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I Définitions

� Un graphe non orienté est un couple G = (S, A) dans lequel S est un ensemble non vide (dont les
éléments sont appelés sommets) et A un ensemble de parties à deux éléments de S (dont les éléments
sont appelés arêtes du graphe).

� Deux sommets sont adjacents ssi il existe une arête qui les relie.
� Le degré d’un sommet est égal au nombre d’arêtes dont il est extrémité. On le notera d(si).
� Un graphe est connexe si deux sommets distincts sont toujours reliés par un chemin.
� L’ordre d’un graphe est le nombre de sommets.

Définitions : Graphe non orienté

� Un chemin d’un sommet s0 à un sommet sn est une séquence (s0, s1, ..., sn) où deux sommets consécutifs
sont adjacents.

� La longueur d’un chemin est le nombre d’arêtes utilisées pour aller du sommet de départ au sommet
d’arrivée.

� La distance entre deux sommets est la longueur minimale d’un chemin reliant ces deux sommets.
� Un cycle est un chemin tel que le sommet de départ et le sommet d’arrivée sont identiques.

Définitions : Chemin

Un graphe orienté est un couple d’ensembles (S, A) avec A ⊂ S2. Les éléments de A que l’on appelle
alors des arcs sont des couples (si, sj) de sommets. On pourra aussi les notes si → sj et parler d’extrémités
initiale et terminale. Les arêtes ont un sens de parcours.
On appelle degré sortant d’un sommet si le nombres d’arcs (si, sj) ∈ A. Ce degré sortant est noté
d+(si). Le degré entrant est défini de façon analogue et est noté d−(si).

Définitions : Graphe orienté

Ajouter des poids ou des étiquettes aux arêtes d’un graphe apporte des informations supplémentaires.
� Un graphe est pondéré si un nombre, un poids, est associé à chaque arête ou chaque arc.
� Un graphe est étiqueté si une étiquette, est associée à chaque arête ou chaque arc.

Définitions : Graphe pondéré
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Dans un réseau routier par exemple, un poids peut être le nombre de kilomètres d’une route liant deux lieux,
une étiquette peut être le nom de cette route.

II Représentations
II.1 Représentation schématique

La manière la plus simple de représenter un graphe est de faire un dessin. Les sommets sont représentés par
des points, les arêtes par des lignes, chacune reliant deux poids.

Exemple 1.

Ce graphe n’est pas orienté, et connexe.
Sommet A : d(A) = 3, ses voisins sont B, C, E.
[ABD] est un chemin de longueur 2.
[AEBD] est un chemin de longueur 3.
[ACBEA] est un cycle

Ce graphe est orienté, et non connexe.
D est un sommet isolé.
Degré entrant de B : d−(B) = 3
Degré sortant de B : d+(B) = 2

II.2 Représentation en python
II.2.a) Liste d’adjacence

On peut représenter un graphe non orienté en précisant pour chacun des sommets la liste de ses voisins. Ces
listes s’appellent des listes d’adjacence. L’ordre d’écriture n’a pas d’importance.

Dans le cas de graphes orientés, on peut présenter des listes de successeurs.
Ces listes d’adjacence peuvent être représentées en Python à l’aide :
— liste de listes : chaque élément de la liste est une liste contenant un sommet et la liste de ces voisins.

1 # Pour le graphe non orienté :
2 G=[ ["A" ,["B","C","E"]] , ["B" ,["A","C","D","E"]] , ["C" ,["A","B"]] , ["

D" ,["B"]] , ["E" ,["A","B"]] ]
3 # Pour le graphe orienté :
4 G =[ ["A" ,["B"]] , ["B" ,["C","E"]] , ["C" ,["B"]] , ["D" ,[]] , ["E" ,["A",

"B"]] ]

