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Questions de cours
• Superposition de N ondes cohérentes entre elles, de même amplitude et dont la différence

de phase φ entre deux sources consécutives est constante : établir l’expression de l’intensité
lumineuse en fonction de I0, N et φ. Donner la condition d’interférences constructives et
interpréter l’effet de N sur la figure d’interférences.

• Partant de la formule des interférences à N ondes IpMq “ I0

sin2

ˆ

Nφ

2

˙

sin2
´φ

2

¯ , établir la demi-

largeur des franges brillantes.
• Réseau en transmission : présentation, formule des réseaux (bien définir les grandeurs

intervenant dedans !), application.
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‹

Prise de notes : Contexte concret : On a la lumière émise par une lampe spectrale
(spectre de raies) : comment mesurer les différentes longueurs d’onde dans le spectre ?

• Interféromètre des trous d’Young ou de Michelson ? Non. Les ondes
émises aux différentes longueurs d’onde ne sont pas synchrones entre elles : les
différents systèmes de franges ou d’anneaux se somment et brouillage. On peut se
servir du brouillage pour déterminer ∆λ mais pas λ. (Dans certains cas, on peut
déterminer le λ0 moyen, mais il faut alors que le brouillage intervienne loin de la
frange centrale. C’est le cas avec le doublet du sodium.)

• Utiliser un système dispersif 2 systèmes différents :
– Prisme : Rappel sur ce qu’est la dispersion : vφpωq ñ npλq. Loi empirique

de Cauchy : n “ A `
B

λ2
(A et B positifs) (n plus petit dans le rouge). En

déduire les trajets des RL dans un prisme. Super pour visualiser à l’œil, mais
pas pratique pour la mesure, car relation angle de sortie et λ compliquée. . .

– Réseau : Bien plus pratique pour faire des mesures précises. Principe global
et en déduire le fait que N ondes cohérents interfèrent entre elles.

Ce chapitre a trois objectifs principaux :

1. Etablir l’expression de l’intensité lumineuse résultant de la superposition de N ondes co-
hérentes entre elles grâce à la notation complexe.

2. Utiliser la représentation de Fresnel pour interpréter efficacement l’effet de la superposition
d’ondes cohérentes.

3. Etablir la formule des réseaux.

I Superposition de N ondes cohérentes entre elles

Nous allons étudier la superposition de N ondes émises par N sources (sources secondaires)
monochromatiques de longueur d’onde dans le vide λ0, cohérentes entre elles. On suppose qu’au
point M où elles interfèrent :

• les N ondes ont toutes la même amplitude s0.
• la différence entre les retards de phase des ondes émises par 2 sources consécutives Sn et
Sn`1 est une constante : φn`1pMq ´ φnpMq “ cste “ φ.

On cherche à tracer et interpréter l’intensité lumineuse en fonction de φ. Ce graphe va dépendre
de la valeur de N .

I.1 Utilisation de la notation complexe
Posons snpM,tq “ s0 cospωt ´ φnpMqq la vibration lumineuse en M , émise par la source Sn. En
notation complexe : snpM,tq “ s0 ejpωt´φnpMqq.

‹

Etant donné que les ondes sont cohérentes entre elles, il y a additivité des amplitudes
complexes : spM,tq “

řN
n“1 snpM,tq. L’intensité lumineuse totale est alors :

I “ K |spM,tq|
2

Il ne reste donc plus qu’à déterminer |spM,tq|
2.

La vibration lumineuse émise par la source Sn`1 est reliée à celle émise par Sn :

sn`1pM,tq “ s0 ejpωt´φn`1pMqq avec φn`1pMq “ φnpMq ` φ

Donc :
sn`1pM,tq “ snpM,tq e´jφ

Cette relation est vraie pour tout n. On reconnaît une suite géométrique de raison e´jφ.
On choisit alors d’exprimer toutes les vibrations lumineuses en fonction de s1pM,tq qui
sera la vibration de référence :

snpM,tq “ s1pM,tq e´jpn´1qφ
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‹
I.2 Raisonnement qualitatif : influence de N sur l’intensité lumineuse
Pour raisonner qualitativement, utilisons la représentation graphique de Fresnel.

Représentation de Fresnel (rappel) :
La représentation de Fresnel consiste à représenter les amplitudes complexes dans le plan complexe
(sous forme de vecteurs).

