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Mécanique des fluides

Description d’un fluide en mouvement
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‹

Prise de notes : La mécanique des fluides est le do-
maine de la physique s’intéressant à la description de
l’écoulement des fluides (c’est-à-dire principalement des
gaz et des liquides). Pour décrire cet écoulement, on
donne alors les vecteurs vitesses #»v p #»r ,tq, la masse volu-
mique ρp #»r ,tq ou encore la pression P p #»r ,tq à l’intérieur
de l’écoulement. En guise d’exemple, la carte des
vecteurs vitesse d’un écoulement à faible vitesse autour
d’une sphère est représentée. Dans ce chapitre, on ne
s’intéressera qu’à la description de la vitesse #»v et de la
masse volumique ρ.
Faire le lien avec des écoulements autour d’obstacles
usuels : fleuve contournant une île, écoulement autour
d’une aile d’avion, voiture... Questions : de quelle vitesse
parle-t-on ? comment évolue-t-elle dans un écoulement ?
À nouveau, à l’échelle microscopique, du fait de
l’agitation thermique, les molécules du fluide subissent
un mouvement désordonné, similaire à celui des porteurs
de charges électriques (chapitre EM1) ou des particules
(T2) : la modélisation que nous allons en faire sera donc
similaire.

Exemple : Carte des vecteurs
vitesse d’un écoulement à faible
vitesse autour d’une sphère :

Ce chapitre a trois objectifs principaux :

1. Présenter l’intérêt et l’expression de la dérivée particulaire, qui nous permettra d’appliquer
le principe fondamental de la dynamique aux particules de fluide.

2. Exploiter les cas de conservation du débit massique et du débit volumique dans l’écoulement.
3. Identifier les fortes analogies du transport de particules de fluide avec le transport de par-

ticules (chapitre T2) et le transport de charges électriques (EM1).

I Passer d’une description microscopique de la vitesse à une
description macroscopique

I.1 Vitesse microscopique

À l’échelle microscopique, une molécule subit, du fait de l’agitation
thermique, des collisions avec les autres molécules du fluide. Après
chaque collision, le vecteur vitesse possède une direction, un sens et
une norme qui ont été modifiés.

L’ordre de grandeur de la vitesse microscopique d’une molécule du fluide est la vitesse quadratique
moyenne u˚ “

a

x #»v 2y.

Ordre de grandeur : Pour l’air macroscopiquement au repos, dans les conditions normales
de température et de pression (CNTP), on a : u˚ „ 500m{s

I.2 Trois échelles de description de la matière

La modélisation effectuée dans ce chapitre repose sur les mêmes hypothèses d’existence d’une
échelle mésoscopique que pour les chapitres de transport de particules (T2) ou de transport de
charges (EM1) : on fait une modélisation des milieux continus.
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• Échelle microscopique : moyenner les grandeurs microscopiques n’a ici pas d’intérêt à cause
des fluctuations spatiales et temporelles importantes.

• Échelle macroscopique : moyenner n’a pas d’intérêt vu qu’on veut décrire les variations
spatiales de la vitesse

Taille caractéristique de l’échelle mésoscopique

L’échelle mésoscopique est une échelle de taille caractéristique ℓ intermédiaire entre l’échelle
microscopique (d : distance inter-particulaire et l.p.m. : libre parcours moyen = distance
moyenne parcourue entre deux collisions) et l’échelle macroscopique (L : taille d’observation)
:

d, l.p.m ! ℓ ! L

En guise d’ordre de grandeur pour l’air ou l’eau, on a dans les conditions normales et à tem-
pérature ambiante :

Fluide environnant d l.p.m.
Eau 1 ˆ 10´10 m 0.1 nm=1 ˆ 10´10 m
Air 1 ˆ 10´9 m 0.1µm=1 ˆ 10´7 m

‹ Donc, dans l’eau, on prend ℓ „ 10 nm ! L : RAS ; dans l’air, ℓ „ 10 µm : pas si petit
que ça !

En mécanique des fluides, on travaille donc sur un système de taille mésoscopique :

Particule de fluide

‹ Une particule de fluide est un système fermé de N molécules du fluide et qui a
pour taille caractéristique l’échelle mésoscopique ℓ.

〈 v i〉 = 0 〈 v i〉 �= 0

⇒= ⇒=

La vitesse associée à la particule de fluide est la vitesse mésoscopique : il s’agît de la vitesse
moyenne des N molécules contenues dans la particule de fluide. Cette vitesse mésoscopique de la
particule de fluide est bien plus faible que la vitesse microscopique des molécules.

I.3 Deux approches pour la description de la vitesse dans un écoule-
ment
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a Champ lagrangien des vitesses - Approche de la mécanique classique

L’approche la plus naturelle pour décrire un écoulement de fluide est de découper le fluide en
particules de fluide à t “ 0, puis de suivre chacune des particules de fluide au cours de son
mouvement : c’est l’approche classique de mécanique, on parle d’approche lagrangienne.

Dans cette approche, la position du centre P d’une particule de fluide et sa vitesse sont exprimées
explicitement en fonction du temps :

#    »

OP ptq “ xP ptq #»ex ` yP ptq #»ey ` zP ptq #»ez et #»v P ptq “
d

#    »

OP

dt

Remarque : Les particules de fluide peuvent se déformer au cours du mouvement.

‹ Schéma pour la déformation.

Concept naturel associé : Trajectoire d’une particule de fluide L’ensemble des points M
atteints par la particule fluide P au cours du temps constitue la trajectoire de la particule fluide.
C’est la description naturelle dans l’approche lagrangienne.
En pratique, on utilise des traceurs (gouttes de colorants, fumées, petites particules de densité
proche de celle du fluide), et on filme ou photographie avec un long temps de pose.

Vidéo d’expérience en tunnel à vent : https://www.youtube.com/watch?v=wWNjRYOHZts.

