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| Définitions

Déﬁnitions : Graphe non orienté

B Un graphe non orienté est un couple G = (S, A) dans lequel S est un ensemble non vide (dont les
éléments sont appelés sommets) et A un ensemble de parties a deux éléments de S (dont les éléments
sont appelés arétes du graphe).

Deux sommets sont adjacents ssi il existe une aréte qui les relie.
Le degré d’un sommet est égal au nombre d’arétes dont il est extrémité. On le notera d(s;).

Un graphe est connexe si deux sommets distincts sont toujours reliés par un chemin.

L’ordre d’un graphe est le nombre de sommets.

‘ , . . L

Deﬁnltlons : Chemin

B Un chemin d’un sommet sg & un sommet s,, est une séquence (sg, 1, ..., S, ) ot deux sommets consécutifs
sont adjacents.

B La longueur d’un chemin est le nombre d’arétes utilisées pour aller du sommet de départ au sommet
d’arrivée.

B La distance entre deux sommets est la longueur minimale d’un chemin reliant ces deux sommets.

B Un cycle est un chemin tel que le sommet de départ et le sommet d’arrivée sont identiques.

Déﬁnitions : Graphe orienté

Un graphe orienté est un couple d’ensembles (S, A) avec A C S?. Les éléments de A que I'on appelle
alors des arcs sont des couples (s;, s;) de sommets. On pourra aussi les notes s; — s; et parler d’extrémités
initiale et terminale. Les arétes ont un sens de parcours.

On appelle degré sortant d'un sommet s; le nombres d’arcs (s;,s;) € A. Ce degré sortant est noté
d(s;). Le degré entrant est défini de fagon analogue et est noté d_(s;).

Déﬁnitions : Graphe pondéré
Ajouter des poids ou des étiquettes aux arétes d’un graphe apporte des informations supplémentaires.

B Un graphe est pondéré si un nombre, un poids, est associé a chaque aréte ou chaque arc.

B Un graphe est étiqueté si une étiquette, est associée a chaque aréte ou chaque arc.
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Dans un réseau routier par exemple, un poids peut étre le nombre de kilometres d’une route liant deux lieux,
une étiquette peut étre le nom de cette route.

Il Représentations

[I.1 Représentation schématique

La maniere la plus simple de représenter un graphe est de faire un dessin. Les sommets sont représentés par
des points, les arétes par des lignes, chacune reliant deux poids.

99 < ) O
© - eﬁe ©

Ce graphe n’est pas orienté, et connexe. Ce graphe est orienté, et non connexe.
Sommet A : d(A) = 3, ses voisins sont B, C, E. D est un sommet isolé.

[ABD] est un chemin de longueur 2. Degré entrant de B : d_(B) = 3
[AEBD)] est un chemin de longueur 3. Degré sortant de B : dy(B) = 2
[ACBEA] est un cycle

1.2 Représentation en python
I1.2.a) Liste d'adjacence

On peut représenter un graphe non orienté en précisant pour chacun des sommets la liste de ses voisins. Ces
listes s’appellent des listes d’adjacence. L’ordre d’écriture n’a pas d’importance.

Dans le cas de graphes orientés, on peut présenter des listes de successeurs.

Ces listes d’adjacence peuvent étre représentées en Python a laide :

— liste de listes : chaque élément de la liste est une liste contenant un sommet et la liste de ces voisins.

i|# Pour le graphe non orienté

G=[ [IIAII’[IIBII’IICII’IIEH]] , ["B",["A”,"C”,"D”,"E"]] s ["C”,["A","B"]] s [u
D”,["B"]] s [”E",["A","B"]] ]

s|# Pour le graphe orienté

G =|: ["A",["B"]] , ["B",["C","E"]] , ["C",["B"]] , [”D",[]]
uBn]] ]

V]

IS

s [llEll,[llAll,

— dictionnaire : les clés sont les sommets et les valeurs correspondent aux clés sont les listes des voisins.

i|# Pour le graphe non orienté
G = {"A"Z["B",“C","E"] , "B"I["A","C","D","E”] , "C"I["A","B“] , "D"Z["B
u] , "E"I["A","B"] }
si# Pour le graphe orienté
|G = {"A"Z["B"] s IIBH:[IICII’IIEH] s |ICII:[IIBI|:| s an:[]

s "E"I[”A",”B"] }

Si le graphe est pondéré, on compléete les listes d’adjacence avec les poids.

i|# Avec une liste de listes

G=[ [”A",[("B”,2),("E",5)]] s ["B",[("A",2),("C",l),("E”,S)]] , [”C",[(”B"
’1)]] s [”D",[]] s ["E”,[(”A",E)),(”B",B)]]]

s)/# Avec un dictionnaire

G={"A"Z[("B",2),("E",5)] s "B"Z[("A",Q),("C",l),("E",3)]
D”I[] s IIEII:[(IIAII,S),(IIBII,3)]}

V]

S

s "C"Z[(”B",l)] s "
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11.2.b) Matrice d'adjacence

En mathématiques, on peut associer & un graphe, une matrice carrée (n,n) ou un tableau, ot 1 est le nombre
de sommets. Les sommets sont numérotés de 0 a n—1. A I'intersection d’une ligne ¢ et d’'une colonne j le nombre
représenté la présence ou non d’'une arréte enter les sommets ¢ et 7 : 1 pour la présence, 0 pour I'absence.

