Optique ondulatoire

005| Interférences a N ondes cohérentes
entre elles
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Questions de cours

» Superposition de N ondes cohérentes entre elles, de méme amplitude et dont la différence
de phase ¢ entre deux sources consécutives est constante : établir 'expression de 'intensité
lumineuse en fonction de Iy, N et ¢. Donner la condition d’interférences constructives et
interpréter leffet de IV sur la figure d’interférences.

“(5)
sin® [ ——
2
Iy——————~

sin? (%)
largeur des franges brillantes.
» Réseau en transmission : présentation, formule des réseaux (bien définir les grandeurs
intervenant dedans !), application.

* Partant de la formule des interférences & N ondes I(M) = , établir la demi-
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Prise de notes : Contexte concret : On a la lumiére émise par une lampe spectrale

(spectre de raies) : comment mesurer les différentes longueurs d’onde dans le spectre ?

* Interférométre des trous d’Young ou de Michelson ? Non. Les ondes

émises aux différentes longueurs d’onde ne sont pas synchrones entre elles : les

différents systémes de franges ou d’anneaux se somment et brouillage. On peut se

servir du brouillage pour déterminer AX mais pas A. (Dans certains cas, on peut

déterminer le Ay moyen, mais il faut alors que le brouillage intervienne loin de la
* frange centrale. C’est le cas avec le doublet du sodium.)
+ Utiliser un systéme dispersif 2 systémes différents :

- Prisme : Rappel sur ce qu’est la dispersion : v,(w) = n(X). Loi empirique
de Cauchy : n = A + % (A et B positifs) (n plus petit dans le rouge). En
déduire les trajets des RL dans un prisme. Super pour visualiser & 1’ceil, mais
pas pratique pour la mesure, car relation angle de sortie et A compliquée. . .

- Réseau : Bien plus pratique pour faire des mesures précises. Principe global
et en déduire le fait que N ondes cohérents interférent entre elles.

Ce chapitre a trois objectifs principaux :

1. Etablir I'expression de l'intensité lumineuse résultant de la superposition de N ondes co-
hérentes entre elles grace a la notation complexe.

2. Utiliser la représentation de Fresnel pour interpréter efficacement 'effet de la superposition
d’ondes cohérentes.

3. Etablir la formule des réseaux.

I Superposition de N ondes cohérentes entre elles

Nous allons étudier la superposition de N ondes émises par N sources (sources secondaires)
monochromatiques de longueur d’onde dans le vide Ag, cohérentes entre elles. On suppose qu’au
point M ou elles interférent :

* les N ondes ont toutes la méme amplitude sg.
* la différence entre les retards de phase des ondes émises par 2 sources consécutives S,, et
Sp+1 est une constante : p,11 (M) — @, (M) = cste = .

On cherche a tracer et interpréter 'intensité lumineuse en fonction de ¢. Ce graphe va dépendre
de la valeur de N.

Posons s, (M,t) = so cos(wt — ¢, (M)) la vibration lumineuse en M, émise par la source S,,. En
notation complexe : s, (M,t) = so e/ (@t=¢n(M),

Etant donné que les ondes sont cohérentes entre elles, il y a additivité des amplitudes

complexes : s(M,t) = ZnN:1 Sn(M,t). L’intensité lumineuse totale est alors :

I=K|s(Mzt)

1l ne reste donc plus qu’a déterminer |s(M,t)[>.
La vibration lumineuse émise par la source S, ;1 est reliée a celle émise par S, :

* snp1 (Mt) = s et M) avee (M) = @ (M) + ¢

Donc : ‘
Spp1(Mt) = sp(Mt) 7%

Cette relation est vraie pour tout n. On reconnait une suite géométrique de raison e=7%.
On choisit alors d’exprimer toutes les vibrations lumineuses en fonction de s (M,t) qui
sera la vibration de référence :

SJ(Mvt) = ﬂ(M,t) efj("*l)@
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I[.2 Raisonnement qualitatif : influence de N sur l’intensité lumineuse

Pour raisonner qualitativement, utilisons la représentation graphique de Fresnel.
Représentation de Fresnel (rappel) :

La représentation de Fresnel consiste & représenter les amplitudes complexes dans le plan complexe
(sous forme de vecteurs).