Défauts de l’approche lagrangienne Du point de vue expérimental, il est complexe de suivre
et de mesurer explicitement différentes grandeurs physiques sur une particule de fluide qui se
déplace. De plus, il est compliqué de traduire des conditions sur le champ de vitesse #»v imposées
par la présence d’un obstacle fixe dans un écoulement, vu que la particule de fluide au niveau de
cet obstacle change à chaque instant.

b Champ eulérien des vitesses - Approche de la mécanique des fluides

‹

En mécanique des fluides, on utilise une approche eulérienne, consistant à caractériser
à tout instant ET en un point fixe M de l’espace l’évolution des champs en ce point.
En un point M , à l’instant t, le champ eulérien des vitesses est alors la vitesse de la
particule de fluide de centre P passant en M à t. À un instant t1 ultérieur, la vitesse
est celle d’une autre particule de fluide P 1 passant en M à t1.

Description lagrangienne Description eulérienne
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Cette approche locale est celle que l’on a déjà utilisé en thermodynamique et en électromag-
nétisme. On définit alors différents champs comme le champ des vitesses #»v pM,tq “ #»v px,y,z,tq
pour lequel x, y et z sont les coordonnées du point M fixe de l’espace, indépendantes du temps.

Concepts naturels associés : Ligne de courant et tube de courant

Ligne de courant

Une ligne de courant d’un écoulement à un instant t donné est une ligne de champ du champ
eulérien des vitesses, c’est-à-dire

‹ une courbe orientée qui, à un instant t donné, est tangente en tous ses points au
champ des vitesses.

En pratique, on visualise ces lignes de
courant en dispersant des traceurs dans tout
le fluide, puis en photographiant avec un
temps de pose court dt.

Visualisation des lignes de courant autour d’un avion (le Concorde) :

Tube de courant

Un tube de courant à un instant donné t est l’ensemble des lignes de courant qui s’appuient,
à cet instant t, sur un contour fermé.

Pour déterminer l’équation des lignes de courant, on peut exprimer la tangence entre
#»

dℓ et #»v :
#»

dℓ ^ #»v “
#»
0

Exemple : On considère le champ de vitesse défini, en coordonnées cartésiennes, par :

#»v “

¨

˚

˝

vx “ v0

vy “ αt

vz “ 0

˛

‹

‚

avec v0 et α des constantes positives.

‹ Faire trois cartes avec les ldc à t “ 0, t1 ą 0 et t2 ą t1 + 1 carte avec la trajectoire
d’une PF.

En régime stationnaire, les lignes de courant coïncident avec les trajectoires des particules de
fluide.

Défaut de l’approche eulérienne Dans la suite des chapitres de mécanique des fluides, nous
appliquerons le principe fondamental de la dynamique à une particule de fluide dans le référentiel
du laboratoire. Il nous faudra donc exprimer l’accélération d’une particule de fluide. Avec le
champ eulérien des vitesses, la vitesse (lagrangienne) de la particule passant en M à t sera #»v pM,tq
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; mais, pour cette même particule, sa vitesse (lagrangienne) à t` dt ne sera pas #»v pM,t` dtq, car
la particule s’est déplacée. L’expression de l’accélération de la particule de fluide n’est donc pas
simple a priori...

c Comment écrire la dérivée particulaire d’un champ dans l’approche eulérienne ?

Quittons un instant la mécanique des fluides pour étudier l’évolution de la température ressentie
au cours du temps lors d’un vol en montgolfière. La montgolfière s’approche d’un lac au-dessus
duquel la température de l’air est plus froide et varie avec le temps.

‹

"
Ici, il y a deux champs de température différents !

• Température ressentie par un passager dans la montgolfière : champ
lagrangien. Cette température ne dépend que du temps : TLptq

• Température mesurée de l’air à différents endroits et au cours du temps
: champ eulérien. Cette température dépend à la fois de l’espace et du
temps : TEpx,y,z,tq

Écrivons la différentielle de la température ressentie TL au cours du mouvement de la
montgolfière dans le champ eulérien :

dTL “ dTE “
BTE

Bx
dx `

BTE

By
dy `

BTE

Bz
dz `

BTE

Bt
dt

Donc, la dérivée temporelle de la température ressentie donne :

dTL

dt
“

BTE

Bx

dx
dt

`
BTE

By

dy
dt

`
BTE

Bz

dz
dt

`
BTE

Bt
“ vx

BTE

Bx
` vy

BTE

By
` vz

BTE

Bz
`

BTE

Bt

On ré-écrit ceci sous forme compacte :

dTL

dt
“

BTE

Bt
` p #»v ¨

#      »

gradqTE

Afin de simplifier les notations, on ne précisera désormais plus les exposants L et E. Pour ne
pas confondre néanmoins les deux notions, les notations des dérivées temporelles des champs
lagrangiens et eulériens sont différentes :

•
d...
dt

: dérivée temporelle pour un champ lagrangien. Elle donne l’évolution temporelle d’une
grandeur, du point de vue de la particule de fluide. On appelle cette dérivée la dérivée
particulaire, et elle est aussi parfois notée D...

Dt .

•
B ...

Bt
: dérivée temporelle pour un champ eulérien. Elle donne l’évolution temporelle locale

d’une grandeur, du point de vue d’un observateur extérieur ne se déplaçant pas dans le
référentiel du laboratoire.

Exercice : On cherche la température ressentie par un homme faisant de la montgolfière au
cours de son vol T ptq. Pour cela, on sait que, dans la troposphère, la température décroît
linéairement avec l’altitude. De plus, la montgolfière s’approche d’un lac où la température
est plus basse : T px,zq “ T0 ` αx ` βz avec α “ ´50 ˝C{km et β “ ´6.5 ˝C{km. On donne
également la vitesse de la montgolfière : #»v “ vx

#»ex ` vz
#»ez avec vx “ 10 km{h (vitesse du vent)

et vz “ 2 km{h. On suppose enfin qu’à t “ 0, la montgolfière est en px “ 0,z “ 0q. Déterminer
la température ressentie T ptq.
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‹

dT
dt

“
BT

Bt
loomoon

“0

`p #»v ¨
#      »

gradqT

“ αvx ` βvz

On intègre sur t :
ż t

0

dT
dt

pt1qdt1 “ T ptq ´ T p0q “ pαvx ` βvzqt

Donc :
T ptq “ T0 ` pαvx ` βvzqt

Cohérent : du fait du mouvement selon #»ex, la température décroit d’autant plus vite
que α est grand et que la montgolfière va vite vers #»ex (le vx).

