Mécanique des fluides

MF1 Description d’un fluide en mouvement
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Questions de cours

* Présenter I’approche eulérienne. Définir les notions de ligne de courant et tube de courant.
» Etablir ’expression de la dérivée particulaire dans le cas du champ de masse volumique.
Enoncer et interpréter les termes de I’expression de ’accélération d’une particule de fluide.

* Débit massique : définition du vecteur densité de courant de masse.

» Etablir I’équation locale de conservation de la masse dans le cas d’une géométrie 1D cartési-
enne. Citer la généralisation a 3D et présenter quelques analogies du transport de masse
avec les autres types de transport.

* Ecoulement incompressible : définition, conséquence sur le champ de vitesse et le débit
volumique.

* Ecoulement irrotationnel : définition, potentiel des vitesses, cas d’un écoulement irrotation-
nel incompressible.
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Prise de motes : La mécanique des fluides est le do-
maine de la physique s’intéressant a la description de
Pécoulement des fluides (c’est-a-dire principalement des
gaz et des liquides). Pour décrire cet écoulement, on
donne alors les vecteurs vitesses U (7,t), la masse volu-
mique p(7,t) ou encore la pression P(7,t) a lintérieur
de T’écoulement. En guise d’exemple, la carte des
vecteurs vitesse d’'un écoulement & faible vitesse autour
d’une spheére est représentée. Dans ce chapitre, on ne B
s’intéressera qu’a la description de la vitesse v et de la T T memamm e

% masse volumique p. sl
Faire le lien avec des écoulements autour d’obstacles
usuels : fleuve contournant une ile, écoulement autour
d’une aile d’avion, voiture... Questions : de quelle vitesse
parle-t-on 7 comment évolue-t-elle dans un écoulement ?
A nouveau, a Déchelle microscopique, du fait de
I'agitation thermique, les molécules du fluide subissent
un mouvement désordonné, similaire & celui des porteurs
de charges électriques (chapitre EM1) ou des particules
(T2) : la modélisation que nous allons en faire sera donc
similaire.

Exemple : Carte des vecteurs
vitesse d’un écoulement & faible
vitesse autour d’une sphere :

—

Ce chapitre a trois objectifs principaux :

1. Présenter l'intérét et ’'expression de la dérivée particulaire, qui nous permettra d’appliquer
le principe fondamental de la dynamique aux particules de fluide.

2. Exploiter les cas de conservation du débit massique et du débit volumique dans 1’écoulement.

3. Identifier les fortes analogies du transport de particules de fluide avec le transport de par-
ticules (chapitre T2) et le transport de charges électriques (EM1).

I Passer d’une description microscopique de la vitesse & une
description macroscopique

A Péchelle microscopique, une molécule subit, du fait de 1’agitation
thermique, des collisions avec les autres molécules du fluide. Aprés
chaque collision, le vecteur vitesse posséde une direction, un sens et
une norme qui ont été modifiés.

L’ordre de grandeur de la vitesse microscopique d’une molécule du fluide est la vitesse quadratique

moyenne u¥ = /{U2).

Ordre de grandeur : Pour 'air macroscopiquement au repos, dans les conditions normales
de température et de pression (CNTP), on a : u* ~ 500 m/s

La modélisation effectuée dans ce chapitre repose sur les mémes hypothéses d’existence d’une
échelle mésoscopique que pour les chapitres de transport de particules (T2) ou de transport de
charges (EM1) : on fait une modélisation des milieux continus.

2 E@®SO Lycée Rabelais - PC - 2025-2026 - C. Logé



échelle

échelle

14

microscopique mésoscopique macroscopique

+ Echelle microscopique : moyenner les grandeurs microscopiques n’a ici pas d’intérét a cause
des fluctuations spatiales et temporelles importantes.

+ Echelle macroscopique : moyenner n’a pas d’intérét vu qu’on veut décrire les variations
spatiales de la vitesse

— Taille caractéristique de I’échelle mésoscopique

L’échelle mésoscopique est une échelle de taille caractéristique ¢ intermédiaire entre ’échelle
microscopique (d : distance inter-particulaire et I.p.m. : libre parcours moyen = distance
moyenne parcourue entre deux collisions) et 1’échelle macroscopique (L : taille d’observation)

d,l.pom « L < L

En guise d’ordre de grandeur pour I’air ou I’eau, on a dans les conditions normales et a tem-
pérature ambiante :

Fluide environnant d l.p.m.
Eau 1x107"%m | 0.1nm=1 x 107" m
Air 1x107"m | 0.1pm=1x 10" m

Donc, dans ’eau, on prend ¢ ~ 10nm « L : RAS ; dans l'air, / ~ 10 pm : pas si petit
que ¢a !