Quitte a redéfinir 'origine des temps, on peut toujours choisir I'un des retards de phase pour I'un
des signaux comme étant nul. On choisit ici d’imposer une phase nulle pour s;(M,t). On dit
qu’on choisit s; comme origine des phases. Ainsi, on a s1(M,t) = sg /" = S; e/¥! avec S = s
Iamplitude complexe de s;.

Reéalisons par exemple la représentation de Fresnel dans le cas NV = 4.

* Représentation de Fresnel dans le cas N = 4.

Dans la suite, on se base sur la simulation https://femto-physique.fr/simulations/reseaux-
construction-de-fresnel.php pour expliquer l'influence de la valeur de N.

Cas N=2:

Ce cas correspond au chapitre OO2, dans le cas particulier ou I; = Iy = Iy.

©JIMMY ROUSSEL © JIMMY ROUSSEL ©JIMMY ROUSSEL

(a) ¢ quelconque (b) ¢ = 2k avec k€ Z (¢) p=m+2km avec ke Z

>* Légender 3’; , 3’; et S sur le cas ©» qq. Indiquer : intensité max : interf constructives /
intensité min : interf destructives
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Cas N quelconque :

® JIMMY ROUSSEL

= B

Figure 2: N = 20 et ¢ = 2kw avec k € Z

—>
On aura une intensité maximale si tous les vecteurs S,, sont colinéaires de méme sens,
c’est-a-dire si ¢ = 2km avec k € Z.

= Condition d’interférences constructives

Dans le cas d’interférences & N ondes, l'intensité lumineuse sera maximale si toutes les
vibrations lumineuses sont en phase les unes avec les autres : ¢ = 2k7m avec k € Z. 1l s’agit
de la condition d’interférences constructives.

Cette condition est inchangée par rapport au cas N = 2.

— — —[|2 —[|2
n a alors S = 1= Thax = = 1 = 0. Plus N est grand, plus
+* O 1 S =NS I K|S K ||S1|| N? = N?I,. Plus N d, pl

Iintensité lumineuse maximale est grande.

On retiendra que l'intensité lumineuse maximale augmente en N? : elle augmente donc trés vite
quand N augmente.

©JIMVYROUSSEL ©JIMMY ROUSSEL ©.JIMMY ROUSSEL
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(a) N =2 et ¢ quelconque (b) N =10 et ¢ quelconque (¢) N =20 et ¢ quelconque
Figure 3: La simulation est faite pour que la longueur de S Correspclr}dant & Inax soit toujours
la méme, quelque que soit N (redimensionnement de la longueur de Sy).

Partons de ¢ = 2km et augmentons . L’intensité lumineuse diminue, d’autant plus
* rapidement que N est grand. On retiendra que les franges brillantes deviennent plus
fines lorsque N augmente.
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1.3 Raisonnement quantitatif : expression de ’intensité lumineuse

Dans la sous-partie 1.1, nous avons établi que, pour tout n compris entre 1 et N :

su(Mt) = s1(M,t) e I(n=D¢

—

Par additivité des amplitudes complexes (ondes cohérentes entre elles) :

N N
s(Myt) = Z sn(M,t) = s1(M,t) Z e—d(n—1)p
n=1 ne1

On reconnait la somme des N premiers termes d’une suite géométrique de raison e™7%.

Donc :
1— —jNy 1— —jNyp 2
s(Mt) = sy (M) ————— et I(M) =K |si(Mt)]* |————
— 1— e JI% N 11— e7I%
=1
* Maths (passer par la semi-somme) :
1— V¢ > sin?(Ny/2)
1= emi® sin”(p/2)
Ainsi : 2(No/2)
sin“(Ng/2
IM) =ITo——— -~
sin?(i2/2)

Sur les figures ci-dessous, on a représenté 7 en fonction de ¢ pour différentes valeurs de N.
max

Iax est Uintensité lumineuse maximale.

1/ Iax

Représentation de I'intensité vibratoire pour N = 4.
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Représentation de I'intensité vibratoire pour N = 8.

I/Imax

i ] T { S o
—4r —27 0

2r %4

Représentation de I'intensité vibratoire pour N = 12.

On retrouve les conclusions faites avec le raisonnement qualitatif, que ’on va pouvoir compléter :

* On observe une série de pics au centre desquels l'intensité est maximale : on parle de
maxima principaux. Ces maxima principaux sont atteints pour ¢ = 2km avec k € Z,
c’est-a-dire lorsque les ondes sont toutes en phase. On retrouve la condition d’interférences
constructives.