On peut généraliser la dérivée particulaire au cas d’un champ vectoriel
#»

A :
d

#»

A

dt
“

B
#»

A

Bt
`p #»v ¨

#      »

gradq
#»

A

On en déduit la différentielle d’un champ vectoriel :

Différentielle d’un champ vectoriel

d
#»

A “
B

#»

A

Bt
dt ` p #»v ¨

#      »

gradq
#»

Adt

Dans le cas particulier du champ de vitesse de mécanique des fluides, cela donne :

Dérivée particulaire du champ de vitesse

‹

d #»v

dt
“

D #»v

Dt
“

B #»v

Bt
` p #»v ¨

#      »

gradq #»v

avec
• accélération de la particule de fluide qui passe en M à t : appproche lagrang-

ienne
• terme local de l’accélération, lié à la variation temporelle de la vitesse mesurée

en un point : approche eulérienne
• terme convectif de l’accélération, lié au fait que la particule de fluide se

déplace dans le fluide : approche eulérienne

"
Il est donc, en général, faux d’écrire :

#»a “
d #»v

dt
“

B #»v

Bt

Expression équivalente de la dérivée particulaire du champ de vitesse :

Le formulaire d’analyse vectorielle donne la formule suivante (elle sera redonnée si besoin) :

p #»v ¨
#      »

gradq #»v “
#      »

grad

˜

|| #»v ||
2

2

¸

`
#  »rotp #»v q ^ #»v

On peut donc reformuler la dérivée particulaire du champ de vitesse en :

d #»v

dt
“

B #»v

Bt
`

#      »

grad

˜

|| #»v ||
2

2

¸

`
#  »rotp #»v q ^ #»v
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II Bilan de conservation de la masse

II.1 Distribution volumique de masse
On peut définir une densité volumique de masse ou masse volumique, notée ρ, en considérant la
masse δm des particules contenues dans le volume mésoscopique de la particule de fluide située
au point M à l’instant t :

ρpM,tq “
δmpM,tq

dτ
(II.1)

L’unité est le kgm´3.

Valeurs à connaître, dans les conditions normales de température et de pression
(CNTP) :

• Masse volumique de l’eau liquide : ρpeauq “ 1.0 ˆ 103 kgm´3

• Masse volumique de l’air sec : ρpairq “ 1.2 kgm´3

De plus, comme on peut appliquer la formule de la dérivée particulaire pour n’importe quel champ
porté par le fluide :

Dérivée particulaire de la masse volumique

dρ
dt

“
Dρ

Dt
“

Bρ

Bt
` p #»v ¨

#      »

gradqρ “
Bρ

Bt
` #»v ¨

#      »

gradpρq

avec :

• la variation de la masse volumique de la particule de fluide au cours de son mouvement
: approche lagrangienne

• terme local de la variation de la masse volumique, lié à la variation de masse volumique
mesurée en un point : approche eulérienne

• terme convectif de la variation de la masse volumique, lié au fait que la particule de
fluide se déplace dans le fluide : approche eulérienne

II.2 Débit massique
On définit le débit massique à travers une surface pSq orientée comme le rapport entre la masse
algébrique δm traversant pSq pendant dt et le temps dt :

Dm “
δm

dt
(II.2)

s’exprimant en kg s´1.

Exercice : Montrer que l’on peut écrire le débit massique à travers une surface pSq orientée
comme le flux d’un vecteur densité de courant de masse

#  »
jm, que l’on définira.
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‹

Prenons le cas général de particules se déplaçant
à la vitesse moyenne #»v et traversant une surface
élémentaire d

#»

S “ dS #»n . On note δm la masse des
particules traversant dS pendant dt.

dτ “ hdS “ dSvdt cosθ “ d
#»

S ¨ #»v dt

donc δm “ ρdτ “ ρ #»v ¨ d
#»

Sdt

n

(S )

θ

v

v dt

dτ

Donc, le débit massique à travers
#  »

dS pendant dt est :

δDm “
δm

dt
“ ρ #»v ¨ d

#»

S “
#  »
jm ¨ d

#»

S

avec
#  »
jm “ ρ #»v le vecteur densité de courant de masse. Pour obtenir le flux total à

travers une surface quelconque, on découpe en surfaces élémentaires (on trouve δDm),
puis on somme :

Dm “

ĳ

pSq

δDm “

ĳ

pSq

#  »
jm ¨ d

#»

S

Dm est donc le flux de
#  »
jm “ ρ #»v .

.

‹
Expression du débit massique comme un flux

Le débit massique à travers la surface pSq orientée peut s’écrire
comme le flux d’un vecteur densité de courant de masse

#  »
jm :

Dm “

ĳ

pSq

#  »
jm ¨ d

#»

S (II.3)

avec
#  »
jm “ ρ #»v , dont la norme s’exprime en kgm´2 s´1

dS

(S )

jm

Remarque : On retrouve à nouveau la relation générale entre le débit à travers une surface orientée
d’une grandeur transportée X et un vecteur densité de courant de X :

δX

dt
“

ĳ

pSq

# »
jX ¨ d

#»
S avec # »

jX “ ρX
#»v

avec ρX la densité volumique de X.

II.3 Équation locale de conservation de la masse
On considère un écoulement sans réaction chimique ou nucléaire. Ainsi, dans un volume fixe
dans le référentiel du laboratoire (que l’on appelle volume de contrôle), la variation temporelle
de la masse est forcément liée à des échanges spatiaux de masse avec l’extérieur du volume (pas
de terme source). Ce principe de conservation de la masse conduit, par analogie avec les autres
phénomènes de transport, à une équation locale :

Équation locale de conservation de la masse

‹

Bρ

Bt
` divp

#  »
jmq “ 0

Interprétation des termes :
• lié à la variation temporelle de la masse dans le volume de contrôle
• lié aux échanges spatiaux de masse avec l’extérieur
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Exercice : Démontrer l’équation locale de conservation de la masse dans le cas d’un problème
unidimensionnel cartésien.