— dictionnaire : les clés sont les sommets et les valeurs correspondent aux clés sont les listes des voisins.
1 # Pour le graphe non orienté :
2 G = {"A":["B","C","E"] , "B":["A","C","D","E"] , "C":["A","B"] , "D":["B

"] , "E":["A","B"] }
3 # Pour le graphe orienté :
4 G = {"A":["B"] , "B":["C","E"] , "C":["B"] , "D":[] , "E":["A","B"] }

Si le graphe est pondéré, on complète les listes d’adjacence avec les poids.
1 # Avec une liste de listes :
2 G=[ ["A" ,[("B" ,2) ,("E" ,5)]] , ["B" ,[("A" ,2) ,("C" ,1) ,("E" ,3)]] , ["C" ,[("B"

,1)]] , ["D" ,[]] , ["E" ,[("A" ,5) ,("B" ,3)]]]
3 # Avec un dictionnaire
4 G={"A":[("B" ,2) ,("E" ,5)] , "B":[("A" ,2) ,("C" ,1) ,("E" ,3)] , "C":[("B" ,1)] , "

D":[] , "E":[("A" ,5) ,("B" ,3)]}
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II.2.b) Matrice d’adjacence
En mathématiques, on peut associer à un graphe, une matrice carrée (n, n) ou un tableau, où n est le nombre

de sommets. Les sommets sont numérotés de 0 à n−1. À l’intersection d’une ligne i et d’une colonne j le nombre
représenté la présence ou non d’une arrête enter les sommets i et j : 1 pour la présence, 0 pour l’absence.

Le tableau correspondant au graphe non orienté dessiné précédemment est le suivant :

A B C D E
A 0 1 1 0 1
B 1 0 1 1 1
C 1 1 0 0 0
D 0 1 0 0 0
E 1 1 0 0 0

La diagonale ne contient que des 0 et est un axe de symétrie du tableau, c’est le cas pour les graphes non
orientés.

Le même graphe peut être représenté par des matrices différentes qui dépendent de l’ordre des sommets qui
est pris en compte.

La matrice du graphe non orienté est la suivante :


0 1 1 0 1
1 0 1 1 1
1 1 0 0 0
0 1 0 0 0
1 1 0 0 0


Dans le cas du graphe orienté précédent, on obtient la matrice d’adjacence suivante, qui n’est plus symétrique :

0 1 0 0 0
0 0 1 0 1
0 1 0 0 0
0 0 0 0 0
1 1 0 0 0


Dans le cas de graphe pondéré ou étiqueté, on place les informations le long des arêtes. On peut utiliser la

matrice en remplaçant les 1 par les poids par exemple.

En Python, on pourra utiliser les listes de listes ou les tableaux numpy pour représenter une matrice d’adjacence.

III Parcours d’un graphe
III.1 Parcours en profondeur

À partir d’un sommet, on passe à un de ses voisins, puis à un voisin de ce voisin et ainsi de suite. S’il n’y
a pas de voisin, on revient au sommet précédent et on passe à un autre de ses voisins.

Définition : Parcours en profondeur

Exemple 2.

Parcours en profondeur à partir de A : On commence par un voisin de
A : B (par ex., on aurait pu commencer par E), puis un voisin de B : C.
C n’a pas de voisin, on remonte à B et on visite un autre voisin : D qui
n’a pas de voisin. On remonte à B et on visite un autre voisin : E, puis
un voisin de E : F.

On utilise une pile pour placer les sommets en attente.
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Une pile est une structure de données linéaire (les données sont rangées sur une ligne) ayant pour maxime
« dernier entré premier sorti » (Last In, First Out), LIFO.
Imaginez une pile d’assiette : vous pouvez l’assiette sur le dessus, et vous récupérer l’assiette sur le dessus,
la dernière rangée.
Les piles peuvent être implémentées de plusieurs manières. Nous utiliserons les listes.
Effet Python
Ajouter un élément pile.append(x)
Retirer un élément et renvoyer sa valeur pile.pop()

Définition : pile

Le parcours en profondeur est en général utilisé pour parcourir tout un graphe, ainsi tant que des sommets
restent non visités ils seront empilés. Tant que la pile n’est pas vide, nous dépilons son sommet et regardons s’il
a déjà été exploré. Si ce n’est pas le cas, nous mettons à jour son père et empilons ses voisins. Lorsque la pile est
vide, la liste des pères permet de reconstituer le parcours en profondeur du graphe. Le graphe est ici représenté
sous forme de liste d’adjacence.