En mécanique des fluides, on travaille donc sur un systéme de taille mésoscopique :

Particule de fluide

Une particule de fluide est un systéme fermé de N molécules du fluide et qui a
pour taille caractéristique 1’échelle mésoscopique /.

La vitesse associée a la particule de fluide est la vitesse mésoscopique : il s’agit de la vitesse
moyenne des N molécules contenues dans la particule de fluide. Cette vitesse mésoscopique de la
particule de fluide est bien plus faible que la vitesse microscopique des molécules.

1.3 Deux approches pour la description de la vitesse dans un écoule-
ment
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L’approche la plus naturelle pour décrire un écoulement de fluide est de découper le fluide en
particules de fluide a ¢ = 0, puis de suivre chacune des particules de fluide au cours de son
mouvement : c’est ’approche classique de mécanique, on parle d’approche lagrangienne.

Dans cette approche, la position du centre P d’une particule de fluide et sa vitesse sont exprimées
explicitement en fonction du temps :

OP(t) = zp(t)es + yp(t)ey + zp(t)el et Up(t) = T

Remarque : Les particules de fluide peuvent se déformer au cours du mouvement.
* Schéma pour la déformation.

Concept naturel associé : Trajectoire d’une particule de fluide L’ensemble des points M
atteints par la particule fluide P au cours du temps constitue la trajectoire de la particule fluide.
C’est la description naturelle dans I’approche lagrangienne.

En pratique, on utilise des traceurs (gouttes de colorants, fumées, petites particules de densité
proche de celle du fluide), et on filme ou photographie avec un long temps de pose.

Vidéo d’expérience en tunnel & vent : https://www.youtube.com/watch?v=wWNjRYOHZts.

Défauts de ’approche lagrangienne Du point de vue expérimental, il est complexe de suivre
et de mesurer explicitement différentes grandeurs physiques sur une particule de fluide qui se
déplace. De plus, il est compliqué de traduire des conditions sur le champ de vitesse ¥ imposées
par la présence d’un obstacle fixe dans un écoulement, vu que la particule de fluide au niveau de
cet obstacle change & chaque instant.

En mécanique des fluides, on utilise une approche eulérienne, consistant a caractériser
a tout instant ET en un point fite M de [’espace ’évolution des champs en ce point.

* En un point M, a l'instant ¢, le champ eulérien des vitesses est alors la vitesse de la
particule de fluide de centre P passant en M a t. A un instant ¢’ ultérieur, la vitesse
est celle d’une autre particule de fluide P’ passant en M a t'.

"(!:f,)

. . ~. AT
trajectoire —=
d’une feuille

tourbillon—
aurvoisinage

f"“im\ . du rocher (M)

Description lagrangienne  Description eulérienne
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Cette approche locale est celle que 'on a déja utilisé en thermodynamique et en électromag-
nétisme. On définit alors différents champs comme le champ des vitesses T (M,t) = T (z,y,z,t)
pour lequel x, y et z sont les coordonnées du point M fixe de I'espace, indépendantes du temps.

Concepts naturels associés : Ligne de courant et tube de courant

= Ligne de courant

Une ligne de courant d’un écoulement & un instant ¢ donné est une ligne de champ du champ
eulérien des vitesses, c’est-a-dire

une courbe orientée qui, & un instant ¢ donné, est tangente en tous ses points au
champ des vitesses.

En pratique, on visualise ces lignes de
courant en dispersant des traceurs dans tout ligne de courant
le fluide, puis en photographiant avec un N

— T . dr=vdt
temps de pose court dt. /

Visualisation des lignes de courant autour d’un avion (le Concorde) :

o traceurs a I’instant t

© traceurs a I’instant t+dt

Tube de courant

Un tube de courant & un instant donné ¢ est ’ensemble des lignes de courant qui s’appuient,
A cet instant ¢, sur un contour fermé.

Pour déter_r)niner I’équation des lignes de courant, on peut exprimer la tangence entre al et T
ddAT=0

Exemple : On considére le champ de vitesse défini, en coordonnées cartésiennes, par :
Vg Vo
T=|v,=ot
v, =0
avec vy et o des constantes positives.
* Faire trois cartes avec les ldc &t = 0, t1 > 0 et to > t; + 1 carte avec la trajectoire
d’une PF.

En régime stationnaire, les lignes de courant coincident avec les trajectoires des particules de
fluide.