‹

Schéma.
#»
j m “ jmpx,tq #»ex. On réalise un bilan de masse entre t et t`dt sur le volume

compris entre x et x ` dx.
Variation temporelle :

d2m “ dmpt ` dtq ´ dmptq “
Bρ

Bt
dτdt

Echanges spatiaux :

δ2m “ δmentrantpxq ´ δmsortantpx ` dxq “ Dmpxqdt ´ Dmpx ` dxqdt “ ´
Bjm
Bx

dxSdt

Bilan :
d2m “ δ2m ñ

Bρ

Bt
`

Bjm
Bx

“ 0

.

‹

II.4 Conséquences dans un écoulement stationnaire

a Définition d’un écoulement stationnaire

Écoulement stationnaire

‹
Un écoulement est stationnaire si les différents champs eulériens sont indépendants

du temps :
B #»v

Bt
“

#»
0 ,

Bρ

Bt
“ 0, etc.

Etant donné que la définition d’un écoulement stationnaire s’appuie sur l’approche eulérienne, qui
consiste à étudier des champs en un point M fixe (sous-entendu, fixe dans un certain référentiel
d’étude), le caractère stationnaire d’un écoulement dépend du référentiel choisi.

b Conservation du débit massique le long d’un tube de courant

En régime stationnaire, l’équation de conservation de la masse devient :

divp
#  »
jmq “ 0

c’est-à-dire que
#  »
jm est à flux conservatif. Le flux de

#»
j m se conserve le long d’un tube de courant.

En régime stationnaire, le débit massique est conservé le long d’un tube de courant.

Exercice : En utilisant la conservation du débit mas-
sique, exprimer une relation reliant les débits massiques
du Gouët traversant les surfaces pSAq, pSBq et pSCq.

‹

"
De même qu’on ne travaille JAMAIS avec
un courant non orienté en électrocinétique, il
faut commencer par orienter les surfaces pSAq,
pSBq et pSCq !

L’écoulement du Gouët est stationnaire (vitesse
mesurée en un point du fleuve indépendante du
temps). Avec des surfaces orientées dans le sens
amont vers aval (par exemple), on obtient :

Dm,entrant “ Dm,A “ Dm,sortant “ Dm,B ` DmC

(en découpant la surface de sortie en deux surfaces
pSBq et pSCq).
La loi obtenue est similaire à la loi des nœuds en
électronique.
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III Analogies et différences avec les autres phénomènes de
transport

. Diffusion de particules Conduction électrique

Débit de ... particules ΦN “

ĳ

pSq

#»
j N ¨ d

#»

S charges I “

ĳ

pSq

#»
j ¨ d

#»

S

Équation de
Bn

Bt
` div

#»
j N “ 0

Bρ

Bt
` div

#»
j “ 0

conservation locale
Cause du transport : densité particulaire n potentiel électrique V

gradient de ...
Loi phénoménologique locale

#»
j N “ ´D

#      »

gradn
#»
j “ γ

#»

E “ ´γ
#      »

gradV

. Fluide en écoulement
Débit de ... masse Dm “

ť

pSq

#»
j m ¨ d

#»

S

Équation de
Bρ

Bt
` div

#»
j m “ 0

conservation locale
Cause du transport : Force normale de pression ou

force tangentielle de viscosité (cf. MF2)

Pour pouvoir décrire le champ des vitesses dans le fluide, on procédera, cette fois, par applica-
tion du principe fondamental de la dynamique à une particule de fluide, dans le référentiel du
laboratoire.

IV Évolution du débit volumique

IV.1 Débit volumique

On introduit également le débit volumique à travers une surface pSq orientée comme le rapport
du volume algébrique δV traversant pSq pendant dt et le temps dt :

Dv “
δV

dt

s’exprimant en m3 s´1.

Avec un raisonnement similaire à celui conduit en partie II.2, on obtient :

Expression du débit volumique comme un flux

Le débit volumique à travers la surface pSq orientée peut s’écrire
comme le flux du vecteur vitesse #»v :

Dv “

ĳ

pSq

#»v ¨ d
#»

S (IV.1)

‹

Si la masse volumique ρ est uniforme (on dit alors que l’écoulement est homogène), il
existe un lien simple entre Dm et Dv :

Dm “

ĳ

pSq

ρ #»v ¨
#  »

dS “ ρ

ĳ

pSq

#»v ¨
#  »

dS “ ρDv
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IV.2 Fluide incompressible et homogène
Définition : Un fluide est incompressible et homogène si et seulement si sa masse volumique ρ
est une constante dans le temps et l’espace :

ρpM,tq “ constante

D’après l’équation de conservation de la masse, il vient donc :

Bρ

Bt
` divpρ #»v q “ 0

ñρdivp #»v q “ 0

ñdivp #»v q “ 0

Un fluide incompressible et homogène possède un champ de vitesse #»v à flux conservatif.

Validité de ce modèle Ce modèle de fluide incompressible et homogène est relativement adapté
pour décrire les écoulements de phases liquides, qui sont assez bien décrites par des phases con-
densées incompressibles et indilatable. Mais il présente deux défauts majeurs :

• il ne permet pas de donner une description satisfaisante des phases gazeuses.
• il ne permet pas de décrire la propagation d’une onde sonore, vu qu’on suppose que le fluide

ne peut pas être comprimée.

Pour résoudre ces problèmes, on fait un second modèle moins restrictif.

IV.3 Écoulement incompressible

Définition d’un écoulement incompressible

‹

Un fluide est dit en écoulement incompressible si les particules de fluide conservent
leur masse volumique au cours de leur mouvement.
Comme une particule de fluide est un système fermé constitué de δN molécules,
sa masse est constante. Donc, dans un écoulement incompressible, le volume des
particules de fluide se conserve, même si leur forme change.

Cette définition revient à dire que le champ lagrangien de masse volumique est constant pour
chaque particule de fluide.

‹

Mathématiquement, on exprime donc un écoulement incompressible par la propriété :

dρ
dt

“ 0

Réécrivons l’équation locale de conservation de la masse, grâce à la formule d’analyse
vectorielle (à ne pas connaître) : divpf

#»

Aq “ f divp
#»

Aq `
#»

A ¨
#      »

gradpfq :

Bρ

Bt
` divpρ #»v q “

Bρ

Bt
` ρdivp #»v q ` #»v ¨

#      »

gradpρq “

ˆ

Bρ

Bt
` p #»v ¨

#      »

gradqρ

˙

` ρdivp #»v q

“
dρ
dt

` ρdivp #»v q “ 0

Ainsi, pour un écoulement homogène et incompressible, on a :

divp #»v q “ 0

c’est-à-dire que #»v est à flux conservatif.
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.

