la fonction récursive factorielle(n:int)->int qui renvoie la valeur de n!, en exploitant le fait que
n! = n × (n − 1)!, et 0! = 1.

Solution:

1 def factorielle (n):
2 if n==0 : # condition d’arrêt
3 return 1
4 else :
5 return n* factorielle (n -1) # appel récursif

Comment ça fonctionne ? Les instructions en attente sont empilées, avant d’être dépilées (la structure
informatique derrière est une pile).
> factorielle(3) demande 3*factorielle(2)
− − > factorielle(2) demande 2*factorielle(1)
− − − > factorielle(1) demande 1*factorielle(0)
− − − > calcul de 1!
− − > calcul de 2!
> calcul de 3!

R2. Écrire la fonction récursive fibo(n:int)->int qui renvoie la valeur de Fn de la suite de Fibonacci définie
par F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

Solution:

1 def fibo(n):
2 if n==0 : # condition d’arrêt
3 return 0
4 elif n==1 : # condition d’arrêt
5 return 1
6 else :
7 return fibo(n -1)+fibo(n -2) # appel récursif

R3. Une suite (cn) plus subtile : c0 = 2 et cn+1 =


cn

2 si cn est pair
3cn + 1 si cn est impair

Page 2

ITC − DM n°5 − Corrigé
Page 3 / 4

PC/PSI
Année 2025-2026

Que l’on peut réécrire, pour n ≥ 1 : cn =


cn−1

2 si cn−1 est pair
3cn−1 + 1 si cn−1 est impair

Rappel, n%2 renvoie le reste de la division euclidienne par 2.

Solution:

1 def suite(n):
2 if n==0 : # condition d’arrêt
3 return 2
4 else :
5 prec = suite(n -1) # valeur de c_(n -1) récupéré via appel

récursif
6 if prec %2==0 :# si pair
7 return prec //2
8 else :
9 return 3* prec +1

R4. Un tri récursif : le tri fusion. On suppose avoir une fonction fusion(L1:list,L2:list)->list qui à partir
des deux listes L1 et L2 triées dans le même ordre, renvoi une liste triée dans le même ordre.
Écrire une fonction récursive tri_fusion(L:list)->list qui trie par ordre croissant la liste L sur le
principe : la liste L est coupée en deux au milieu, chaque moitié est triée récursivement, puis on fusionne les
listes grâce à la fonction fusion.
Indice : le milieu d’une liste de longueur est le quotient de la division euclidienne de la longueur de la liste
par 2.

Solution:

1 def tri_fusion (L):
2 n = len(L)
3 if n <=1 : # condition d’arrêt si L a moins d’un élément , elle est

déjà triée
4 return L
5 else :
6 L0 = tri_fusion (L[0:n//2]) # tri récursif de la première

moitié de L
7 L1 = tri_fusion (L[n//2:]) # tri récursif deuxième moitié de

L
8 return fusion(L0 ,L1) # fusion des deux listes triées

Ce tri n’est pas en place (la liste L n’est pas modifiée, une autre est créée), de complexité moyenne
O(n ln(n)).

Page 3

ITC − DM n°5 − Corrigé
Page 4 / 4

PC/PSI
Année 2025-2026

R5. Un autre tri récursif : le tri bulle. À chaque parcours de la liste, on fait monter la plus grande valeur de la
partie qui reste à trier, au bout de la partie qui reste à trier.

Solution:

1 def tri_bulle (L:list)->list:
2 n = len(L)
3 if n <=1 : # condition d’arrêt si L a moins d’un élément , elle est

déjà triée
4 return L
5 else : # il faut parcourir la liste jusqu ’au dernier rang , pour y

placer la plus grande valeur de la liste L
6 for i in range (0,len(L) -1) : # parcours de L ATTENTION à la

valeur maximale de i dans le range vue le contenu de la boucle
7 if L[i]>L[i+1]: # l’élément précédent est plus grand que le

suivant
8 L[i] , L[i+1] = L[i+1] , L[i] # permutation des

éléments de rang i et i+1
9 # à la fin de la boucle , le plus grand élément de L est arrivé

au rang n-1 de L
10 return tri_bulle (L[: len(L) -1]) + [L[len(L) -1]] # appel

récursif sur la liste L privée de son dernier élément (qui est à la
bonne place), avec concaténation de ce dernier élément .

C’est un tri en place (=modification de la liste L), de complexité quadratique.

Page 4

	Travail à faire
	Et le range dans tout ça ?
	Révisions sur la récursivité