Quitte à redéfinir l’origine des temps, on peut toujours choisir l’un des retards de phase pour l’un
des signaux comme étant nul. On choisit ici d’imposer une phase nulle pour s1pM,tq. On dit
qu’on choisit s1 comme origine des phases. Ainsi, on a s1pM,tq “ s0 ejωt “ S1 ejωt avec S1 “ s0
l’amplitude complexe de s1.

Réalisons par exemple la représentation de Fresnel dans le cas N “ 4.

‹ Représentation de Fresnel dans le cas N “ 4.

Dans la suite, on se base sur la simulation https://femto-physique.fr/simulations/reseaux-
construction-de-fresnel.php pour expliquer l’influence de la valeur de N .

Cas N “ 2 :

Ce cas correspond au chapitre OO2, dans le cas particulier où I1 “ I2 “ I0.

(a) φ quelconque (b) φ “ 2kπ avec k P Z (c) φ “ π ` 2kπ avec k P Z

‹ Légender
# »

S1,
# »

S2 et
#»

S sur le cas φ qq. Indiquer : intensité max : interf constructives /
intensité min : interf destructives
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Cas N quelconque :

Figure 2: N “ 20 et φ “ 2kπ avec k P Z

‹ On aura une intensité maximale si tous les vecteurs
# »

Sn sont colinéaires de même sens,
c’est-à-dire si φ “ 2kπ avec k P Z.

Condition d’interférences constructives

Dans le cas d’interférences à N ondes, l’intensité lumineuse sera maximale si toutes les
vibrations lumineuses sont en phase les unes avec les autres : φ “ 2kπ avec k P Z. Il s’agit
de la condition d’interférences constructives.

Cette condition est inchangée par rapport au cas N “ 2.

‹ On a alors
#»

S “ N
# »

S1 ñ Imax “ K
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#»

S
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ K
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

# »

S1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

N2 “ N2I0. Plus N est grand, plus
l’intensité lumineuse maximale est grande.

On retiendra que l’intensité lumineuse maximale augmente en N2 : elle augmente donc très vite
quand N augmente.

(a) N “ 2 et φ quelconque (b) N “ 10 et φ quelconque (c) N “ 20 et φ quelconque
Figure 3: La simulation est faite pour que la longueur de

#»

S correspondant à Imax soit toujours
la même, quelque que soit N (redimensionnement de la longueur de

# »

S1).

‹
Partons de φ “ 2kπ et augmentons φ. L’intensité lumineuse diminue, d’autant plus
rapidement que N est grand. On retiendra que les franges brillantes deviennent plus
fines lorsque N augmente.
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I.3 Raisonnement quantitatif : expression de l’intensité lumineuse

Dans la sous-partie I.1, nous avons établi que, pour tout n compris entre 1 et N :

snpM,tq “ s1pM,tq e´jpn´1qφ

Par additivité des amplitudes complexes (ondes cohérentes entre elles) :

spM,tq “

N
ÿ

n“1

snpM,tq “ s1pM,tq
N
ÿ

n“1

e´jpn´1qφ

‹

On reconnaît la somme des N premiers termes d’une suite géométrique de raison e´jφ.
Donc :

spM,tq “ s1pM,tq
1 ´ e´jNφ

1 ´ e´jφ
et IpMq “ K

ˇ

ˇs1pM,tq
ˇ

ˇ

2

loooooomoooooon

“I0

ˇ

ˇ

ˇ

ˇ

1 ´ e´jNφ

1 ´ e´jφ

ˇ

ˇ

ˇ

ˇ

2

Maths (passer par la semi-somme) :

ˇ

ˇ

ˇ

ˇ

1 ´ e´jNφ

1 ´ e´jφ

ˇ

ˇ

ˇ

ˇ

2

“
sin2

pNφ{2q

sin2
pφ{2q

Ainsi :

IpMq “ I0
sin2

pNφ{2q

sin2
pφ{2q

Sur les figures ci-dessous, on a représenté
I

Imax
en fonction de φ pour différentes valeurs de N .

Imax est l’intensité lumineuse maximale.
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On retrouve les conclusions faites avec le raisonnement qualitatif, que l’on va pouvoir compléter :

• On observe une série de pics au centre desquels l’intensité est maximale : on parle de
maxima principaux. Ces maxima principaux sont atteints pour φ “ 2kπ avec k P Z,
c’est-à-dire lorsque les ondes sont toutes en phase. On retrouve la condition d’interférences
constructives.

• Plus N est grand, plus la finesse des maxima principaux est grande.
• On observe en plus la présence de maxima secondaires entre deux maxima principaux.