‹
Validité de ce modèle Ce modèle est bien moins restrictif. Un fluide compressible (comme un
gaz) peut être en écoulement incompressible, à la condition que la structure du champ de vitesse
fasse en sorte que le volume des particules de fluide ne varie pas. Ce modèle sera souvent valable
pour des écoulements à des vitesses bien inférieures à la célérité du son dans le fluide considéré.

IV.4 Conséquences d’un écoulement incompressible
Pour un écoulement incompressible, #»v est donc à flux conservatif. Dans un écoulement in-
compressible, le débit volumique se conserve le long d’un tube de courant.

On peut alors interpréter assez aisément une carte de ligne de champ pour ce type d’écoulement
:

‹

Pour un tube de courant entre S1 et S2, on a conservation du débit volumique :

Dv “ cste “ xv1yS1 “ xv2yS2

Du fait de la variation de la surface du tube de champ, on en déduit donc que :

xv1y ă xv2y (IV.2)

Remarquons également que si la vitesse est uniforme dans les sections droites d’un tube de courant,
on peut très simplement exprimer des relations entre sections et vitesses via l’égalité des débits
volumiques :

v1S1 “ v2S2 (IV.3)

Remarque : L’écoulement représenté sur la carte de champ est un écoulement stationnaire, même si,
entre S1 et S2, les particules de fluide accélèrent.

IV.5 Synthèse sur le débit massique et le débit volumique

Hypothèse Conséquence locale Conséquence intégrale

Ecoulement stationnaire
Bρ

Bt
“ 0 ñ divp

#»
j mq “ 0 Conservation de Dm le long d’un tube de courant

Ecoulement incompressible
dρ
dt

“ 0 ñ divp #»v q “ 0 Conservation de Dv le long d’un tube de courant

V Ecoulement irrotationnel

V.1 Définition et conséquences

Remarque : La vorticité est le vecteur #»ω “
#  »rotp #»v q. La vorticité caractérise donc la tendance du

champ des vitesses à tourner autour d’un point. On définit aussi parfois le vecteur tourbillon
#»
Ω “

1

2

#  »rotp #»v q “
1

2
#»ω .

Définition d’un écoulement irrotationnel

cbna Lycée Rabelais - PC - 2025-2026 - C. Logé 13



Un écoulement irrotationnel est défini par

#  »rotp #»v q “
#»
0

en tout point.

‹ On en déduit qu’il existe une fonction Φ, appelée potentiel des vitesses ou potentiel
hydrodynamique, telle que #»v “ `

#      »

gradpΦq.

On appelle alors parfois ces écoulements des écoulements potentiels.

Remarque : La définition d’un écoulement irrotationnel revient à dire que la vorticité de l’écoulement
est nulle en tout point.

Conséquences de cette définition sur le potentiel des vitesses :

‹

• Le potentiel des vitesses est toujours défini à une constante près.
• Les surfaces/lignes équipotentielles sont normales en tout point aux lignes de

courant.
On note la forte analogie entre l’électrostatique et les écoulements irrotationnels. En
effet, les équations locales sont analogues :

divp
#»

Eq “
ρ

ε0
divp #»v q qq

#  »rotp
#»

Eq “
#»
0

#  »rotp #»v q “
#»
0

Remarque : On a #»
j m “ ρ #»v “ ρ

#      »
gradpΦq : loi analogue à la loi de Fick/Ohm !

Exemples :

1. Ecoulement uniforme : #»v “ U #»ex :
L’écoulement uniforme est un écoulement irrotationnel car #  »rotp #»v q “

#»
0 .

Le potentiel des vitesses s’écrit Φ “ Ux ` cste.
‹ Carte de champ.

2. Vortex axial : on se place en coordonnées cylindriques. Hors de l’axe pOzq, on définit

le champ de vitesses par #»v “
A

r
#»eθ.

‹

Cherchons s’il existe un potentiel des vitesses Φ. On aurait alors :

dΦ “
#      »

gradpΦq ¨
# »

dr “ #»v ¨
# »

dr “
A

r
rdθ “ Adθ

Donc, le potentiel Φ “ Aθ ` cste convient.
Ainsi, le potentiel des vitesses est bien défini et l’écoulement est irrotationnel
hors de l’axe pOzq.
Carte de champ.

V.2 Ecoulement irrotationnel et incompressible
Un écoulement irrotationnel et incompressible vérifie donc à la fois

#  »rotp #»v q “
#»
0 et divp #»v q “ 0

Du point de vue du potentiel des vitesses, on en déduit que :

‹
divp

#      »

gradpΦq “ ∆Φ “ 0

Φ est solution de l’équation de Laplace dans un écoulement irrotationnel et incompress-
ible.
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Exercices

Ex. 1 Masse volumique de l’air sec

On cherche à retrouver la valeur de la masse volumique de l’air sec, dans les conditions normales de température et
de pression (CNTP).

1. Rappeler la proportion en masse de dioxygène et de diazote dans l’air. En déduire que la masse molaire de
l’air est de Mpairq “ 29 g{mol.

2. En déduire la valeur de la masse volumique de l’air.

Correction de l’exercice 1

1. On peut retrouver la masse molaire de l’air. L’air est composé, majoritairement, de 80% de N2 (principalement
avec de l’azote d’isotope 14) de masse molaire MpN2q “ 2ˆ 14 “ 28 g{mol ; et de 20% de O2 (principalement
avec de l’oxygène d’isotope 16) de masse molaire MpO2q “ 2ˆ16 “ 32 g{mol. Donc, Mpairq “ 0.8ˆMpN2q `

0.2 ˆ MpO2q “ 29 g{mol.

" Il faut savoir que la masse molaire des nucléons est de l’ordre de 1 g{mol.

2. On suppose que l’air est modélisable par un GP. Pour un volume infinitésimal :

Pdτ “ δnRT “
δm

M
RT ñ µ “

δm

dτ
“

PM

RT

On retrouve alors : µ “ 1.2 kgm´3.