A B C D E

A0 1 1 0 1

. o, . B|1 0 1 1 1

Le tableau correspondant au graphe non orienté dessiné précédemment est le suivant : cl1 1 0 0 o0
Do 1 0 0 0

E|1 1 0 0 0

La diagonale ne contient que des 0 et est un axe de symétrie du tableau, c’est le cas pour les graphes non
orientés.

Le méme graphe peut étre représenté par des matrices différentes qui dépendent de 'ordre des sommets qui
est pris en compte.

01101
1 0111
La matrice du graphe non orienté est la suivante : | 1 1 0 0 0
01 000
1 1000

Dans le cas du graphe orienté précédent, on obtient la matrice d’adjacence suivante, qui n’est plus symétrique :

— o O O O
—_— O = O =
S OO~ O
S OO OO
S OO~ O

Dans le cas de graphe pondéré ou étiqueté, on place les informations le long des arétes. On peut utiliser la
matrice en remplacant les 1 par les poids par exemple.

wo oo o
— O W o N
OO OO
(==l e R e B o B «n]
OO OO

En Python, on pourra utiliser les listes de listes ou les tableaux numpy pour représenter une matrice d’adjacence.

[Il Parcours d'un graphe

[11.1  Parcours en profondeur

Déﬁnition : Parcours en profondeur

A partir d’'un sommet, on passe a un de ses voisins, puis a un voisin de ce voisin et ainsi de suite. S’il n’y
a pas de voisin, on revient au sommet précédent et on passe a un autre de ses voisins.

Exemple 2.
o e Parcours en profondeur a partir de A : On commence par un voisin de
e A : B (par ex., on aurait pu commencer par E), puis un voisin de B : C.
e C n’a pas de voisin, on remonte a B et on visite un autre voisin : D qui
o n’a pas de voisin. On remonte a B et on visite un autre voisin : E, puis
e un voisin de E : F.

On utilise une pile pour placer les sommets en attente.



[
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Déﬁnition : pile
Une pile est une structure de données linéaire (les données sont rangées sur une ligne) ayant pour maxime
« dernier entré premier sorti » (Last In, First Out), LIFO.
Imaginez une pile d’assiette : vous pouvez 'assiette sur le dessus, et vous récupérer ’assiette sur le dessus,
la derniére rangée.
Les piles peuvent étre implémentées de plusieurs manieres. Nous utiliserons les listes.
Effet Python
Ajouter un élément pile.append(x)
Retirer un élément et renvoyer sa valeur | pile.pop()

Le parcours en profondeur est en général utilisé pour parcourir tout un graphe, ainsi tant que des sommets
restent non visités ils seront empilés. Tant que la pile n’est pas vide, nous dépilons son sommet et regardons s’il
a déja été exploré. Si ce n’est pas le cas, nous mettons a jour son pere et empilons ses voisins. Lorsque la pile est
vide, la liste des peéres permet de reconstituer le parcours en profondeur du graphe. Le graphe est ici représenté
sous forme de liste d’adjacence.

def parcours_prof (graphe, sommet) :
visite=[] # liste des voisins visités
marque={} # dictionnaire des voisins visités
attente=deque () # pile qui garde les sommets en attente
attente.append (sommet) # on ajoute au sommet de la pile le sommet de
départ
while len(attente)>0: # tant que la pile n’est pas vide
sommet=attente.pop() # on dépile le sommet de la pile
if sommet not in marque: # si le sommet n’a pas déja été visité
visite.append(sommet) # on l’ajoute & la liste des sommets
visités
marque [sommet]=True # on l’ajoute au dictionnaire
for s in graphe[sommet] : # pour les voisins de sommet
if s not in marque: # le voisin s n’a pas déja été visité
attente.append(s) # on le place dans la pile des sommets
en attente d’étre visité
return visite

5| >>> parcours_prof_it(g,’A’)

[’A’, ;E;’ ’F’, ;By, ;D;’ ;C;]

[11.2 Parcours en largeur

Déﬁnitions : Parcours en largeur

A partir d'un sommet, on explore tous ses voisins immédiats. Puis a partir d’un voisin, on explore tous
ses voisins immédiats sauf ceux déja explorés. Et ainsi de suite.