L’intensité de ces maxima secondaires est bien plus faible que celle des maxima principaux.
Le nombre de maxima secondaires augmente quand N augmente.

Enfin, déterminons explicitement la largeur des maxima principaux en s’appuyant sur la formule
déterminée.

Largeur des maxima principaux :

On cherche les valeurs de φ telles que Ipφq “ I0
sin2

pNφ{2q

sin2
pφ{2q

“ 0.

‹

Ceci sera vérifié si sinpNφ{2q “ 0 et que sinpφ{2q ‰ 0. Donc :

Nφ

2
“ qπ ðñ φ “

2qπ

N
et

φ

2
‰ kπ ðñ φ ‰ 2kπ

avec pq,kq P Z2.
Représentation d’un maximum principal et représentation de la demi-largeur des max-

ima principaux ∆φ1{2 “
2π

N
On retrouve que plus N est grand, plus les maxima principaux sont fins.
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Demi-largeur des maxima principaux

Les maxima principaux ont une demi-largeur de

∆φ1{2 “
2π

N

Plus N est grand, plus ces maxima principaux sont fins.

Remarque : On peut interpréter la condition I “ 0 pour φ “
2qπ

N
‰ 2kπ dans la représentation de

Fresnel. En effet, pour ces valeurs de φ, Nφ est un multiple de 2π : les vecteurs mis bout à bout forment
un cercle et induisent que l’intensité lumineuse résultante est effectivement nulle.

II Application concrète de l’interférences à N ondes : le
réseau de diffraction

II.1 Pourquoi observe-t-on des interférences avec un réseau ?
Un réseau est une surface diffractante sur laquelle un motif est répété un grand nombre N de
fois. La période spatiale de répétition du motif s’appelle le pas a du réseau. Les motifs sont
appelés les traits du réseau.
Un réseau peut être aussi caractérisé par son nombre de traits par millimètre.

Le motif sera généralement une fente, mais il existe d’autres réseaux avec un motif différent (par
exemple, la surface d’un CD est formée de petits creux régulièrement espacés : cette surface agit
comme un réseau).

Dans le cadre du cours, nous considérerons uniquement des réseaux par transmission pour lesquels
la lumière traverse le réseau, mais il existe aussi des réseaux par réflexion (par exemple : le CD).

Modélisation d’un réseau par transmission :

On appelle :

• a le pas du réseau
• ε la largeur d’une fente et ℓ sa hauteur
• L la largeur éclairée du réseau et N le nombre de fentes éclairées : L » Na

Ordres de grandeur :

• Caractéristiques de la fente : ε „ 500 nm à 1 µm et ℓ „ 5 cm
• Caractéristiques du motif : environ 1000 traits/mm.

‹ Le pas du réseau est donc a “
1

1000
mm, soit a „ 1µm.
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• Largeur éclairée par la source lumineuse : L „ 1mm. On en déduit le nombre N de

fentes éclairées : N “
L

a
„ 1000

On éclaire toujours un réseau par une onde plane incidente, c’est-à-dire un faisceau parallèle de
rayons lumineux provenant du même point source primaire S.

Conséquences des ordres de grandeur et des conditions d’éclairage :

‹

• Cohérence : Les rayons lumineux arrivant sur toutes les fentes du réseau provi-
ennent du même point source primaire : les ondes sont cohérentes spatialement
entre elles.

• Diffraction : ε ă 1000λ : il y a diffraction dans la direction #»ex. Cela permet
d’obtenir un champ d’interférences non nul. En revanche, ℓ ą 1000λ : pas de
diffraction selon #»ey.

• N ondes : N " 1 :
– l’intensité des maxima principaux est beaucoup plus importante que celle des

maxima secondaires : on n’observe que les maxima principaux.
– les maxima principaux sont très fins.

II.2 Formule des réseaux

On considère un réseau éclairé par une source primaire S ponctuelle et monochromatique de
longueur d’onde dans le vide λ0. Cette source est située à l’infini. On appelle n l’indice optique
du milieu homogène de propagation.

Appelons θ0 l’angle d’incidence sur le réseau (par définition d’un angle d’incidence, il est défini
par rapport à la normale du réseau).

On choisit d’étudier les interférences à l’infini, en un point M . Appelons θ l’angle repérant la
direction de diffraction associée au point M .

Soient O1, O2, ..., ON les centres des traits du réseau. Déterminons la différence de chemins
optiques δpMq entre deux traits consécutifs.