Ex. 2 Extraction d’un gisement de méthane

Aide à la résolution de l’exercice en bas de page2

On modélise un gisement de gaz naturel par une roche poreuse de
volume total V comprenant un volume qV de méthane gazeux, la
constante q étant la porosité de la roche. Cette roche poreuse a la
forme d’un cylindre de section circulaire S et de longueur L, limité
sur ses bords et sur sa section x “ L par une roche imperméable.

La section x “ 0 modélise le puits d’extraction du méthane et on admettra que la pression de méthane y est
maintenue constante, égale à p0 “ 1 bar. On fait les hypothèses suivantes :

• l’influence de la pesanteur est négligeable ;
• le problème est unidimensionnel, de sorte que toutes les grandeurs physiques sont uniformes dans une section

du cylindre ; on note ppx, tq le champ de pression du méthane ;
• la température est uniforme et vaut T “ 300 K ;
• le méthane est assimilé à un gaz parfait de masse molaire M “ 16 gmol´1 ;
• l’écoulement de méthane obéit à la loi de Darcy, i.e. le débit massique de méthane par unité de surface

s’exprime sous la forme du vecteur densité de courant massique équivalent suivant :
#»
j “ ´

k

ν

#      »

gradppq où ν

est la viscosité cinématique du méthane et k est la perméabilité de la roche poreuse ; ces deux grandeurs sont
indépendantes de la pression.

1. Commenter qualitativement la loi de Darcy. On précisera en particulier si une augmentation de la perméabilité
de la roche tend à faciliter ou non l’écoulement du méthane.

2. Effectuer un bilan de masse de méthane pour montrer que ppx,tq vérifie l’équation :
Bp

Bt
“ D

B2p

Bx2
où l’on

exprimera D en fonction de k, ν, R (constante des gaz parfaits), T , M et q. Nommer le nom donné à ce type
d’équation et préciser l’unité de D. Connaissez-vous d’autres situations régies par ce type d’équation ?

3. On cherche une solution de la forme ppx,tq “ p0 ` p1 sinpαxq e´t{τ avec α et τ des constantes positives.
Exprimer α en fonction de D et τ .

2

2Q4.Utiliseruneconditionlimite.Ontrouveα“
π

2L
`

kπ

L
aveckPN.
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4. Montrer que α ne peut prendre que des valeurs particulières que l’on exprimera. Dans la suite, on adopte la
plus petite valeur possible de α.

5. Exprimer la masse mptq de méthane contenue dans le gisement à la date t en fonction des données. Représenter
graphiquement mptq.

6. Sachant que p1 “ 100p0, que L “ 5.0 km et D “ 3.0ˆ 10´2 u S I , calculer en années la date t95 à laquelle 95%
du méthane contenu dans le gisement a été récupéré ; commenter. Tracer l’allure de ppx,tq en fonction de x
pour t “ 0, t “ 10 ans et t “ 40 ans.

Correction de l’exercice 2

1. Loi de Darcy :
•

#»
j 9

#      »

gradppq : Le débit massique est d’autant plus important que les inhomogénéités de pression sont
grandes (cohérent).

• Signe : Le débit massique a lieu des zones de forte pression vers les zones de faible pression (cohérent).
•

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#»
j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
9k : Plus la perméabilité de la roche est grande, plus l’écoulement est favorisé.

La loi de Darcy tend à rendre la pression uniforme.
2. On effectue un bilan de masse de méthane sur le système fixe compris entre x et x` dx entre les instants t et

t ` dt.
Bilan temporel : Le méthane étant supposé être un GP, la masse dm de méthane dans le volume dτ “ Sdx

vaut dm “ Mdn “
Mppqdτq

RT
. Donc, la variation temporelle de la masse de méthane dans le système est :

d2m “ dmpt ` dtq ´ dmptq “
Mq

RT

Bp

Bt
dtSdx

Echanges spatiaux : En utilisant la loi de Darcy
#»
j “ jpx,tq #»ex “ ´

k

ν

Bp

Bx
#»ex :

δ2m “ δmentrantpxq ´ δmsotantpx ` dxq “ jpx,tqSdt ´ jpx ` dx,tqSdt “ ´
Bj

Bx
Sdxdt “ `

k

ν

B2p

Bx2
Sdxdt

Ainsi, par conservation de la masse :

d2m “ δ2m ñ
Bp

Bt
“ D

B2p

Bx2
avec D “

RTk

qMν

Equation de diffusion avec D en m2 s´1. Analogue, par exemple, à l’équation de la diffusion de particules, qui
porte elle sur la densité volumique de particules.

3. On injecte la forme proposée dans l’équation de diffusion. L’équation obtenue devant être valable @t et

@x P r0,Ls, on en déduit α “
1

?
Dτ

ą 0. Ceci est classique d’une situation de diffusion (longueur caractéristique

de diffusion proportionnelle à
?
Dτ).

4. Comme toujours en physique, la quantification d’un "vecteur d’onde" provient des CL.
CL en x “ L : la roche étant imperméable, le débit massique de méthane est nul, soit jpx “ L,tq “ 0 ñ

Bp

Bx

ˇ

ˇ

ˇ

ˇ

x“L

“ 0.

On en déduit que cospαLq “ 0 ñ α “
π

2L
`

kπ

L
avec k P N.

Dans la suite, on prendre α “
π

2L
.

5. En reprenant le raisonnement effectué à la Q.2, on sait que la masse de méthane comprise entre les sections

d’abscisses x et x` dx est : dm “
Mq

RT
pp0 ` p1 sinp

πx

2L
q e´t{τ qSdx. En intégrant sur toute la taille de la roche

:

mptq “

ż L

x“0

Mq

RT
pp0 ` p1 sinp

πx

2L
q e´t{τ qdx “ ¨ ¨ ¨ “

MqSL

RT

ˆ

p0 `
2p1
π

e´t{τ

˙

Forcément, p1 ą 0 (sinon, il ne s’agirait pas d’une extraction du méthane). On trace donc simplement une
courbe exponentielle décroissante vers une constante non nulle.