1 def parcours_prof (graphe ,sommet):
2 visite =[] # liste des voisins visités
3 marque ={} # dictionnaire des voisins visités
4 attente =deque () # pile qui garde les sommets en attente
5 attente .append(sommet) # on ajoute au sommet de la pile le sommet de

départ
6 while len( attente ) >0: # tant que la pile n’est pas vide
7 sommet= attente .pop () # on dépile le sommet de la pile
8 if sommet not in marque: # si le sommet n’a pas déjà été visité
9 visite.append(sommet) # on l’ajoute à la liste des sommets

visités
10 marque[sommet ]= True # on l’ajoute au dictionnaire
11 for s in graphe[sommet] : # pour les voisins de sommet
12 if s not in marque: # le voisin s n’a pas déjà été visité
13 attente .append(s) # on le place dans la pile des sommets

en attente d’être visité
14 return visite
15 >>> parcours_prof_it (g,’A’)
16 [’A’, ’E’, ’F’, ’B’, ’D’, ’C’]

III.2 Parcours en largeur

À partir d’un sommet, on explore tous ses voisins immédiats. Puis à partir d’un voisin, on explore tous
ses voisins immédiats sauf ceux déjà explorés. Et ainsi de suite.

Définitions : Parcours en largeur

Exemple 3. Pour le même graphe que précédemment.
Parcours en largeur à partir de A : On commence par tous les voisins de A : B et E, puis on repart
de B et on visite tous ses voisins restants : C, D et F.

Une structure de données particulière est naturellement utilisée pour le parcours en largeur de graphes : il
s’agit de la notion de file (d’attente).
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Une file est une structure de données linéaire (les données sont rangées sur une ligne) ayant pour maxime
« premier entré premier sorti » (First In, First Out), FIFO.
Imaginez une file d’attente : la première personne à en sortir, est la première à y être rentrée.
Les files peuvent être implémentées de plusieurs manières. Une solution est d’utiliser une liste doublement
chaînée : un deque, qui est une structure composée de données et de moyens d’accéder à la donnée suivante
et à la donnée précédente. Cette structure est fournie en Python par le module collections.deque.

Ainsi :

Effet Python
Ajouter un élément f.append(x)
Retirer un élément et renvoyer sa valeur f.popleft()
Créer une file vide f = deque()

Définition : file

Pour implémenter le parcours en largeur, la file contiendra initialement le sommet de départ. Tant qu’elle n’est
pas vide, nous traitons le premier sommet et regardons s’il a déjà été exploré. Si ce n’est pas le cas, nous mettons
à jour son père et enfilons ses voisins. Lorsque la file est vide, la liste des pères permet de reconstituer le parcours
en profondeur du graphe. Le graphe est ici représenté sous forme de liste d’adjacence.

1 def parcours_largeur (graphe ,sommet):
2 visite =[] # liste des voisins visités
3 marque ={} # dictionnaire des voisins visités
4 attente =deque () # file qui garde les sommets en attente
5 attente .append(sommet) # on ajoute au sommet de la file le sommet de

départ
6 while len( attente ) >0: # tant que la file n’est pas vide
7 sommet= attente . popleft () # on visite le sommet au début de la file
8 if sommet not in marque: # si le sommet n’a pas déjà été visité
9 visite.append(sommet) # on l’ajoute à la liste des sommets

visités
10 marque[sommet ]= True # on l’ajoute au dictionnaire
11 for s in graphe[sommet] : # pour les voisins de sommet
12 if s not in marque: # le voisin s n’a pas déjà été visité
13 attente .append(s) # on le place dans la pile des sommets

en attente d’être visité
14 return visite
15 >>> parcours_largeur (g,’A’)
16 [’A’, ’B’, ’E’, ’C’, ’D’, ’F’]