Exemple 3. Pour le méme graphe que précédemment.
Parcours en largeur & partir de A : On commence par tous les voisins de A : B et E, puis on repart
de B et on visite tous ses voisins restants : C, D et F.

Une structure de données particuliere est naturellement utilisée pour le parcours en largeur de graphes : il
s’agit de la notion de file (d’attente).
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Déﬁnition : file

Une file est une structure de données linéaire (les données sont rangées sur une ligne) ayant pour maxime
« premier entré premier sorti » (First In, First Out), FIFO.

Imaginez une file d’attente : la premiere personne a en sortir, est la premiere a y étre rentrée.

Les files peuvent étre implémentées de plusieurs manieres. Une solution est d’utiliser une liste doublement
chainée : un deque, qui est une structure composée de données et de moyens d’accéder a la donnée suivante
et a la donnée précédente. Cette structure est fournie en Python par le module collections.deque.

Effet Python
.. | Ajouter un élément f.append (x)
Ainsi : } a7
Retirer un élément et renvoyer sa valeur | f.popleft()
Créer une file vide f = deque()

Pour implémenter le parcours en largeur, la file contiendra initialement le sommet de départ. Tant qu’elle n’est
pas vide, nous traitons le premier sommet et regardons s’il a déja été exploré. Si ce n’est pas le cas, nous mettons
a jour son pere et enfilons ses voisins. Lorsque la file est vide, la liste des péres permet de reconstituer le parcours
en profondeur du graphe. Le graphe est ici représenté sous forme de liste d’adjacence.

def parcours_largeur (graphe,sommet) :
visite=[] # liste des voisins visités
marque={} # dictionnaire des voisins visités
attente=deque () # file qui garde les sommets en attente
attente.append (sommet) # on ajoute au sommet de la file le sommet de
départ
while len(attente)>0: # tant que la file n’est pas vide
sommet=attente.popleft() # on visite le sommet au début de la file
if sommet not in marque: # si le sommet n’a pas déja été visité
visite.append(sommet) # on l’ajoute & la liste des sommets
visités
marque [sommet]=True # on l’ajoute au dictionnaire
for s in graphe[sommet] : # pour les voisins de sommet
if s not in marque: # le voisin s n’a pas déja été visité
attente.append(s) # on le place dans la pile des sommets
en attente d’étre visité
return visite
>>> parcours_largeur(g,’A’)
[’A’>, ’B’, ’E’, ’C’, ’D’, ’F’]

V. Recherche d'un plus court chemin

On s’intéresse maintenant a un graphe pondéré avec des poids positifs. Le chemin le plus court est celui de
cotit, c’est-a-dire la somme des poids des arétes, le plus faible.

V.1 Algorithme de Dijkstra

Cet algorithme, publié par Edsger DIJKSTRA en 1959, utilise un parcours en largeur et calcul le plus
court chemin entre un sommet et chacun des autres sommets.
On suppose le graphe connexe et non orienté.

IV.1.a) Principe

Si le plus court chemin entre deux sommets D et A passe par un sommet I, alors la partie de ce chemin
entre D et [ est le plus court chemin de D a I, et la partie entre I et A est le plus court chemin entre I et A.
A chaque étape, on effectue donc le meilleur choix possible. C’est un algorithme glouton.

L’algorithme est semblable a celui d’'un parcours en largeur d’abord, mais au lieu d’utiliser une file pour les
sommets en attente, on utilise une fil de priorité. Cela signifie qu’on extrait le sommet ayant la priorité, dans
ce cas c’est celui qui correspond a la distance minimale.




Yo b | |

1 ITC — Graphes PC/PSI
Page 6 / 8 Année 2025-2026

IV.1.b) Exemple
On considere le graphe représenté ci-dessous et on cherche le plus court chemin entre le sommet A et chacun
des autres sommets du graphe. On affecte la valeur co a chaque sommet, sauf au sommet A de départ, a qui on
affecte la valeur 0. A chaque étape :
(a) On choisit le sommet dont la distance depuis A dans le tableau est minimale.
(b) On regarde ses différents voisins encore accessibles (c¢’est-a-dire qui n’ont pas déja été choisis).
(c) On compare la distance avec laquelle on arrive aux différents voisins depuis ce sommet, a la distance avec
laquelle on avait pu y arriver jusque la (I'infini, ou une autre distance par un autre chemin). On garde la
distance minimale avec laquelle on peut arriver a ce voisin.

B=F13 —2—C D the A bHCDEF GH
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IV.1.c) Implémentation en python

Pour représenter ’ensemble des sommets et leur distance, nous allons utiliser un dictionnaire dont les sommets
sont les clés et les distances leurs valeurs.