* Plus N est grand, plus la finesse des maxima principaux est grande.

* On observe en plus la présence de maxima secondaires entre deux maxima principaux.
L’intensité de ces maxima secondaires est bien plus faible que celle des maxima principaux.
Le nombre de maxima secondaires augmente quand N augmente.

Enfin, déterminons explicitement la largeur des maxima principaux en s’appuyant sur la formule
déterminée.

Largeur des maxima principaux :

in?(Ny/2
On cherche les valeurs de ¢ telles que I(p) = IOM =0
sin®(¢/2)

Ceci sera vérifié si sin(Np/2) = 0 et que sin(p/2) # 0. Donc :

— =qT = Y= —— et b

N 27ék77<:>g07é2/€7r

* avec (q,k) € Z2.
Représentation d’'un maximum principal et représentation de la demi-largeur des max-

) o 27
ima principaux Ay = —

On retrouve que plus N est grand, plus les maxima principaux sont fins.
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— Demi-largeur des maxima principaux
Les maxima principaux ont une demi-largeur de
27

A901/2 = N

Plus N est grand, plus ces maxima principaux sont fins.

2
Remarque : On peut interpréter la condition I = 0 pour ¢ = % # 2km dans la représentation de

Fresnel. En effet, pour ces valeurs de ¢, Ny est un multiple de 27 : les vecteurs mis bout & bout forment
un cercle et induisent que 'intensité lumineuse résultante est effectivement nulle.

II Application concréte de l'interférences & N ondes : le
réseau de diffraction

Un réseau est une surface diffractante sur laquelle un motif est répété un grand nombre N de
fois. La période spatiale de répétition du motif s’appelle le pas a du réseau. Les motifs sont
appelés les traits du réseau.

Un réseau peut étre aussi caractérisé par son nombre de traits par millimétre.

Le motif sera généralement une fente, mais il existe d’autres réseaux avec un motif différent (par
exemple, la surface d’'un CD est formée de petits creux réguliérement espacés : cette surface agit

comme un réseau).

Dans le cadre du cours, nous considérerons uniquement des réseaux par transmission pour lesquels
la lumiére traverse le réseau, mais il existe aussi des réseaux par réflexion (par exemple : le CD).

Modélisation d’un réseau par transmission :

On appelle :

* a le pas du réseau
* ¢ la largeur d’une fente et ¢ sa hauteur
» L la largeur éclairée du réseau et N le nombre de fentes éclairées : L ~ Na

Ordres de grandeur :

* Caractéristiques de la fente : € ~ 500nm a 1um et £ ~ 5cm
* Caractéristiques du motif : environ 1000 traits/mm.

* Le pas du réseau est donc a = mm, soit ¢ ~ 1 pm.

1000
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* Largeur éclairée par la source lumineuse : L ~ 1mm. On en déduit le nombre N de

fentes éclairées : N = — ~ 1000
a

On éclaire toujours un réseau par une onde plane incidente, c’est-a-dire un faisceau paralléle de
rayons lumineux provenant du méme point source primaire S.

Conséquences des ordres de grandeur et des conditions d’éclairage :

* Cohérence : Les rayons lumineux arrivant sur toutes les fentes du réseau provi-
ennent du méme point source primaire : les ondes sont cohérentes spatialement
entre elles.

« Diffraction : ¢ < 1000\ : il y a diffraction dans la direction e,. Cela permet

* d’obtenir un champ d’interférences non nul. En revanche, £ > 1000\ : pas de
diffraction selon é,.

* Nondes: N »1:

- lintensité des maxima principaux est beaucoup plus importante que celle des
maxima secondaires : on n’observe que les maxima principaux.
- les maxima principaux sont trés fins.

On considére un réseau éclairé par une source primaire S ponctuelle et monochromatique de
longueur d’onde dans le vide Ag. Cette source est située a I’infini. On appelle n I'indice optique
du milieu homogéne de propagation.

Appelons 6y l'angle d’incidence sur le réseau (par définition d’un angle d’incidence, il est défini
par rapport a la normale du réseau).

On choisit d’étudier les interférences a 1’infini, en un point M. Appelons 0 'angle repérant la
direction de diffraction associée au point M.