Défaut de ’approche eulérienne Dans la suite des chapitres de mécanique des fluides, nous
appliquerons le principe fondamental de la dynamique & une particule de fluide dans le référentiel
du laboratoire. Il nous faudra donc exprimer P'accélération d’une particule de fluide. Avec le
champ eulérien des vitesses, la vitesse (lagrangienne) de la particule passant en M a t sera T (M., t)
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; mais, pour cette méme particule, sa vitesse (lagrangienne) a t + dt ne sera pas U (M.t + dt), car
la particule s’est déplacée. L’expression de l'accélération de la particule de fluide n’est donc pas
simple a priori...

Quittons un instant la mécanique des fluides pour étudier I’évolution de la température ressentie
au cours du temps lors d’un vol en montgolfiére. La montgolfiére s’approche d’un lac au-dessus
duquel la température de l'air est plus froide et varie avec le temps.

Ici, il y a deux champs de température différents !
» Température ressentie par un passager dans la montgolfiéere : champ
lagrangien. Cette température ne dépend que du temps : TF(t)

A * Température mesurée de lair & différents endroits et au cours du temps
: champ eulérien. Cette température dépend a la fois de I'espace et du
temps : T (z,y,2,t)

Ecrivons la différentielle de la température ressentie 7% au cours du mouvement de la
montgolfiére dans le champ eulérien :
oTF oTF oTF oT¥

TL — qTF —
* d d E dz + o dy + s dz + n dt

Donc, la dérivée temporelle de la température ressentie donne :

art GTEdi (9TEd7y aTE%_i_ oTF . oTFE . oTF . oTF N oTF
dt oz dt oy dt 0z dt ot " ox Y oy 7 0z ot

On ré-écrit ceci sous forme compacte :

art  or”

= = 4(7- TE
g n + (U - grad)

Afin de simplifier les notations, on ne précisera désormais plus les exposants L et E. Pour ne
pas confondre néanmoins les deux notions, les notations des dérivées temporelles des champs
lagrangiens et eulériens sont différentes :

: dérivée temporelle pour un champ lagrangien. Elle donne I’évolution temporelle d’une

grandeur, du point de vue de la particule de fluide. On appelle cette dérivée la dérivée
pa)articulaire, et elle est aussi parfois notée %.

: dérivée temporelle pour un champ eulérien. Elle donne I’évolution temporelle locale

d’une grandeur, du point de vue d’un observateur extérieur ne se déplacant pas dans le
référentiel du laboratoire.

Exercice : On cherche la température ressentie par un homme faisant de la montgolfiére au
cours de son vol T'(t). Pour cela, on sait que, dans la tropospheére, la température décroit
linéairement avec l'altitude. De plus, la montgolfiére s’approche d’un lac ou la température
est plus basse : T(x,2) = Ty + ax + Bz avec a = —50°C/km et 8 = —6.5°C/km. On donne
également la vitesse de la montgolfiére : ¥ = v, + v,€, avec v, = 10km/h (vitesse du vent)
et v, = 2km/h. On suppose enfin qu’a ¢t = 0, la montgolfiére est en (z = 0,z = 0). Déterminer
la température ressentie T'(t).
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On intégre sur ¢ :
t
T
J W)t = T(1) = T(0) = (o + B2}t
0

Donc :
T(t) =To + (g + Po,)t

Cohérent : du fait du mouvement selon e, la température décroit d’autant plus vite
que « est grand et que la montgolfiére va vite vers e, (le vy).

dA o4 .,

On peut généraliser la dérivée particulaire au cas d’un champ vectoriel A. FrinirT —i—(’>-g1rzid)z>

On en déduit la différentielle d’'un champ vectoriel :

Différentielle d’un champ vectoriel

— A —_
dA = a&—tdt + (U - grad) Adt

Dans le cas particulier du champ de vitesse de mécanique des fluides, cela donne :

= Dérivée particulaire du champ de vitesse

dv DY o7 P
Hzﬁ:ﬁ—f—(v'gra YU
avec

* accélération de la particule de fluide qui passe en M a t : appproche lagrang-
* ienne

* terme local de I'accélération, lié & la variation temporelle de la vitesse mesurée

en un point : approche eulérienne
* terme convectif de l'accélération, lié au fait que la particule de fluide se

déplace dans le fluide : approche eulérienne

Il est donc, en général, faux d’écrire :

A L 4% %
g v _ v

dt ot

Expression équivalente de la dérivée particulaire du champ de vitesse :

Le formulaire d’analyse vectorielle donne la formule suivante (elle sera redonnée si besoin) :

(U - grad) v grad(| Uil )4—5{(?)/\5’