A chaque étape, il faut comparer la distance & laquelle se trouve chaque sommet. Il faut donc commencer
par écrire une fonction qui renvoie la clé de valeur minimale.

def minimum(dico):
mini=float(’inf’) # initialisation de la valeur minimale
for cle in dico : # parcours des clés de dico
if dicolclel<mini: # clé de valeur <au minimum local
mini=dicol[cle] # on a trouvé un nouveau minimum local
cle min=cle # clé de valeur=minimum local actuel

return cle_min




-
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def Dijkstra(graphe,S):
res={} # dictionnaire des valeurs minimales de distance entre le sommet
S et chacun des autres sommets
dist={cle:float(’inf’) for cle in graphe} # initialisation du
dictionnaire des distances
dist [S]=0 # sommet S de départ, distance=0
while len(dist)>0: # tant que d n’est pas vide, il reste des sommets a
visiter
# (a)
smin=minimum(dist) # sommet de distance minimale
res[smin]=dist[smin] # on copie le sommet smin et sa distance dans
le dictionnaire des résultats
for k in range(len(graphel[smin])): # parcours des voisins de smin
# (b)
v,d=graphe[smin] [k] # v : nom du voisin, d distance & laquelle
il se trouve de smin
if v not in res: # on ne s’intéresse qu’au voisin non déja
choisi
# (c)
dist[v]=min(dist[v],dist[smin]+d) # on choisit la distance
minimale entre celle avec laquelle on aurait déja pu arriver a v (dist[v])
, et celle avec laquelle on arrive depuis smin (dist[smin]+d)
res[smin]=dist [smin] # on copie le sommet smin et sa distance dans
le dictionnaire des résultats
del dist[smin] # on supprime smin de dist, qui contient les sommets
qu’il reste a visiter
return res

V.2 Algorithme A*

IV.2.a) Principe

Peter E. HART, Nils John NILSSON et Bertram RAPHAEL ont proposé un algorithme de recherche dun
chemin nommé algorithme A* qui fournit un chemin entre deux sommets donnés. C’est une extension de
I’algorithme de Dijkstra.

Cet algorithme fournit 1'une des meilleurs solutions rapidement. Il est utilisé en intelligence artificielle et
dans des applications de jeux vidéos pour lesquels le plus important est la vitesse d’obtention d’une solution,
méme si elle n’est pas optimale.

L’algorithme utilise une évaluation heuristique sur chaque sommet afin de parvenir a trouver le meilleur
chemin. Les sommets sont visités suivant I'ordre donné par cette évaluation.

Une méthode heuristique est une méthode de résolution utilisée pour obtenir une solution rapidement, pas
forcément la meilleure, quand d’autres algorithmes ont une complexité en temps trop élevée. On n’explore pas
toutes les possibilités pour trouver la solution optimale, mais on les filtre a 1’aide de données supplémentaires
provenant de mesures, d’expériences, ou de statistiques.

Dans une recherche de distance minimale dans un graphe représentant un réseau routier, les valeurs heuris-
tiques peuvent étre les distances « a vol d’oiseau. »

IV.2.b) Exemple

Exemple 4. On étudie le graphe ci-dessous, et on souhaite déterminer le chemin le plus court pour
aller du sommet ’S’ au sommet ’E’. Ce graphe est représenté par le dictionnaire des listes d’adja-
cences, et on choisit ’heuristique donnée par les valeurs heuristiques distance « a vol d’oiseau » jusqu’a
) E ) .
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On obtient le parcourt suivant : S-B-H-G-E, pour une distance totale de 7.
Le résultat dépend de I’heuristique choisi.

IV.2.c) Implémentation en python

def A _etoile(graphe,deb,fin,h):

res={} # dict. des distances minimales entre deb et les autres
dist={cle:float(’inf’) for cle in graphe} # dict. des distances
dist[deb]l=0 # sommet deb de départ, distance=0
disth={cle:dist[cle]l+h(cle) for cle in graphe} # dictionnaire des
distances tenant compte de 1l’heuristique
while fin in dist: # tant qu’on n’est pas arrivée au sommet fin
smin=minimum(disth) # sommet de dist min pour démarrer une étape
res[smin]=dist[smin] # copie de smin et sa distance dans res
for k in range(len(graphe[smin])): # parcours des voisins de smin
v,d=graphe[smin] [k] # v : nom du voisin, d distance a laquelle
il se trouve de smin
if v not in res: # voisin non déja choisi
dist[v]=min(dist[v],dist[smin]+d) # on choisit la dist min
entre celle avec laquelle on aurait déja pu arriver a v (distl[v]), et
celle avec laquelle on arrive depuis smin (dist[smin]+d)
disth[v]=dist[v]+h(v) # nouvelle distance minimale tenant
compte de 1l’heuristique
res[smin]=dist[smin] # on copie le sommet smin et sa distance dans
le dictionnaire des résultats
del dist[smin] # on supprime smin de dist, qui contient les sommets
qu’il reste a visiter
del disth([smin]
return res
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