ITC — DM n°5 — Corrigé PC/PSI
Page 1 / 4 Année 2025-2026

N

Partie | Travail a faire

Partie Il Et le range dans tout ca?

R1. Je dois parcourir une liste L entierement.
(a) Quel est le premier rang ? Quelle est la valeur minimale de i pour L[i] ?

Solution: Premier rang : 0; Valeur minimale de i : 0

(b) Quel est le dernier rang ? Quelle est la valeur maximale de i pour L[i] ?

Solution: Dernier rang : len(L)-1; Valeur maximale de 7 : len(L)-1

(c) Dans la boucle ou j'accede a L[i] uniquement, qu’indiquer dans le range ?

Solution: range(0,len(L)) ou range(len(L))

R2. Je dois parcourir une liste L entierement, dans la boucle je dois accéder a L[i] et L[i-1].

(a) Pour L[i] : quelle est la valeur minimale que peut prendre i ? quelle est la valeur maximale que peut
prendre i 7

Solution: 0 <i <len(L)—1

(b) Pour L[i-1] :
Quelle est la valeur minimale que peut prendre i-17 et donc i ?
Quelle est la valeur maximale que peut prendre i-17 et donc i ?

Solution: 0 <i—1<len(L)—1, donc 1 <i < len(L)

(c) Par conséquent, compléter la boucle for suivante permettant de parcourir toute la liste sans en sortir :
for i in range(...,...):

Solution: Dans la boucle, on accede a la fois a L[i] et L[i-1], donc 1 < i < len(L) — 1, donc
1 <i<len(L):for i in range(1,len(L)):

R3. Je dois parcourir une liste L entierement, dans la boucle je dois accéder a L[i] et L[i+1].

(a) Pour L[i] : quelle est la valeur minimale que peut prendre i 7 quelle est la valeur maximale que peut
prendre i 7

Solution: 0 <i <len(L)—1

(b) Pour L[i+1] :
Quelle est la valeur minimale que peut prendre i+17 et donc i ?
Quelle est la valeur maximale que peut prendre i+17 et donc i 7

Solution:
0<i+1<len(L)—1,donc —1 <i<len(L)—2

ITC — DM n°5 — Corrigé PC/PSI
Page 2 / J Année 2025-2026

(c) Par conséquent, compléter la boucle for suivante permettant de parcourir toute la liste sans en sortir :
for i in range(...,...):

Solution: Dans la boucle, on accede a la fois a L[i] et L[i+1], donc, 0 < ¢ < len(L) — 2, donc
0 <i<len(L)—1,donc for i in range(0,len(L)-1): (pour aller jusqu'a len(L)-2 inclus.

Partie [Il Révisions sur la récursivité

VYA retenir
Une fonction récursive est une fonction qui s’appelle elle-méme.
def f _rec(a,b,c):

if a==25 : # condition d’arrét qui porte sur a ou b ou c
return 0 # valeur pour a=25

%)

4 else
return f(a+l,b,c) # appel récursif de f_rec sur un rang
précédent de a ou b ou c

R1. Ecrire la fonction récursive factorielle(n:int)->int qui renvoie la valeur de n!, en exploitant le fait que
nl=nx(n—1) et 0l =1.

Solution:

def factorielle(n):
2 if n== : # condition d’arrét
return 1

4 else
5 return n*xfactorielle(n-1) # appel récursif

Comment ¢a fonctionne? Les instructions en attente sont empilées, avant d’étre dépilées (la structure
informatique derriere est une pile).

> factorielle(3) demande 3*factorielle(2)

— — > factorielle(2) demande 2*factorielle(1)

— — — > factorielle(1) demande 1*factorielle(0)

— — — > calcul de 1!

— — > calcul de 2!

> calcul de 3!

R2. Ecrire la fonction récursive fibo(n:int)->int qui renvoie la valeur de F, de la suite de Fibonacci définie
par FO = O7 F1 = 1, Fn = anl + Fn72-

Solution:

def fibo(n):
if n== : # condition d’arrét
3 return O
elif n== : # condition d’arrét
5 return 1
6 else
7 return fibo(n-1)+fibo(n-2) # appel récursif

=

[

Cn, . .
— n est
R3. Une suite (¢,) plus subtile : ¢g = 2 et ¢,y = { 2 S Gn OSL PRI

3¢, +1 si ¢, est impair

ITC — DM n°5 — Corrigé PC/PSI
Page 3 / J Année 2025-2026

Cp—1

L si Cn—1 est pair

Que l'on peut réécrire, pour n > 1 : ¢, = "
Cn—1 i cp impair
3 +1 s est a

Rappel, n%2 renvoie le reste de la division euclidienne par 2.

Solution:

i|def suite(n):
2 if n== c # condition d’arrét
3 return 2

| else

5 prec = suite(n-1) # valeur de c_(n-1) récupéré via appel
récursif

6 if prec’2==0 :# si pair

7 return prec//2

s else

0 return 3*prec+l

. Un tri récursif : le tri fusion. On suppose avoir une fonction fusion(L1:1ist,L2:1ist)->1list qui a partir
des deux listes L1 et L2 triées dans le méme ordre, renvoi une liste triée dans le méme ordre.

Ecrire une fonction récursive tri_fusion(L:1list)->list qui trie par ordre croissant la liste L sur le
principe : la liste L est coupée en deux au milieu, chaque moitié est triée récursivement, puis on fusionne les
listes grace a la fonction fusion.

Indice : le milieu d'une liste de longueur est le quotient de la division euclidienne de la longueur de la liste
par 2.

Solution:

def tri_fusion(L):
n = len(L)
if n<=1 # condition d’arrét si L a moins d’un élément, elle est
déja trise
| return L
else
6 LO = tri_fusion(L[0:n//2]) # tri récursif de la premiére
moitié de L
7 L1 = tri fusion(L[n//2:]) # tri récursif deuxiéme moitié de

o

8 return fusion(LO,L1) # fusion des deux listes triées

Ce tri n’est pas en place (la liste L n’est pas modifiée, une autre est créée), de complexité moyenne

O(nln(n)).

1 ITC — DM n°5 — Corrigé PC/PSI
Page 4 / 4 Année 2025-2026

. Un autre tri récursif : le tri bulle. A chaque parcours de la liste, on fait monter la plus grande valeur de la
partie qui reste a trier, au bout de la partie qui reste a trier.

Solution:

def tri_bulle(L:1list)->1list:

> n = len(L)

3 if n<=1 # condition d’arrét si L a moins d’un élément, elle est
déja triée

1 return L

5 else : # il faut parcourir la liste jusqu’au dernier rang, pour y

placer la plus grande valeur de la liste L
6 for i in range(0,len(L)-1) : # parcours de L ATTENTION & la
valeur maximale de i dans le range vue le contenu de la boucle

if L[i]J>L[i+1]: # 1’élément précédent est plus grand que le

~

suivant

5 L[i] , L[i+1] = L[i+1] , L[i] # permutation des
éléments de rang i et i+l

9 # & la fin de la boucle, le plus grand élément de L est arrivé
au rang n-1 de L

0 return tri_bulle(L[:len(L)-1]) + [L[len(L)-1]] # appel
récursif sur la liste L privée de son dernier élément (qui est a la
bonne place), avec concaténation de ce dernier élément.

1

C’est un tri en place (=modification de la liste L), de complexité quadratique.

	Travail à faire
	Et le range dans tout ça ?
	Révisions sur la récursivité