On peut donc reformuler la dérivée particulaire du champ de vitesse en :

dv 0V | rad (IFIE ” LT A T
a ot &
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IT Bilan de conservation de la masse

On peut définir une densité volumique de masse ou masse volumique, notée p, en considérant la
masse dm des particules contenues dans le volume mésoscopique de la particule de fluide située

au point M & l'instant ¢ :

p(arp) = D (1.1)

L’unité est le kgm=3.
Valeurs a connaitre, dans les conditions normales de température et de pression
(CNTP) :

* Masse volumique de I'eau liquide : p(eau) = 1.0 x 103 kgm~3
* Masse volumique de Dair sec : p(air) = 1.2kgm™3

De plus, comme on peut appliquer la formule de la dérivée particulaire pour n’importe quel champ
porté par le fluide :

— Dérivée particulaire de la masse volumique

d D 0 L, — 0
—p——p:fva(v.grad)p:

P | =
at Dt ot o U erad(p)

avec :

* la variation de la masse volumique de la particule de fluide au cours de son mouvement
: approche lagrangienne

* terme local de la variation de la masse volumique, lié a la variation de masse volumique
mesurée en un point : approche eulérienne

* terme convectif de la variation de la masse volumique, lié au fait que la particule de
fluide se déplace dans le fluide : approche eulérienne

On définit le débit massique & travers une surface (S) orientée comme le rapport entre la masse
algébrique dm traversant (S) pendant dt et le temps dt :

_5m

= — I1.2
" (IL.2)

s’exprimant en kgs~!.

Exercice : Montrer que l'on peut écrire le débit massique a travers une surface (S) orientée
—>
comme le flux d’un vecteur densité de courant de masse j,,, que I'on définira.
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Prenons le cas général de particules se déplagant
a la vitesse moyenne U et traversant une surface

élémentaire dS = dS7. On note 6m la masse des wﬁ»
particules traversant d.S pendant dt. -E(S)
dr = hdS = dSvdt cosf = dS - Tdt '
donc dm = pdr = p7 - dSdt %
Donc, le débit massique & travers as pendant dt est :
1) s — —
* 5Dm—d—7?:pv-d5:]m as

—
avec j,, = pvU le vecteur densité de courant de masse. Pour obtenir le flux total &
travers une surface quelconque, on découpe en surfaces élémentaires (on trouve 6D,, ),

puis on somme :
Dy = ﬂ(spm - Hﬁ,{-d?
) (S)

D,, est donc le flux de j,, = p@.

*

— Expression du débit massique comme un flux

Le débit massique a travers la surface (S) orientée peut s’écrire
—

comme le flux d’un vecteur densité de courant de masse jy, : (S )

“‘ —>
—> — [}

D,, = ﬂ G - dS (IL3) b I

() : ds’
g - ) : -2 -1
avec j,, = pU, dont la norme s’exprime en kgm™=s .
Remarque : On retrouve a nouveau la relation générale entre le débit & travers une surface orientée

d’une grandeur transportée X et un vecteur densité de courant de X :

0X — = — =
E:ﬂy;(-ds avec jx = px
(8)

avec px la densité volumique de X.

On considére un écoulement sans réaction chimique ou nucléaire. Ainsi, dans un volume fixe
dans le référentiel du laboratoire (que 'on appelle volume de controle), la variation temporelle
de la masse est forcément liée & des échanges spatiaux de masse avec extérieur du volume (pas
de terme source). Ce principe de conservation de la masse conduit, par analogie avec les autres
phénomeénes de transport, & une équation locale :

— Equation locale de conservation de la masse

op —
— +div(jm) =0
o T divlim)
* Interprétation des termes :
« lié & la variation temporelle de la masse dans le volume de controle

* lié¢ aux échanges spatiaux de masse avec ’extérieur

E@®®© Lycée Rabelais - PC - 2025-2026 - C. Logé 9



Exercice : Démontrer I’équation locale de conservation de la masse dans le cas d’un probléme
unidimensionnel cartésien.

Schéma. 7m = jm(a:,t)e_;. On réalise un bilan de masse entre t et t +dt sur le volume
compris entre z et z + dx.
Variation temporelle :

o

d*m = dm(t + dt) — dm(t) = o

drdt

* Echanges spatiaux :

82m = 0Mentrant () — 0Msortant (¢ + dz) = Dy, (z)dt — D, (z + dx)dt = —aj—mdedt

Bilan : P Py
Pm=62m= L4 Y g

ot ox

*

Ecoulement stationnaire

Un écoulement est stationnaire si les différents champs eulériens sont indépendants

* 67}’ — 6p

du temps : — = 0 = 0, etc.

ot ot

Etant donné que la définition d’un écoulement stationnaire s’appuie sur I’approche eulérienne, qui
consiste & étudier des champs en un point M fixe (sous-entendu, fixe dans un certain référentiel
d’étude), le caractére stationnaire d’un écoulement dépend du référentiel choisi.