‹
On définit : δpMq “ pSMqj ´ pSMqj`1.
D’après le théorème de Malus, Oj et H 1 sont sur la même surface d’onde relative à S
: pSOjq “ pSH 1q. D’après le théorème de Malus et le principe de retour inverse de la
lumière, Oj`1 et H sont sur la même surface d’onde relative à M : pOj`1Mq “ pHMq.
Donc : δpMq “ pOjHq ´ pH 1Oj`1q “ n pOjH ´ H 1Oj`1q “ n pa sinpθq ´ a sinpθ0qq

On en déduit la différence de phase entre deux ondes émises par deux traits successifs
du réseau :

φ “
2π

λ0
na p sinpθq ´ sinpθ0qq

Cette différence de phase entre deux ondes émises par deux traits successifs est constante. On
est donc dans le cas traité dans la partie I.
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‹

On sait donc que le maximum principal d’ordre k vérifie φ “ 2kπ avec k P Z. Donc, les
maxima principaux vérifient :

2π

λ0
na p sinpθkq ´ sinpθ0qq “ 2kπ ðñ sinpθkq ´ sinpθ0q “

kλ0

na

Formule des réseaux (A savoir par coeur)
On appelle alors k l’ordre de diffraction du réseau. Cette formule donne la direction
des maxima d’intensité derrière un réseau.

II.3 Montage expérimental

Source primaire ponctuelle

On souhaite éclairer le réseau avec une onde plane : on place donc en pratique la source primaire
S dans le plan focal objet d’une lentille convergente pL1q. On souhaite observer les interférences
à l’infini : on place donc un écran dans le plan focal image d’une lentille convergente pL2q.

Concrètement, on utilisera un dispositif nommé spectrogoniomètre à réseau, dans lequel la lentille
pL2q pourra être déplacée. En la déplaçant, nous observerons successivement chacun des maxima
d’intensité lumineuse, pour chaque ordre de diffraction k.

Fente source primaire

Pour gagner en luminosité, on sera ammené à utiliser une fente source primaire plutôt qu’une
source primaire ponctuelle. Cela ne pose aucun problème, car la diffraction n’a pas lieu selon la
direction des fentes du réseau et que les différents points sources de la fente émettent des ondes
incohérentes entre elles : les intensités lumineuses se somment sur l’écran.

On obtiendra alors des figures d’interférences de ce type :
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Exercice : On éclaire un réseau ayant 500 traits par millimètre avec un faisceau incident
parallèle normal de longueur d’onde λ “ 600 nm. On travaille dans l’air assimilable au vide.
Déterminer le nombre maximal de pics de diffraction observables.

‹

Sont fixés : a “
1mm

500
“ 2 ˆ 10´6 m, λ, n “ 1 et θ0 “ 0. On a :

| sinpθkq| “
|k|λ

a
ď 1 ñ |k| ď

a

λ
“ 3.3

Au maximum, on voit donc 7 pics de diffractions (ordres -3, -2, -1, 0, 1, 2, 3).
En pratique, ordres ˘3 faiblement observables car peu d’intensité diffractée à ces
grands angles. Et on retient : on ne pourra souvent pas faire de DL car pas de petits
angles.

II.4 Application : mesure des longueurs d’onde du spectre d’émission
d’une source

Considérons désormais une source primaire (ponctuelle ou sous forme de fente) polychromatique
éclairant un réseau. On réalise les montages expérimentaux précédents. Comme les ondes émises
par différentes longueurs d’onde sont incohérentes entre elles, il y a additivité de l’intensité lu-
mineuse résultant de chaque longueur d’onde λ0. Ainsi la formule des réseaux s’applique pour
chacune des longueurs d’onde λ0 :

sinpθkq “ sinpθ0q `
kλ0

na

Ordre 0 :

‹ Quelque que soit λ0, sinpθq “ sinpθ0q ñ θ “ θ0 (angles compris dans r´π{2, π{2s).
Ainsi, l’ordre 0 n’est pas dévié par le réseau : on dit que l’ordre 0 n’est pas dispersif.

Pour l’ordre 0, l’optique géométrique s’applique donc (aucune déviation par le réseau), et le point
M est l’image géométrique de S.

Ordre k ‰ 0 :

‹ La position des maxima d’intensité dépend alors de λ0 : on parle d’ordres dispersifs.