Soient O1, O3, ..., Oy les centres des traits du réseau. Déterminons la différence de chemins
optiques §(M) entre deux traits consécutifs.

- %\_M I
Se T ndise )

S =

On définit : 6(M) = (SM)j - (SM)j+1.

D’aprés le théoréme de Malus, O; et H' sont sur la méme surface d’onde relative & S
: (SO,) = (SH’). D’apreés le théoréme de Malus et le principe de retour inverse de la
lumiere, O;41 et H sont sur la méme surface d’onde relative & M : (01 M) = (HM).
Donc : (M) = (0;H) — (H'Oj11) =n(0O;H — H'Oj41) = n(a sin(f) — a sin(by))

On en déduit la différence de phase entre deux ondes émises par deux traits successifs
du réseau :

27 . :
0= Tona( sin(f) — sin(6p))

Cette différence de phase entre deux ondes émises par deux traits successifs est constante. On
est donc dans le cas traité dans la partie I.
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On sait donc que le maximum principal d’ordre k vérifie o = 2km avec k € Z. Donc, les
maxima principaux vérifient :

2
ina( sin(fx) — sin(6p)) = 2km < sin(f;) — sin(fy) = ko
Ao na

Formule des réseaux (A savoir par coeur)
On appelle alors k 'ordre de diffraction du réseau. Cette formule donne la direction
des maxima d’intensité derriére un réseau.

Source primaire ponctuelle
On souhaite éclairer le réseau avec une onde plane : on place donc en pratique la source primaire

S dans le plan focal objet d’une lentille convergente (£1). On souhaite observer les interférences
a Pinfini : on place donc un écran dans le plan focal image d’une lentille convergente (L2).

S Réseau

Ecran

Concrétement, on utilisera un dispositif nommé spectrogoniométre a réseau, dans lequel la lentille
(L2) pourra étre déplacée. En la déplagant, nous observerons successivement chacun des maxima
d’intensité lumineuse, pour chaque ordre de diffraction k.

Fente source primaire

Pour gagner en luminosité, on sera ammené & utiliser une fente source primaire plutdét qu’une
source primaire ponctuelle. Cela ne pose aucun probléme, car la diffraction n’a pas lieu selon la
direction des fentes du réseau et que les différents points sources de la fente émettent des ondes

incohérentes entre elles : les intensités lumineuses se somment sur I’écran.

On obtiendra alors des figures d’interférences de ce type :
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Courbe d'intensité

-3 2 -1 0 1

Figure d'inferférences observée dans le plan focal image d'une lentille de focale 500 mm

Exercice : On éclaire un réseau ayant 500 traits par millimétre avec un faisceau incident
paralléle normal de longueur d’onde A = 600nm. On travaille dans l'air assimilable au vide.
Déterminer le nombre maximal de pics de diffraction observables.

1
Sontﬁxés:a,=%=2X10*6m,/\,n=16t90=0. Ona:

k a
| sin(0y)] = Lk <1l=k<—-=33
* a A
Au maximum, on voit donc 7 pics de diffractions (ordres -3, -2, -1, 0, 1, 2, 3).
En pratique, ordres +3 faiblement observables car peu d’intensité diffractée a ces
grands angles. Et on retient : on ne pourra souvent pas faire de DL car pas de petits
angles.

Considérons désormais une source primaire (ponctuelle ou sous forme de fente) polychromatique
éclairant un réseau. On réalise les montages expérimentaux précédents. Comme les ondes émises
par différentes longueurs d’onde sont incohérentes entre elles, il y a additivité de 'intensité lu-
mineuse résultant de chaque longueur d’onde A\g. Ainsi la formule des réseaux s’applique pour
chacune des longueurs d’onde g :

sin(fx) = sin(fy) + )
na

Ordre O :

* Quelque que soit N\, sin(f) = sin(6y) = 6 = 6y (angles compris dans [—7/2,7/2]).
Ainsi, U'ordre 0 n’est pas dévié par le réseau : on dit que l'ordre 0 n’est pas dispersif.

Pour l'ordre 0, 'optique géométrique s’applique donc (aucune déviation par le réseau), et le point
M est 'image géométrique de S.