En régime stationnaire, I’équation de conservation de la masse devient :
div(jm) = 0
c’est-a-dire que 37,: est a flux conservatif. Le flux de 7m se conserve le long d’un tube de courant.

En régime stationnaire, le débit massique est conservé le long d’un tube de courant.

Exercice : En utilisant la conservation du débit mas-
sique, exprimer une relation reliant les débits massiques

du Gouét traversant les surfaces (S4), (Sg) et (S¢).
De méme qu'on ne travaille JAMAIS avec
un courant non orienté en électrocinétique, il
&u‘c commencer par orienter les surfaces (S4),
(Sp) et () !
L’écoulement du Gouét est stationnaire (vitesse
mesurée en un point du fleuve indépendante du
temps). Avec des surfaces orientées dans le sens
X amont vers aval (par exemple), on obtient :

Dm,entrant = Dm,A = Dm,sortant = Dm,B + Dmc

(en découpant la surface de sortie en deux surfaces
(SB) et (Sc))-

La loi obtenue est similaire & la loi des nceuds en
électronique.

10 E@®SO Lycée Rabelais - PC - 2025-2026 - C. Logé



IIT Analogies et différences avec les autres phénoménes de

transport
. Diffusion de particules Conduction électrique
Débit de ... particules & = JJ 71\; -dS charges I = Jf 7 -dS
(S)
Equation de on +di 0 o» +di =0
q o v J N = ot v J

conservation locale
Cause du transport : densité particulaire n potentiel électrique V'
gradient de ...

=> => —>

Loi phénoménologique locale jn=—Dgradn vE = —ygrad V

. Fluide en écoulement

Débit de ... masse D,, = SS(S) Fm-dS
ap
ot

Equation de + div j m=0

conservation locale
Cause du transport : Force normale de pression ou
force tangentielle de viscosité (cf. MF2)

Pour pouvoir décrire le champ des vitesses dans le fluide, on procédera, cette fois, par applica-
tion du principe fondamental de la dynamique & une particule de fluide, dans le référentiel du
laboratoire.

IV Evolution du débit volumique

On introduit également le débit volumique & travers une surface (S) orientée comme le rapport
du volume algébrique §V traversant (S) pendant dt et le temps dt :

1%

D, = -
dt

s’exprimant en m3s!.

Avec un raisonnement similaire & celui conduit en partie I1.2, on obtient :

— Expression du débit volumique comme un flux

Le débit volumique & travers la surface (S) orientée peut s’écrire (S)
comme le flux du vecteur vitesse ¥ :

>

U
D, = H? dS (IV.1) =,
(3) ]

ds

Si la masse volumique p est uniforme (on dit alors que ’écoulement est homogeéne), il
existe un lien simple entre D,, et D,

[forsff

(5) (5)

*
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Définition : Un fluide est incompressible et homogéne si et seulement si sa masse volumique p
est une constante dans le temps et ’espace :

p(Mt) = constante

D’aprés ’équation de conservation de la masse, il vient donc :

0P | b o
ot +div(pv) =0
=pdiv(?) =0

=div(?) =0

Un fluide incompressible et homogéne posséde un champ de vitesse v a flux conservatif.

Validité de ce modéle Ce modéle de fluide incompressible et homogéne est relativement adapté
pour décrire les écoulements de phases liquides, qui sont assez bien décrites par des phases con-
densées incompressibles et indilatable. Mais il présente deux défauts majeurs :

* il ne permet pas de donner une description satisfaisante des phases gazeuses.
* il ne permet pas de décrire la propagation d’une onde sonore, vu qu’on suppose que le fluide
ne peut pas étre comprimée.

Pour résoudre ces problémes, on fait un second modéle moins restrictif.

*

= Définition d’un écoulement incompressible

Un fluide est dit en écoulement incompressible si les particules de fluide conservent
leur masse volumique au cours de leur mouvement.

Comme une particule de fluide est un systéme fermé constitué de § N molécules,
sa masse est constante. Donc, dans un écoulement incompressible, le volume des
particules de fluide se conserve, méme si leur forme change.

Cette définition revient & dire que le champ lagrangien de masse volumique est constant pour
chaque particule de fluide.