Ainsi, si le pas du réseau a (ainsi que l’indice n du milieu de propagation) est connu, alors le
réseau permet de mesurer les longueurs d’onde λ0 du spectre d’émission de la source. Le réseau
est le constituant principal d’un spectromètre.
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Exemple de figure obtenue sur un écran :

Commentaires sur la figure d’interférences :

• On observe bien la dispersion de la lumière pour tous les ordres k ‰ 0.
• Dans un ordre k donné, en partant de θ “ θ0, on observe d’abord le bleu puis les différentes

couleurs par ordre croissant de longueur d’onde puis en dernier le rouge.
• La différence entre les angles θ relatifs aux couleurs rouge et bleu dans un ordre k augmente

avec k : plus l’ordre est grand plus le réseau est dispersif et plus les différentes couleurs
sont séparées angulairement.

Remarque : Pouvoir de résolution d’un réseau : Du fait de la largeur des maxima principaux, les
pics de diffraction associées à des longueurs d’onde très proches peuvent se superposer. Un réseau a donc
une certaine résolution spectrale et ne permet pas de distinguer des longueurs d’onde trop proches. La
résolution augmente si l’ordre k augmente ou si le nombre N de fentes éclairées augmente.

II.5 Minimum de déviation
Expérimentalement, il n’est pas aisé de déterminer précisément la direction de la normale au
réseau (cela est possible, mais un peu technique). Le souci est que tous les angles θk et θ0
sont définis à partir de cette normale... Comment peut-on s’affranchir de la connaissance de la
direction de la normale au réseau tout en déterminant néanmoins les longueurs d’onde λ0 ?

L’astuce est de mesurer non pas θk, mais l’angle de déviation Dk “ θk ´ θ0. Cet angle dépend de
l’ordre k et de la longueur d’onde λ0 étudiés. Considérons donc k et λ0 fixés. (Expérimentalement,
cela revient à étudier l’une des raies visibles derrière le réseau.)

En faisant varier l’angle θ0, on se rend compte que Dk passe par un minimum, que l’on notera
Dk,m. On cherche à exprimer théoriquement ce minimum de déviation.

cbna Lycée Rabelais - PC - 2025-2026 - C. Logé 11



Etape 1 : Différentions l’angle de déviation et plaçons nous au niveau du minimum de cet angle
Dk :

dDk “ dθk ´ dθ0 “ 0 ñ dθk “ dθ0

Etape 2 : Différentions la relation des réseaux, sachant que seuls θ0 et θk peuvent être modifiés
:

sinpθkq ´ sinpθ0q “
kλ0

na
ñ cospθkqdθk ´ cospθ0qdθ0 “ 0 ñ cospθkq “ cospθ0q

Les angles θk et θ0 étant compris dans r´π{2,π{2s, les deux solutions possibles sont :

• θk “ θ0 : c’est le cas de l’ordre 0, inintéressant dans le but d’accéder aux valeurs de λ0. On
exclut donc expérimentalement cette situation.

• θk “ ´θ0 : situation intéressante. Le maximum d’intensité est donc dans une direction
symétrique à la direction de l’ordre 0 par rapport à la normale du réseau.

En se plaçant donc au minimum de déviation, on a θk “ ´θ0, soit Dk,m “ θk ´ θ0 “ 2θk et soit :

sinpθkq ´ sinpθ0q “ 2 sinpθkq “
kλ0

na

On aboutit à la formule des réseaux exprimée avec le minimum de déviation :

sin
ˆ

Dm,k

2

˙

“
kλ0

2na

Dm,k étant facile à mesurer en pratique, on en déduit aisément la valeur de λ0.
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Exercices

Ex. 1 (Ecrit CCINP TPC 2023) Couleur du canard colvert

Le canard colvert mâle possède, autour de son cou et de sa tête, un plumage dont la teinte varie selon la direction
d’observation. Pour interpréter ce phénomène, il faut s’intéresser au plumage du canard, et en particulier à une
structure de minces lamelles parallèles appelées microlamelles au sein de ce plumage. Chaque microlamelle se
comporte comme un petit miroir réfléchissant la lumière. Entre deux lamelles se situe de la mélanine absorbant la
lumière. Ainsi ces microlamelles s’apparentent aux traits d’un réseau plan qui peut être modélisé soit par la figure
6a, soit par la figure 6b :

La distance entre deux lamelles est notée a. On donne a “ 0.56 µm. S représente une source ponctuelle de lumière
monochromatique, de longueur d’onde λ0, située à l’infini, envoyant un faisceau de rayons. L’observation se fait en
un point M situé à l’infini.