Ordre kK #0 :
* La position des maxima d’intensité dépend alors de Ag : on parle d’ordres dispersifs.
Ainsi, si le pas du réseau a (ainsi que U'indice n du milieu de propagation) est connu, alors le

réseau permet de mesurer les longueurs d’onde Ay du spectre d’émission de la source. Le réseau
est le constituant principal d’'un spectrométre.
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réseau

PP
e S aisceau inciden

Exemple de figure obtenue sur un écran :

= -2 = -1 * =+ =+
Image de la ferte

Commentaires sur la figure d’interférences :

* On observe bien la dispersion de la lumiére pour tous les ordres k # 0.

* Dans un ordre k donné, en partant de 8 = 0y, on observe d’abord le bleu puis les différentes
couleurs par ordre croissant de longueur d’onde puis en dernier le rouge.

* La différence entre les angles 6 relatifs aux couleurs rouge et bleu dans un ordre k augmente
avec k : plus l'ordre est grand plus le réseau est dispersif et plus les différentes couleurs
sont séparées angulairement.

Remarque : Pouvoir de résolution d’un réseau : Du fait de la largeur des maxima principaux, les

pics de diffraction associées a des longueurs d’onde trés proches peuvent se superposer. Un réseau a donc
une certaine résolution spectrale et ne permet pas de distinguer des longueurs d’onde trop proches. La
résolution augmente si 'ordre k augmente ou si le nombre N de fentes éclairées augmente.

Expérimentalement, il n’est pas aisé de déterminer précisément la direction de la normale au
réseau (cela est possible, mais un peu technique). Le souci est que tous les angles 0 et 6
sont définis & partir de cette normale... Comment peut-on s’affranchir de la connaissance de la
direction de la normale au réseau tout en déterminant néanmoins les longueurs d’onde A\g ?

L’astuce est de mesurer non pas 0, mais 'angle de déviation Dy = 0 — 6. Cet angle dépend de
Pordre k et de la longueur d’onde Ag étudiés. Considérons donc k et \g fixés. (Expérimentalement,

cela revient & étudier 'une des raies visibles derriére le réseau.)

En faisant varier angle 6y, on se rend compte que Dy passe par un minimum, que l'on notera
Dy, . On cherche & exprimer théoriquement ce minimum de déviation.
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Etape 1 : Différentions 'angle de déviation et plagons nous au niveau du minimum de cet angle
Dk :
de = d(‘)k - d90 =0= dek = d00

Etape 2 : Différentions la relation des réseaux, sachant que seuls 0y et 0 peuvent étre modifiés

sin(fg) — sin(fp) = ko = cos(0y)dbr — cos(fp)dfy = 0 = cos(f;) = cos(bp)
na

Les angles 0, et 0y étant compris dans [—m/2,7/2], les deux solutions possibles sont :

e 0 = 0g : c’est le cas de 'ordre 0, inintéressant dans le but d’accéder aux valeurs de Ag. On
exclut donc expérimentalement cette situation.

e 0, = —0p : situation intéressante. Le maximum d’intensité est donc dans une direction
symétrique a la direction de l’ordre 0 par rapport a la normale du réseau.

En se plagant donc au minimum de déviation, on a 6, = —6p, soit Dy, ,, = 0 — 0y = 20}, et soit :
kA
sin(6) — sin(fp) = 2 sin(6y) = ——
na

On aboutit & la formule des réseaux exprimée avec le minimum de déviation :

. Dm,k k/\O
sin = —
2 2na

D, 1, étant facile & mesurer en pratique, on en déduit aisément la valeur de Ag.
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Exercices

Ex. 1 (Ecrit ccive TPC 2023 Couleur du canard colvert

Le canard colvert méle posséde, autour de son cou et de sa téte, un plumage dont la teinte varie selon la direction
d’observation. Pour interpréter ce phénomeéne, il faut s’intéresser au plumage du canard, et en particulier & une
structure de minces lamelles paralléles appelées microlamelles au sein de ce plumage. Chaque microlamelle se
comporte comme un petit miroir réfléchissant la lumiére. Entre deux lamelles se situe de la mélanine absorbant la
lumiére. Ainsi ces microlamelles s’apparentent aux traits d’un réseau plan qui peut étre modélisé soit par la figure
6a, soit par la figure 6b :

Ot

Figure 6a - Réseau plan par transmission Figure 6b - Réseau plan par réflexion

La distance entre deux lamelles est notée a. On donne a = 0.56 pm. S représente une source ponctuelle de lumiére
monochromatique, de longueur d’onde A, située & 'infini, envoyant un faisceau de rayons. L’observation se fait en
un point M situé a l'infini.