12

Mathématiquement, on exprime donc un écoulement incompressible par la propriété :
d
dp _
dt

Réécrivons I'équation locale de conservation de la masse, grace a la formule d’analyse
vectorielle (& ne pas connaitre) : div(fA) = fdiv(A) + A - grad(f) :

(?7? + div(p?) = 675) + pdiv(7) + U - grad(p) = (6? + (v ~grad)p) + pdiv(v)

_dp
Codt

Ainsi, pour un écoulement homogéne et incompressible, on a :

+ pdiv(7) =0

div(?) =0

c’est-a-dire que U est & flux conservatif.
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*

Validité de ce modéle Ce modéle est bien moins restrictif. Un fluide compressible (comme un
gaz) peut étre en écoulement incompressible, a la condition que la structure du champ de vitesse
fasse en sorte que le volume des particules de fluide ne varie pas. Ce modéle sera souvent valable
pour des écoulements & des vitesses bien inférieures & la célérité du son dans le fluide considéré.

Pour un écoulement incompressible, ¥ est donc & flux conservatif. Dans un écoulement in-
compressible, le débit volumique se conserve le long d’un tube de courant.

On peut alors interpréter assez aisément une carte de ligne de champ pour ce type d’écoulement

S

1

— 1

|
A

\

Pour un tube de courant entre S et S, on a conservation du débit volumique :

D, = cste = {v1) S = (v3) Sy
*

Du fait de la variation de la surface du tube de champ, on en déduit donc que :
<’Ul> < <UQ> (IV2)

Remarquons également que si la vitesse est uniforme dans les sections droites d’un tube de courant,
on peut trés simplement exprimer des relations entre sections et vitesses via I'égalité des débits
volumiques :

11151 = 1}252 (IV3)

Remarque : 1’écoulement représenté sur la carte de champ est un écoulement stationnaire, méme si,
entre S1 et Sa, les particules de fluide accélérent.

Hypothése Conséquence locale Conséquence intégrale
0
Ecoulement stationnaire a—'to =0= div(?m) =0 | Conservation de D,, le long d’un tube de courant
d - .
“coulement incompressible £ =0=div(7) =0 | Conservation de D, le long d'un tube de courant

V Ecoulement irrotationnel

Remarque : La vorticité est le vecteur @ = rot(¥). La vorticité caractérise donc la tendance du
—

champ des vitesses & tourner autour d’un point. On définit aussi parfois le vecteur tourbillon Q =

lot@) =13

—rot(v) = -w.

2 2

|_ Définition d’un écoulement irrotationnel
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Un écoulement irrotationnel est défini par
rot(T) =0
en tout point.

* On en déduit qu’il existe une fonction ¢, appelée potentiel des vitesses ou potentiel
hydrodynamique, telle que ¥ = + grad(®).

On appelle alors parfois ces écoulements des écoulements potentiels.

Remarque : La définition d’un écoulement irrotationnel revient a dire que la vorticité de I’écoulement
est nulle en tout point.

Conséquences de cette définition sur le potentiel des vitesses :

* Le potentiel des vitesses est toujours défini & une constante prés.
* Les surfaces/lignes équipotentielles sont normales en tout point aux lignes de

courant.
On note fa%orte analogie entre 1’électrostatique et les écoulements irrotationnels. En
> effet, les équations locales sont analogues :
—
div(F) = A div(7) qq
— E—Q —>
rot(E) =0 | rot(T) = 0
Remarque : On a 7m = pU = pgrad(®) : loi analogue & la loi de Fick/Ohm !

Exemples :

1. Ecoulement uniforme : 7 = Ue, :
L’écoulement uniforme est un écoulement irrotationnel car faf( v) = 0.
Le potentiel des vitesses s’écrit ® = Ux + cste.
* Carte de champ.
2. Vortex axial : on se place en coordonnées cylindriques. Hors de 'axe (Oz), on définit

le champ de vitesses par ¥ = —eég.

r
Cherchons §’il existe un potentiel des vitesses ®. On aurait alors :
R —> 5 A
d® = grad(®) -dr = ¥ - dr = —rdf = Adf
r

Donc, le potentiel & = Af + cste convient.

Ainsi, le potentiel des vitesses est bien défini et ’écoulement est irrotationnel
hors de 'axe (Oz).

Carte de champ.

Un écoulement irrotationnel et incompressible vérifie donc a la fois

—

rot(7) =

ol

et div(?7) =0

Du point de vue du potentiel des vitesses, on en déduit que :

div(grad(®) = A® = 0
*

® est solution de ’équation de Laplace dans un écoulement irrotationnel et incompress-
ible.
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Exercices

Ex. 1 Masse volumique de lair sec

On cherche a retrouver la valeur de la masse volumique de l'air sec, dans les conditions normales de température et
de pression (CNTP).