6. On veut que mpt95q “ 0.05mpt “ 0q, soit

1 `
200

π
e´t95{τ “ 0.05

ˆ

1 `
200

π

˙

ñ t95 “ ´τ ln

ˆ

π

200
p0.05p1 `

200

π
q ´ 1q

˙

“ 3.4τ

D’après la Q.3, on a τ “
1

Dα2
“

4L2

Dπ2
. Donc, t95 “ 3.4

4L2

Dπ2
. A.N. : t95 “ 36 ans. Ceci paraît être le bon odg

du temps d’exploitation d’un gisement d’énergie fossile.
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Le tracé graphique ne pose pas de difficulté particulière, en prenant soin de placer les points particulier
ppx “ 0q “ p0 et ppx “ Lq “ p0 ` p1 e´t{τ . Au bout de 40 ans, la pression est quasiment uniforme : d’après
la loi de Darcy, l’écoulement s’arrête alors : l’extraction est terminée. Cela est cohérent avec le caractère
constant de mptq au bout de 40 ans.

Ex. 3 Accélération des particules de fluide (1)

On étudie l’écoulement d’un fluide compris entre deux cylindres coaxiaux de rayons R1 et R2. Un moteur permet
de faire tourner le cylindre intérieur de rayon R1.

Par symétrie et par invariances, on suppose que le champ de vitesse est de la forme #»v “ vprq #»eθ, en coordonnées
cylindriques.

1. Quelle est l’équation des lignes de courants ?
2. L’écoulement est-il stationnaire ?
3. Calculer l’accélération des particules de fluide dans cet écoulement en fonction de vprq et de r.

Formulaire : Gradient en coordonnées cylindriques :

#      »

gradpfq “
Bf

Br
#»er `

1

r

Bf

Bθ
#»eθ `

Bf

Bz
#»ez

Correction de l’exercice 3

1. Le champ de vitesse est selon #»eθ. Comme les lignes de courant sont tangentes aux vecteurs vitesses, elles sont
dirigées selon #»eθ : leur équation est donc r “ cste et z “ cste.

2. On a
B #»v

Bt
“

#»
0 : l’écoulement est stationnaire.

3. Accélération :
d #»v

dt
“

B #»v

Bt
` p #»v ¨

#      »

gradq #»v “
vprq

r

B

Bθ
pvprq #»eθq

vprq2

r

d #»eθ
dθ

“ ´
vprq2

r
#»er

" Ne pas oublier qu’en coordonnées cylindriques et sphériques, la base est locale : l’orientation des
vecteurs de la base dépend du point choisi, et en l’occurence, de l’angle θ.

Ex. 4 Ecoulement irrotationnel autour d’un cylindre

On considère un cylindre de rayon R et de hauteur infinie (H Ñ `8), qui se trouve comme obstacle dans un
écoulement de vitesse #»u “ urpr,θq #»er ` uθpr,θq #»eθ, en coordonnées cylindriques. Le cylindre étant imperméable, le
fluide le contournera, comme schématisé sur la figure ci-dessous. Loin en amont et en aval du cylindre, l’écoulement
tend vers un écoulement uniforme U #»ex.

Formulaire :
• Laplacien scalaire en coordonnées cylindriques :

∆Φ “
1

r

B

Br

ˆ

r
BΦ

Br

˙

`
1

r2
B2Φ

Bθ2
`

B2Φ

Bz2

• Gradient en coordonnées cylindriques :

#      »

gradpΦq “
BΦ

Br
#»er `

1

r

BΦ

Bθ
#»eθ `

BΦ

Bz
#»ez

On suppose l’écoulement irrotationnel et incompressible. L’objectif est de calculer, sous ces hypothèses, l’expression
du vecteur vitesse #»u en tout point du fluide.

1. Montrer qu’il existe un potentiel des vitesses Φ tel que #»u “
#      »

gradpΦq et vérifiant l’équation de Laplace ∆Φ “ 0.
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Avant de résoudre cette équation, on cherche les conditions aux limites que Φ doit respecter.

2. Loin du cylindre, l’écoulement tend vers un écoulement uniforme et en conséquence, le potentiel Φ tend
vers une fonction Φ8 à l’infini. Montrer que l’on peut choisir Φ8 “ Ux, puis exprimer Φ8 en coordonnées
cylindriques. Caractériser les surfaces équipotentielles et les lignes de courant.

3. Le cylindre étant imperméable, on a @θ, urpr “ R,θq “ 0. Déterminer la condition aux limites du potentiel en
r “ R.

Au vu de la symétrie du problème, on cherche un potentiel Φ qui possède la même dépendance en θ que la fonction
Φ8. Ainsi, on cherchera un potentiel Φ sous la forme Φpr,θq “ fprq cospθq où fprq est une fonction à déterminer.

4. Déterminer l’équation différentielle vérifiée par fprq. On cherche fprq sous la forme fprq “ rn avec n un entier
relatif. Déterminer les valeurs de n possibles et en déduire l’expression générale de la solution de l’équation
différentielle.

5. En déduire le champ de vitesse #»u dans tout le fluide.

Un programme Python permet alors de tracer les lignes de courant autour du cylindre dans le plan pOxyq.

6. En supposant de plus l’écoulement stationnaire, homogène et parfait, on pourra montrer (chapitre MF5) que

la quantité P `
1

2
ρ || #»u ||

2 est une constante dans tout le fluide (P désigne la pression). Commenter alors
l’évolution de la pression dans l’écoulement au voisinage du cylindre. Que dire de la résultante des forces de
pression exercées par le fluide sur le cylindre ?

Correction de l’exercice 4

1. Ecoulement irrotationnel : #  »rotp #»u q “
#»
0 . Donc, il existe Φ tel que #»u “

#      »

gradpΦq.
Ecoulement incompressible : divp #»u q “ 0 “ ∆Φ. Equation de Laplace.

2. Pour r Ñ `8, on a #»u “ U #»ex. Donc, Φ8 “ Ux ` cste “ Ux (choix arbitraire de la constante comme étant
nulle). En cylindrique : Φ8 “ Ur cospθq.
Les surfaces équipotentielles sont d’équation x “ cste et les ldc sont orthogonales à ces surfaces, soit parallèles
à pOxq.

3. On en déduit que
#      »

gradpΦq ¨ #»er “ 0 ñ
BΦ

Br
pr “ R,θq “ 0.