1. La structure en microlamelles constitue-t-elle un réseau par réflexion ou par transmission ?

2. Dans le cas du réseau plan par transmission, on s’intéresse & deux rayons, I'un passant par O,,, 'autre par

O,,+1. Justifier que ces deux rayons interférent ensemble au point M. Déterminer la différence de marche

o(M).

Pour quelles valeurs de §(M) les ondes interférent entre-elles de fagon constructive ?

4. Dans le cas des réseaux par réflexion, montrer par analogie que les maxima d’intensité lumineuse sont donnés
pour des angles 0y tels que :

@

sin(6x) + sin(fy) = ko

avec k un entier relatif.

5. Application : de quelle couleur apparait la téte d’un canard colvert, dont les microlamelles sont éclairées en
incidence normale par des rayons provenant du Soleil, d’une part pour 'observateur A et d’autre part pour
Pobservateur B supposés suffisamment éloignés (figure 7) 7 On justifiera que 'on ne tient compte que des
ordres k = +1.
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Observateur
A

Observateur
B

Figure 7 - Canard colvert éclairé par le soleil

Correction de ’exercice 1
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Ex. 2 Pouvoir de résolution d’un réseau

. . L .
On éclaire un réseau par transmission de pas a = ~ (L représente la largeur utile du réseau et N le nombre de

fentes éclairées) au moyen d’une source placée au foyer objet d’une lentille convergente et on observe l'intensité
produite par celui-ci dans le plan focal image d’une lentille. Le réseau est éclairé en incidence normale. On appelle
0 I'angle d’émergence, variable, du réseau.

1. On suppose pour le moment que la source lumineuse ponctuelle est monochromatique de longueur d’onde
M. Déterminer ’expression de la différence de chemins optiques entre deux ondes émises par deux fentes
successives du réseau et interférant en un méme point M de l'écran.

On donne l'expression de I'intensité lumineuse obtenue en un point M de ’écran :

. 9 f)
Sin (2

avec ¢ le déphasage entre deux ondes émises par deux fentes successives du réseau.

2. Expliquer comment procéder pour obtenir cette formule. Exprimer ¢ dans le cas du réseau par transmission.

3. Obtenir 'expression de la demi-largeur en phase Ay des maxima principaux de diffraction. Représenter alors
le graphe de l'intensité lumineuse en fonction de I’angle #. Commenter.

4. On considére désormais que la source émet deux radiations & des longueurs d’onde A et A + A)X. Représenter
de nouveau l'intensité lumineuse en fonction de I'angle 6.

5. On cherche & déterminer ’écart minimal A\ entre deux longueurs d’onde pour que celles-ci soient séparables
par le réseau. On utilisera le critére de Rayleigh : deux longueurs d’onde sont séparables dans un ordre donné,
si la distance entre les maxima principaux est supérieure ou égale a la demi largeur d’'un maximum principal.

Déterminer le pouvoir de résolution pour un ordre k fixé. Commenter.

A

Correction de ’exercice 2

1. Cours (faire directement un schéma sous incidence normale sur le réseau). On aboutit & §(M) = a sin(6).
2. Procédure pour obtenir I'intensité lumineuse :
(a) On exprime la vibration lumineuse complexe s,, émise par la fente n en fonction de la vibration lumineuse
51 prise comme référence.
(b) Comme les N ondes sont cohérentes entre elles, il y a additivité des vibrations lumineuses complexes :

s(Mt) =Y ) su(M1).

n=1
(c) On ré-écrit s(M,t) en reconnaissant une somme des premiers termes d’une suite géométrique.
(d) On en déduit I(M)oc |s(M,t)|*, que I'on ré-écrit pour obtenir bexpressionglemandée.
Dans le cas du réseau par transmission en incidence normale, ¢ = 75( ) = ——a sin(6).