1. La structure en microlamelles constitue-t-elle un réseau par réflexion ou par transmission ?
2. Dans le cas du réseau plan par transmission, on s’intéresse à deux rayons, l’un passant par On, l’autre par

On`1. Justifier que ces deux rayons interfèrent ensemble au point M . Déterminer la différence de marche
δpMq.

3. Pour quelles valeurs de δpMq les ondes interfèrent entre-elles de façon constructive ?
4. Dans le cas des réseaux par réflexion, montrer par analogie que les maxima d’intensité lumineuse sont donnés

pour des angles θk tels que :

sinpθkq ` sinpθ0q “
kλ0

a

avec k un entier relatif.
5. Application : de quelle couleur apparaît la tête d’un canard colvert, dont les microlamelles sont éclairées en

incidence normale par des rayons provenant du Soleil, d’une part pour l’observateur A et d’autre part pour
l’observateur B supposés suffisamment éloignés (figure 7) ? On justifiera que l’on ne tient compte que des
ordres k “ ˘1.

cbna Lycée Rabelais - PC - 2025-2026 - C. Logé 13



Correction de l’exercice 1
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Ex. 2 Pouvoir de résolution d’un réseau

On éclaire un réseau par transmission de pas a “
L

N
(L représente la largeur utile du réseau et N le nombre de

fentes éclairées) au moyen d’une source placée au foyer objet d’une lentille convergente et on observe l’intensité
produite par celui-ci dans le plan focal image d’une lentille. Le réseau est éclairé en incidence normale. On appelle
θ l’angle d’émergence, variable, du réseau.

1. On suppose pour le moment que la source lumineuse ponctuelle est monochromatique de longueur d’onde
λ. Déterminer l’expression de la différence de chemins optiques entre deux ondes émises par deux fentes
successives du réseau et interférant en un même point M de l’écran.

On donne l’expression de l’intensité lumineuse obtenue en un point M de l’écran :

IpMq “ I0

sin2

ˆ

Nφ

2

˙

sin2
´φ

2

¯

avec φ le déphasage entre deux ondes émises par deux fentes successives du réseau.

2. Expliquer comment procéder pour obtenir cette formule. Exprimer φ dans le cas du réseau par transmission.
3. Obtenir l’expression de la demi-largeur en phase ∆φ des maxima principaux de diffraction. Représenter alors

le graphe de l’intensité lumineuse en fonction de l’angle θ. Commenter.
4. On considère désormais que la source émet deux radiations à des longueurs d’onde λ et λ ` ∆λ. Représenter

de nouveau l’intensité lumineuse en fonction de l’angle θ.
5. On cherche à déterminer l’écart minimal ∆λ entre deux longueurs d’onde pour que celles-ci soient séparables

par le réseau. On utilisera le critère de Rayleigh : deux longueurs d’onde sont séparables dans un ordre donné,
si la distance entre les maxima principaux est supérieure ou égale à la demi largeur d’un maximum principal.

Déterminer le pouvoir de résolution
λ

∆λ
pour un ordre k fixé. Commenter.

Correction de l’exercice 2

1. Cours (faire directement un schéma sous incidence normale sur le réseau). On aboutit à δpMq “ a sinpθq.
2. Procédure pour obtenir l’intensité lumineuse :

(a) On exprime la vibration lumineuse complexe sn émise par la fente n en fonction de la vibration lumineuse
s1 prise comme référence.

(b) Comme les N ondes sont cohérentes entre elles, il y a additivité des vibrations lumineuses complexes :
spM,tq “

řN
n“1 snpM,tq.

(c) On ré-écrit spM,tq en reconnaissant une somme des premiers termes d’une suite géométrique.
(d) On en déduit IpMq9 |spM,tq|

2, que l’on ré-écrit pour obtenir l’expression demandée.
Dans le cas du réseau par transmission en incidence normale, φ “

2π

λ
δpMq “

2π

λ
a sinpθq.

3. Les maxima principaux de diffraction sont atteints pour des ondes toutes en phase, soit φ “ 2kπ avec k P Z
(on retrouve ceci en imposant que le dénominateur de IpMq s’annule).
La demi-largeur des maxima principaux se détermine en cherchant les valeurs de φ telles que Ipφq “ 0. Une

condition nécessaire est d’imposer sinpNφ{2q “ 0 ñ φ “
2qπ

N
avec q P Z. Ainsi, la première annulation

suivant un maximum principal d’ordre k est atteint pour φ “ 2kπ `
2π

N
. La demi-largeur des maxima

principaux est ∆φ “
2π

N
.