1.

Rappeler la proportion en masse de dioxygéne et de diazote dans ’air. En déduire que la masse molaire de
Pair est de M (air) = 29 g/mol.
En déduire la valeur de la masse volumique de l'air.

Correction de l’exercice 1

On peut retrouver la masse molaire de lair. L’air est composé, majoritairement, de 80% de Ny (principalement
avec de l'azote d’isotope 14) de masse molaire M (N3) = 2 x 14 = 28 g/mol ; et de 20% de O (principalement
avec de l'oxygeéne d’isotope 16) de masse molaire M (Oz) = 2 x 16 = 32 g/mol. Donc, M (air) = 0.8 x M (N3) +
0.2 x M(O3) = 29 g/mol.

Il faut savoir que la masse molaire des nucléons est de l'ordre de 1 g/mol.

. On suppose que l'air est modélisable par un GP. Pour un volume infinitésimal :

om om PM
PdT:(SnRT:ﬁRTéM:E:ﬁ

On retrouve alors : p = 1.2kgm™—3.

Ex. 2 Extraction d’un gisement de méthane

Aide & la résolution de 'exzercice en bas de page?

roche poreuse roche imperméable  Op modélise un gisement de gaz naturel par une roche poreuse de
/

rd volume total V comprenant un volume ¢V de méthane gazeux, la
constante g étant la porosité de la roche. Cette roche poreuse a la
forme d’un cylindre de section circulaire S et de longueur L, limité
sur ses bords et sur sa section x = L par une roche impermeéable.

La section x = 0 modélise le puits d’extraction du méthane et on admettra que la pression de méthane y est
maintenue constante, égale & pg = 1 bar. On fait les hypothéses suivantes :

Iinfluence de la pesanteur est négligeable ;

le probléme est unidimensionnel, de sorte que toutes les grandeurs physiques sont uniformes dans une section
du cylindre ; on note p(z,t) le champ de pression du méthane ;

la température est uniforme et vaut 7" = 300 K ;

le méthane est assimilé a un gaz parfait de masse molaire M = 16 gmol ™! ;

I’écoulement de méthane obéit & la loi de Darcy, i.e. le débit massique de méthane par unité de surface

s’exprime sous la forme du vecteur densité de courant massique équivalent suivant : j = —— grad(p) ou v
v

est la viscosité cinématique du méthane et k est la perméabilité de la roche poreuse ; ces deux grandeurs sont
indépendantes de la pression.

Commenter qualitativement la loi de Darcy. On précisera en particulier si une augmentation de la perméabilité
de la roche tend a faciliter ou non ’écoulement du méthane.

op = Dan ou l'on
ot ox?

exprimera D en fonction de k, v, R (constante des gaz parfaits), T', M et ¢. Nommer le nom donné a ce type
d’équation et préciser I'unité de D. Connaissez-vous d’autres situations régies par ce type d’équation ?

On cherche une solution de la forme p(z,t) = po + p1 sin(az) e /7 avec a et 7 des constantes positives.
Exprimer « en fonction de D et 7.

Effectuer un bilan de masse de méthane pour montrer que p(z,t) vérifie 'équation :

T ¢
NEEES oy + =, = 7 9AmOI} UQ "YU UOMIPUOD Sun IBSI[Y[) O ¢
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. Montrer que a ne peut prendre que des valeurs particuliéres que ’on exprimera. Dans la suite, on adopte la
plus petite valeur possible de a.

. Exprimer la masse m(t) de méthane contenue dans le gisement a la date ¢ en fonction des données. Représenter
graphiquement m(t).

. Sachant que p; = 100pg, que L = 5.0km et D = 3.0 x 1072 uS1, calculer en années la date to5 & laquelle 95%
du méthane contenu dans le gisement a été récupéré ; commenter. Tracer lallure de p(x,t) en fonction de x
pour t =0, t = 10ans et ¢t = 40 ans.