A

3. Les maxima principaux de diffraction sont atteints pour des ondes toutes en phase, soit ¢ = 2k avec k € Z
(on retrouve ceci en imposant que le dénominateur de I(M) s’annule).
La demi-largeur des maxima principaux se détermine en cherchant les valeurs de ¢ telles que I(¢) = 0. Une

2qm
condition nécessaire est d’imposer sin(Np/2) = 0 = ¢ = % avec q € Z. Ainsi, la premiére annulation

27
suivant un maximum principal d’ordre k est atteint pour ¢ = 2kmw + N La demi-largeur des maxima

. 27
principaux est Ap = N

(Rg: O, vom
iﬂfw‘»"\i—))&w}k 3
Y200 :>w(em—.Q)

50
ra

Pour un réseau, N » 1 : on n’observe que les maxima principaux de diffraction, qui sont fins, mais pas
infiniment fins.
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4.
5. On se place a la limite du critére de Rayleigh. Pour une méme valeur de 6, le centre du maximum principal
d’ordre k associé & A + A\ coincide avec 'annulation du maximum principal d’ordre k associé a A. Ainsi :

2r 2w . 2w .
o1 = 2km + ~¥ - sin () et o = 2km = YA sin(6)

on en déduit :
A

AR
Ay - VF

meilleure séparation si k augmente et si N augmente !

Ex. 3 (Ecrit Centrale PC 2025) Rayonnement émis dans 'ondulateur du XFEL

Les lasers a électrons libres a rayons X (XFEL) produisent des rayons X cohérents en accélérant des électrons a
travers des ondulateurs, qui sont des systémes permettant de moduler spatialement le champ magnétique. Ces lasers
générent des impulsions lumineuses ultra-bréves, de l'ordre de la femtoseconde (10715 s), permettant d’étudier des
dynamiques atomiques et moléculaires & des échelles temporelle et spatiale trés fines, et trés intenses. Il existe une
dizaine de XFEL & travers le monde. Dans ce sujet, nous nous intéressons plus particuliérement au XFEL européen,
installé prés de Hambourg en Allemagne, qui a commencé a fonctionner en 2017.

Apreés avoir été accélérés, les électrons abordent 'ondulateur qui est I’élément central du laser & électrons libres.
Dans cette structure les électrons sont déviés par des champs magnétiques et suivent une trajectoire périodique dans
Iespace : ils sont donc accélérés. Une particule chargée accélérée émet un rayonnement, ici sous forme d’impulsions
ultracourtes de rayons X.

¢lectro-aimants générant le champ magnétique
oscillant spatialement

Electrons arrivant
de l'accélérateur
linéaire

faisceau de
rayons X

trajectoire
des électrons

Figure 8 — Représentation schématique du fonctionnement de 'ondulateur.

Les ondes électromagnétiques émises par 1’électron au fur et & mesure de sa trajectoire dans I'ondulateur peuvent
interférer. Nous allons étudier le résultat de ces interférences dans cette section.

A Dinstant ¢, I'électron se trouve en z = z; lorsqu’il émet alors une onde électromagnétique. Sur le schéma de la

figure 9, I’électron est représenté par un point, sa trajectoire est indiquée en pointillées, et 'onde qu’il est en train
d’émettre est représentée trés schématiquement en trait fin continu.
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Figure 9 — Représentation schématique de I'émission du rayonnement par 'électron a ¢y et to.

A Tinstant t, 'électron a parcouru une période de sa trajectoire sinusoidale (voir la figure 9 & droite) : il se trouve
en zo = z; + Ay et rayonne alors une nouvelle onde électromagnétique. Cette onde qui est émise en ¢ = o doit
interférer constructivement avec ’onde qui a été émise par le méme électron en ¢t = t1. Sur le schéma a droite de la
figure 9 'onde émise a 'instant 1, qui s’est propagée, est dessinée en trait fin noir. L’onde qui est en train d’étre
émise a ¢t = toest représentée en trait épais gris.

Pour modéliser le systéme, on considére un ensemble de N sources situées le long de l'axe (Oz) (avec z = 0), comme

représenté sur la figure 10.

source 0 source 1 source k — 1 source k + 1 source N — 1

5

source 2 source k source N — 2

-

Figure 10

La p-éme source, qui se trouve en 2z, = pA, émet une onde électromagnétique vers les z croissants que 1’'on écrit
sous la forme :

5p(2,1) = So cos (a « (t pA“) Chx (2 p/\u)>

Um

ou Sy, a et k sont respectivement ’amplitude, la pulsation et le vecteur d’onde de I'onde électromagnétique, et v,,
est la vitesse moyenne de 1’électron selon la direction z.