IV Recherche d’un plus court chemin
On s’intéresse maintenant à un graphe pondéré avec des poids positifs. Le chemin le plus court est celui de

coût, c’est-à-dire la somme des poids des arêtes, le plus faible.

IV.1 Algorithme de Dijkstra
Cet algorithme, publié par Edsger Dijkstra en 1959, utilise un parcours en largeur et calcul le plus

court chemin entre un sommet et chacun des autres sommets.
On suppose le graphe connexe et non orienté.

IV.1.a) Principe
Si le plus court chemin entre deux sommets D et A passe par un sommet I, alors la partie de ce chemin

entre D et I est le plus court chemin de D à I, et la partie entre I et A est le plus court chemin entre I et A.
À chaque étape, on effectue donc le meilleur choix possible. C’est un algorithme glouton.

L’algorithme est semblable à celui d’un parcours en largeur d’abord, mais au lieu d’utiliser une file pour les
sommets en attente, on utilise une fil de priorité. Cela signifie qu’on extrait le sommet ayant la priorité, dans
ce cas c’est celui qui correspond à la distance minimale.
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IV.1.b) Exemple
On considère le graphe représenté ci-dessous et on cherche le plus court chemin entre le sommet A et chacun

des autres sommets du graphe. On affecte la valeur ∞ à chaque sommet, sauf au sommet A de départ, à qui on
affecte la valeur 0. À chaque étape :
(a) On choisit le sommet dont la distance depuis A dans le tableau est minimale.
(b) On regarde ses différents voisins encore accessibles (c’est-à-dire qui n’ont pas déjà été choisis).
(c) On compare la distance avec laquelle on arrive aux différents voisins depuis ce sommet, à la distance avec

laquelle on avait pu y arriver jusque là (l’infini, ou une autre distance par un autre chemin). On garde la
distance minimale avec laquelle on peut arriver à ce voisin.

IV.1.c) Implémentation en python
Pour représenter l’ensemble des sommets et leur distance, nous allons utiliser un dictionnaire dont les sommets

sont les clés et les distances leurs valeurs.
À chaque étape, il faut comparer la distance à laquelle se trouve chaque sommet. Il faut donc commencer

par écrire une fonction qui renvoie la clé de valeur minimale.
1 def minimum (dico):
2 mini=float(’inf ’) # initialisation de la valeur minimale
3 for cle in dico : # parcours des clés de dico
4 if dico[cle]<mini: # clé de valeur <au minimum local
5 mini=dico[cle] # on a trouvé un nouveau minimum local
6 cle_min =cle # clé de valeur= minimum local actuel
7 return cle_min
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1 def Dijkstra (graphe ,S):
2 res ={} # dictionnaire des valeurs minimales de distance entre le sommet

S et chacun des autres sommets
3 dist ={ cle:float(’inf ’) for cle in graphe} # initialisation du

dictionnaire des distances
4 dist[S]=0 # sommet S de départ , distance =0
5 while len(dist) >0: # tant que d n’est pas vide , il reste des sommets à

visiter
6 # (a)
7 smin= minimum (dist) # sommet de distance minimale
8 res[smin ]= dist[smin] # on copie le sommet smin et sa distance dans

le dictionnaire des résultats
9 for k in range(len(graphe[smin ])): # parcours des voisins de smin