Pour un réseau, N " 1 : on n’observe que les maxima principaux de diffraction, qui sont fins, mais pas
infiniment fins.
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4.
5. On se place à la limite du critère de Rayleigh. Pour une même valeur de θ, le centre du maximum principal

d’ordre k associé à λ ` ∆λ coïncide avec l’annulation du maximum principal d’ordre k associé à λ. Ainsi :

φ1 “ 2kπ `
2π

N
“

2π

λ
a sinpθq et φ2 “ 2kπ “

2π

λ ` ∆λ
a sinpθq

on en déduit :
λ

∆λ
“ Nk

meilleure séparation si k augmente et si N augmente !

Ex. 3 (Ecrit Centrale PC 2025) Rayonnement émis dans l’ondulateur du XFEL

Les lasers à électrons libres à rayons X (XFEL) produisent des rayons X cohérents en accélérant des électrons à
travers des ondulateurs, qui sont des systèmes permettant de moduler spatialement le champ magnétique. Ces lasers
génèrent des impulsions lumineuses ultra-brèves, de l’ordre de la femtoseconde (10´15 s), permettant d’étudier des
dynamiques atomiques et moléculaires à des échelles temporelle et spatiale très fines, et très intenses. Il existe une
dizaine de XFEL à travers le monde. Dans ce sujet, nous nous intéressons plus particulièrement au XFEL européen,
installé près de Hambourg en Allemagne, qui a commencé à fonctionner en 2017.

Après avoir été accélérés, les électrons abordent l’ondulateur qui est l’élément central du laser à électrons libres.
Dans cette structure les électrons sont déviés par des champs magnétiques et suivent une trajectoire périodique dans
l’espace : ils sont donc accélérés. Une particule chargée accélérée émet un rayonnement, ici sous forme d’impulsions
ultracourtes de rayons X.

Les ondes électromagnétiques émises par l’électron au fur et à mesure de sa trajectoire dans l’ondulateur peuvent
interférer. Nous allons étudier le résultat de ces interférences dans cette section.

À l’instant t1, l’électron se trouve en z “ z1 lorsqu’il émet alors une onde électromagnétique. Sur le schéma de la
figure 9, l’électron est représenté par un point, sa trajectoire est indiquée en pointillées, et l’onde qu’il est en train
d’émettre est représentée très schématiquement en trait fin continu.
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À l’instant t2, l’électron a parcouru une période de sa trajectoire sinusoïdale (voir la figure 9 à droite) : il se trouve
en z2 “ z1 ` λu et rayonne alors une nouvelle onde électromagnétique. Cette onde qui est émise en t “ t2 doit
interférer constructivement avec l’onde qui a été émise par le même électron en t “ t1. Sur le schéma à droite de la
figure 9 l’onde émise à l’instant t1, qui s’est propagée, est dessinée en trait fin noir. L’onde qui est en train d’être
émise à t “ t2est représentée en trait épais gris.

Pour modéliser le système, on considère un ensemble de N sources situées le long de l’axe pOzq (avec x “ 0), comme
représenté sur la figure 10.

La p-ème source, qui se trouve en zp “ pλu émet une onde électromagnétique vers les z croissants que l’on écrit
sous la forme :

sppz,tq “ S0 cos
ˆ

α ˆ

ˆ

t ´ p
λu

vm

˙

´ k ˆ pz ´ pλuq

˙

où S0, α et k sont respectivement l’amplitude, la pulsation et le vecteur d’onde de l’onde électromagnétique, et vm
est la vitesse moyenne de l’électron selon la direction z.

1. Justifier l’expression de sp.

On place un détecteur en un point M situé sur l’axe pOzq en un point de coordonnée z ą Nλu. Ce détecteur reçoit
l’ensemble des ondes électromagnétiques émises par les sources. On introduit stot,N ptq le signal total reçu par le
détecteur :

stot,N ptq “

N´1
ÿ

p“0

sppz,tq

2. Montrer que l’amplitude de stot,N s’écrit sous la forme :

S0,N “ S0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sin
ˆ

N

2

ˆ

1

vm
´

1

c

˙

αλu

˙

sin
ˆ

1

2

ˆ

1

vm
´

1

c

˙

αλu

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Une étude mécanique montre que, dans le cadre de la relativité restreinte, la vitesse moyenne de l’électron dans la
direction z est

vm “ c

ˆ

1 ´
1

2γ2

˙ ˆ

1 ´
K2

4γ2

˙

avec
K

γ
! 1 et

1

γ
! 1 (γ est le facteur relativiste de Lorentz et K est une grandeur introduite par l’énoncé).