1. Justifier ’expression de s,,.

On place un détecteur en un point M situé sur 'axe (Oz) en un point de coordonnée z > N),. Ce détecteur regoit
I’ensemble des ondes électromagnétiques émises par les sources. On introduit sier,n (%) le signal total requ par le
détecteur :

N-1
Stot, N (t) = Z sp(z,t)
p=0

2. Montrer que amplitude de s, ;v s’écrit sous la forme :

N 1 1
sin (2 < — ) a)\u)

Um  C

So,n = So 171 1
sin < ( — ) a)\u)

2 \ v, c

Une étude mécanique montre que, dans le cadre de la relativité restreinte, la vitesse moyenne de 1’électron dans la

direction z est
) 1 ) K?
VU = C - — - —
22 4~2

K 1
avec — < 1 et — « 1 (7 est le facteur relativiste de Lorentz et K est une grandeur introduite par ’énoncé).
Y gl

3. Montrer que 'amplitude de s;o¢, ;v est maximale pour les fréquences Fy telles que :

F_C 2+2

T, K2
uli
i

ol ¢ est un entier naturel non nul.

@®®© Lycée Rabelais - PC - 2025-2026 - C. Logé 17



Pour 'ondulateur SASE1 du XFEL européen, on a K = 2 et A, = 4.0cm et les électrons ont une énergie cinétique
égale 4 17.5GeV, ce qui correspond a v = 3.4 x 10%.

4. En déduire la longueur d’onde correspondant a la plus petite fréquence d’interférences constructives Fj.

Correction de ’exercice 3

1. On considére que 'onde émise par 1’électron en z = 0 & l'instant ¢ = 0 (source 0) est une OPH se propageant

o
dans le vide (on a d’aprés la relation de dispersion k = —).
c

A
Une nouvelle onde est émise par I'électron en z = p\, (source p) a I'instant t = p—=. Cette onde est déphasée
v

m
spatialement et temporellement par rapport a 'onde émise en z = 0 & ¢ = 0, ce qui explique la forme proposée
pour sp(2,t).

il t—) k(z—pX ))
. Comme l'onde s,(z,t) est une OPH, on passe en notation complexe : s,(z,t) = Sy e ( ( Um .
L’amplitude réelle de s, v peut alors s’écrire : o

N—

Z (z,t)

So,N ‘stot N(z t

( a)\u)
N-1 gp|kru—
SO X 1 x Z Um

!
Avec la relation de dispersion dans le vide k = —. Ainsi :
c

1 1

JoMu< )
On reconnait la somme des N premiers termes d’une suite géométrique de raison e € Um/ . On a donc
1 1
jNaX,| ———
1— e ¢ Um
1 1
Jary| ———
1— e C Um

En mettant en facteur la demi-somme des arguments des exponentielles du numérateur et du dénominateur :

Na)\ (1 i) ]Noz)\ (1 i) : N 1 1
e2 ¢ ) _ o 2 c Um Smga_go‘)‘"

SO,N:SO 1 N 1 i 1 R 1 L = 20 ] 1 1 1 \
BER (c vm>_ 52“((%) "z \v, o)

. Ce quotient sera maximal lorsque le dénominateur sera nul : il s’agit de la condition d’interférences construc-
tives (le numérateur est alors aussi nul). On a donc :

1 1 1 1 1 1
sin|{=(——=)]al, )] =0= = — —=|a\, =¢qr avec ¢qe¢€ N*
2\v, c 2\v, ¢

car tous les termes sont positifs et que la pulsation o ne peut pas étre nulle. Ainsi, avec oo = 27F,, on a

So,n = So

1
En utilisant ’expression fournie de v,,, et en réalisant un DL & l'ordre 2 en —, on obtient
g
1 1 1 1 1+1 1_~_K2 1 1+1 1+K2
vmiclill K? ¢ 2+2 4n2) ¢ 272 2
51—
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Ainsi :

qc 1 c 2y
Fe= 1 N . k2
22 ( * 2 > * 2
K2
w14 5)
c
4. On calcule \y = — = —————2 AN.: \; = 52pm, ce qui est bien dans le domaine des rayons X.

F 272
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