4. En utilisant l’équation de Laplace et la forme fournie de Φ, on obtient :

cospθq

r

d
dr

ˆ

r
df
dr

˙

´
cospθqfprq

r2
“ 0 ñ

d2f

dr2
`

1

r

df
dr

´
fprq

r2
“ 0

On teste une solution polynomiale : fprq “ rn. On aboutit à @r, pnpn ´ 1q ` n ´ 1q rn´2 “ 0 ñ n “ ˘1.

Ainsi, on a obtenu une base des solutions : fprq “ Ar `
B

r
.

5. On détermine A et B avec les CL.
• En r Ñ `8, on a A “ U .
• En r “ R, on a

df
dr

pRq “ 0 “ U ´
B

R2
, soit B “ UR2.

Donc :

fprq “ U

ˆ

r `
R2

r

˙

ñ Φ “ U cospθq

ˆ

r `
R2

r

˙
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Avec #»u “
#      »

gradpΦq, on en déduit :

ur “ U

ˆ

1 ´
R2

r2

˙

cospθq et uθ “ ´U

ˆ

1 `
R2

r2

˙

sinpθq

6. Les lignes de courant se resserrent au voisinage du cylindre pour θ “ ˘
π

2
: la vitesse est plus importante,

donc la pression est plus faible qu’à l’infini. En revanche, pour θ “ 0 ou π, la vitesse diminue en norme, donc
la pression augmente par rapport à l’infini.
Par symétrie de la carte du champ des vitesses, la résultante des forces de pression sur le cylindre est nulle.

Ex. 5 Accélération des particules de fluide (2)

On étudie un fluide ayant une masse volumique variant avec le temps selon une fonction affine. On appelle µ0 sa
masse volumique à t “ 0. Pour t ě 0, ce fluide est le siège d’un écoulement dont le champ de vitesses est donné en
coordonnées cartésiennes par :

#»v px,y,z,tq “
βx

µ0 ´ βt
#»ex

avec β une constante réelle positive. La durée d’étude de l’écoulement est telle que βt est toujours inférieur à µ0.

1. Quelle est l’équation des lignes de courants à un instant t fixé ?
2. L’écoulement est-il stationnaire ?
3. Calculer l’accélération des particules de fluide dans cet écoulement.

Correction de l’exercice 5

1. Le vecteur vitesse est selon #»ex, donc nécessairement, les lignes de courant, tangentes aux vecteurs vitesse, sont
selon #»ex. Leur équation est donc y “ cste et z “ cste.

2. On a
B #»v

Bt
“

β2x

pµ0 ´ βtq2
#»ex ‰

#»
0 : l’écoulement n’est pas stationnaire.

3. Accélération :

d #»v

dt
“

B #»v

Bt
` p #»v ¨

#      »

gradq #»v “
β2x

pµ0 ´ βtq2
#»ex `

ˆ

βx

µ0 ´ βt

B

Bx

˙ ˆ

βx

µ0 ´ βt
#»ex

˙

“ 2
β2x

pµ0 ´ βtq2
#»ex

Ex. 6 Diffuseur de fluide

Un fluide circule dans un tuyau avec un débit volumique Dv fixé. À l’extrémité O du tuyau, un diffuseur envoie le
fluide de manière isotrope (on néglige la présence du tuyau) : #»v pM,tq “ vpr,tq #»er en coordonnées sphériques. On
suppose l’écoulement incompressible.

1. Déterminer l’expression du champ de vitesse. On exprimera la constante d’intégration en fonction du débit
volumique Dv.

2. En déduire l’accélération des particules de fluide.
3. Vérifier le caractère irrotationnel du champ de vitesses.
4. Maintenant qu’on a montré que l’écoulement est irrotationnel, nous allons redéterminer l’accélération d’une

particule de fluide, par un calcul différent de la Q.2. En utilisant la relation d’analyse vectorielle p #»v ¨
#      »

gradq #»v “

#      »

grad

˜

|| #»v ||
2

2

¸

`
#  »rotp #»v q ^ #»v , déterminer à nouveau l’accélération des particules de fluide.

5. Définir le potentiel des vitesses Φ. Déterminer une expression du potentiel des vitesses. Représenter les lignes
de courant et les surfaces équipotentielles.

Formulaire : en coordonnnées sphériques
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Correction de l’exercice 6

1. Étant donné que l’écoulement est incompressible, on a div #»v “ 0 “
1

r2
Bpr2vpr,tqq

Br
. Ainsi en intégrant,

vpr,tq “
A

r2
. Pour déterminer la constante, calculons le débit volumique :

Dv “

ĳ

pSq

#»v ¨ d
#»

S “ vpr,tq

ĳ

pSq

r2dθ sinθdφ “ vpr,tq ˆ 4πr2 “ 4πA (Ex.1)

Cela impose A “
Dv

4π
. D’où un champ de vitesse :

#»v “
Dv

4πr2
#»er (Ex.2)

2. L’accélération des particules de fluide est alors

#»a “
B #»v

Bt
` p #»v ¨

#      »

gradq #»v “
#»
0 `

Dv

4πr2
B

Br

ˆ

Dv

4πr2
#»er

˙

“ ´
D2

v

8π2r5
#»er

3. On vérifie que #  »rot #»v “
#»
0 à l’aide d’un formulaire pour le rotationnel en sphérique.

4. Via la formule d’analyse vectorielle fournie, on en déduit que

#»a “
#      »

grad
ˆ

1

2
|| #»v ||

2

˙

“ ´
D2

v

8πr5
#»er

5. Comme #  »rotp #»v q “
#»
0 , on déduit directement qu’il existe Φ tel que #»v “

#      »

gradpΦq. Enfin il faut déterminer le
potentiel Φ associé :

dΦ “
#      »

gradpΦq ¨
# »

dr “ #»v ¨
# »

dr “
Dv

4πr2
dr ñ

dΦ
dr

“
Dv

4πr2
(Ex.3)

soit Φprq “ ´
Dv

4πr
.

Les équipotentielles sont alors des sphères concentriques de centre O, et les lignes de courant sont des droites
perpendiculaires aux équipotentielles et passant donc par O.
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