3. Montrer que l’amplitude de stot,N est maximale pour les fréquences Fq telles que :

Fq “
c

λu

2γ2

1 `
K2

2

q

où q est un entier naturel non nul.
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Pour l’ondulateur SASE1 du XFEL européen, on a K “ 2 et λu “ 4.0 cm et les électrons ont une énergie cinétique
égale à 17.5GeV, ce qui correspond à γ “ 3.4 ˆ 104.

4. En déduire la longueur d’onde correspondant à la plus petite fréquence d’interférences constructives F1.

Correction de l’exercice 3

1. On considère que l’onde émise par l’électron en z “ 0 à l’instant t “ 0 (source 0) est une OPH se propageant
dans le vide (on a d’après la relation de dispersion k “

α

c
).

Une nouvelle onde est émise par l’électron en z “ pλu (source p) à l’instant t “ p
λu

vm
. Cette onde est déphasée

spatialement et temporellement par rapport à l’onde émise en z “ 0 à t “ 0, ce qui explique la forme proposée
pour sppz,tq.

2. Comme l’onde sppz,tq est une OPH, on passe en notation complexe : sppz,tq “ S0 e
j

¨

˝α

¨

˝t´
pλu

vm

˛

‚´kpz´pλuq

˛

‚

.
L’amplitude réelle de stot,N peut alors s’écrire :

S0,N “
ˇ

ˇstot,N pz,tq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

N´1
ÿ

p“0

sppz,tq

ˇ

ˇ

ˇ

ˇ

ˇ

“ S0 ˆ 1 ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N´1
ÿ

p“0

e
jp

¨

˝kλu´
αλu

vm

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Avec la relation de dispersion dans le vide k “
α

c
. Ainsi :

S0,N “ S0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N´1
ÿ

p“0

e
jpαλu

˜

1

c
´

1

vm

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

On reconnaît la somme des N premiers termes d’une suite géométrique de raison e
jαλu

˜

1

c
´

1

vm

¸

. On a donc
:

S0,N “ S0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´ e
jNαλu

˜

1

c
´

1

vm

¸

1 ´ e
jαλu

˜

1

c
´

1

vm

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

En mettant en facteur la demi-somme des arguments des exponentielles du numérateur et du dénominateur :

S0,N “ S0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

e
´j

N

2
αλu

˜

1

c
´

1

vm

¸

´ e
j
N

2
αλu

˜

1

c
´

1

vm

¸

e
´j

1

2
αλu

˜

1

c
´

1

vm

¸

´ e
j
1

2
αλu

˜

1

c
´

1

vm

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ S0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sin
ˆ

N

2

ˆ

1

vm
´

1

c

˙

αλu

˙

sin
ˆ

1

2

ˆ

1

vm
´

1

c

˙

αλu

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3. Ce quotient sera maximal lorsque le dénominateur sera nul : il s’agit de la condition d’interférences construc-
tives (le numérateur est alors aussi nul). On a donc :

sin
ˆ

1

2

ˆ

1

vm
´

1

c

˙

αλu

˙

“ 0 ñ
1

2

ˆ

1

vm
´

1

c

˙

αλu “ qπ avec q P N˚

car tous les termes sont positifs et que la pulsation α ne peut pas être nulle. Ainsi, avec α “ 2πFq, on a

Fq “ q
1

λu

1
1

vm
´

1

c

En utilisant l’expression fournie de vm et en réalisant un DL à l’ordre 2 en
1

γ
, on obtient

1

vm
“

1

c

1

1 ´
1

2γ2

1

1 ´
K2

4γ2

“
1

c

ˆ

1 `
1

2γ2

˙ ˆ

1 `
K2

4γ2

˙

“
1

c

ˆ

1 `
1

2γ2

ˆ

1 `
K2

2

˙˙
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Ainsi :

Fq “
qc

λu
ˆ

1

1

2γ2

ˆ

1 `
K2

2

˙ “
c

λu

2γ2

1 `
K2

2

q

4. On calcule λ1 “
c

F1
“

λu

ˆ

1 `
K2

2

˙

2γ2
. A.N. : λ1 “ 52 pm, ce qui est bien dans le domaine des rayons X.
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