10 # (b)
11 v,d=graphe[smin ][k] # v : nom du voisin , d distance à laquelle

il se trouve de smin
12 if v not in res: # on ne s’intéresse qu’au voisin non déjà

choisi
13 # (c)
14 dist[v]= min(dist[v],dist[smin ]+d) # on choisit la distance

minimale entre celle avec laquelle on aurait déjà pu arriver à v (dist[v])
, et celle avec laquelle on arrive depuis smin (dist[smin ]+d)

15 res[smin ]= dist[smin] # on copie le sommet smin et sa distance dans
le dictionnaire des résultats

16 del dist[smin] # on supprime smin de dist , qui contient les sommets
qu’il reste à visiter

17 return res

IV.2 Algorithme A∗

IV.2.a) Principe
Peter E. Hart, Nils John Nilsson et Bertram Raphael ont proposé un algorithme de recherche d’un

chemin nommé algorithme A∗ qui fournit un chemin entre deux sommets donnés. C’est une extension de
l’algorithme de Dijkstra.

Cet algorithme fournit l’une des meilleurs solutions rapidement. Il est utilisé en intelligence artificielle et
dans des applications de jeux vidéos pour lesquels le plus important est la vitesse d’obtention d’une solution,
même si elle n’est pas optimale.

L’algorithme utilise une évaluation heuristique sur chaque sommet afin de parvenir à trouver le meilleur
chemin. Les sommets sont visités suivant l’ordre donné par cette évaluation.

Une méthode heuristique est une méthode de résolution utilisée pour obtenir une solution rapidement, pas
forcément la meilleure, quand d’autres algorithmes ont une complexité en temps trop élevée. On n’explore pas
toutes les possibilités pour trouver la solution optimale, mais on les filtre à l’aide de données supplémentaires
provenant de mesures, d’expériences, ou de statistiques.

Dans une recherche de distance minimale dans un graphe représentant un réseau routier, les valeurs heuris-
tiques peuvent être les distances « à vol d’oiseau. »
IV.2.b) Exemple

Exemple 4. On étudie le graphe ci-dessous, et on souhaite déterminer le chemin le plus court pour
aller du sommet ’S’ au sommet ’E’. Ce graphe est représenté par le dictionnaire des listes d’adja-
cences, et on choisit l’heuristique donnée par les valeurs heuristiques distance « à vol d’oiseau » jusqu’à
’E’.
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On obtient le parcourt suivant : S-B-H-G-E, pour une distance totale de 7.
Le résultat dépend de l’heuristique choisi.

IV.2.c) Implémentation en python

1 def A_etoile (graphe ,deb ,fin ,h):
2 res ={} # dict. des distances minimales entre deb et les autres
3 dist ={ cle:float(’inf ’) for cle in graphe} # dict. des distances
4 dist[deb ]=0 # sommet deb de départ , distance =0
5 disth ={ cle:dist[cle ]+h(cle) for cle in graphe} # dictionnaire des

distances tenant compte de l’heuristique
6 while fin in dist: # tant qu’on n’est pas arrivée au sommet fin
7 smin= minimum (disth) # sommet de dist min pour démarrer une étape
8 res[smin ]= dist[smin] # copie de smin et sa distance dans res
9 for k in range(len(graphe[smin ])): # parcours des voisins de smin

10 v,d=graphe[smin ][k] # v : nom du voisin , d distance à laquelle
il se trouve de smin

11 if v not in res: # voisin non déjà choisi
12 dist[v]= min(dist[v],dist[smin ]+d) # on choisit la dist min

entre celle avec laquelle on aurait déjà pu arriver à v (dist[v]), et
celle avec laquelle on arrive depuis smin (dist[smin ]+d)

13 disth[v]= dist[v]+h(v) # nouvelle distance minimale tenant
compte de l’heuristique

14 res[smin ]= dist[smin] # on copie le sommet smin et sa distance dans
le dictionnaire des résultats

15 del dist[smin] # on supprime smin de dist , qui contient les sommets
qu’il reste à visiter

16 del disth[smin]
17 return res
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