Correction de ’exercice 2

. Loi de Darcy
* ocgrad( ) : Le débit massique est d’autant plus important que les inhomogénéités de pression sont
grandes (cohérent).
* Signe : Le débit massique a lieu des zones de forte pression vers les zones de faible pression (cohérent).
. ‘T.ﬂ ock : Plus la perméabilité de la roche est grande, plus I’écoulement est favorisé.
La loi'de'Darcy tend & rendre la pression uniforme.
. On effectue un bilan de masse de méthane sur le systéme fixe compris entre = et x + dx entre les instants ¢ et
t + dt.
Bilan temporel : Le méthane étant supposé étre un GP, la masse dm de méthane dans le volume dr = Sdz

Mp(qd
vaut dm = Mdn = % Donc, la variation temporelle de la masse de méthane dans le systéme est :
Mgq op
2 p— .
d*m = dm(t + dt) — dm(t) = T ot —dtSdx
. . . - N k op =
Echanges spatiaux : En utilisant la loi de Darcy j = j(z,t)es = —fa— :
v ox
0 , , 0j k o%p
0°m = dMentrant () — IMsotant(x + dz) = j(x,t)Sdt — j(x + da,t)Sdt = fa—dedt = +fﬁ5dxdt
i v ox
Ainsi, par conservation de la masse :
op %p RTE
2 2
d“m —6m:>§ Da? avec quMU

Equation de diffusion avec D en m?s~!. Analogue, par exemple, & I’équation de la diffusion de particules, qui

porte elle sur la densité volumique de particules.
. On injecte la forme proposée dans 1’équation de diffusion. L’équation obtenue devant étre valable V¢ et

Vx € [0,L], on en déduit o =
ot VDr

de diffusion proportionnelle a v/ D).

. Comme toujours en physique, la quantification d’un "vecteur d’onde" provient des CL.

CL en x = L : la roche étant imperméable, le débit massique de méthane est nul, soit j(x = Lit) = 0 =
0

@2 o

Ox z=L

> 0. Ceci est classique d’une situation de diffusion (longueur caractéristique

k
On en déduit que cos(al) =0= a = % + % avec k € N.

) T
Dans la suite, on prendre a = —.

. En reprenant le raisonnement effectué a la .2, on sait que la masse de méthane comprise entre les sections

M
d’abscisses et z +dx est : dm = R—;(po +p1 sin(%) e~/7)Sdz. En intégrant sur toute la taille de la roche

L
Mg T, _ MqSL 2p1
1) = t/T dr = “P1 t/T
m(t) L ORT@OH’1 sin(gp) e )de = RT <p°+ x ¢ )

Forcément, p; > 0 (sinon, il ne s’agirait pas d’une extraction du méthane). On trace donc simplement une
courbe exponentielle décroissante vers une constante non nulle.
. On veut que m(tgs) = 0.05m(t = 0), soit

200 200 200
1 —tos/T _ . 1 - = —71 1 —) =1 =34
+ e 005( + 7r>=>t95 Tn<200(005( + ) )) 3.471

1 4172 4172
D’aprés la Q.3, on a 7 = = . Dongc, tgs = 3.4——. A.N.: tg5 = 36ans. Ceci parait étre le bon odg
%" " Da® Dn? D2
du temps d’exploitation d’un gisement d’énergie fossile.
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Le tracé graphique ne pose pas de difficulté particuliére, en prenant soin de placer les points particulier
p(x =0) =py et p(d =L) =pg+p1 e t7. Au bout de 40 ans, la pression est quasiment uniforme : d’aprés
la loi de Darcy, I’écoulement s’arréte alors : l'extraction est terminée. Cela est cohérent avec le caractére
constant de m(t) au bout de 40 ans.

Ex. 3 Accélération des particules de fluide (1)

On étudie ’écoulement d’un fluide compris entre deux cylindres coaxiaux de rayons R; et Ro. Un moteur permet
de faire tourner le cylindre intérieur de rayon Rj.

Par symétrie et par invariances, on suppose que le champ de vitesse est de la forme ¥ = v(r)ég, en coordonnées
cylindriques.

1. Quelle est I’équation des lignes de courants 7
2. L’écoulement est-il stationnaire 7
3. Calculer laccélération des particules de fluide dans cet écoulement en fonction de v(r) et de 7.

Formulaire : Gradient en coordonnées cylindriques :

— of , 10f_ 0f_
grad(f) = (?TerT + ;a—geg + a—fez

Correction de ’exercice 3

1. Le champ de vitesse est selon eg. Comme les lignes de courant sont tangentes aux vecteurs vitesses, elles sont

dirigées selon ey : leur équation est donc r = cste et z = cste.
ov

2. Ona — = 0 : l'écoulement est stationnaire.
3. Accélération : 47 oz ) 0 ( )2 i ( )2
v U 5 — 5 v(r o o(r €g v(r)® _,
= corad) T = =2 v >
a ~ o T ead)V = = e (vned) =g r

Ne pas oublier qu’en coordonnées cylindriques et sphériques, la base est locale : 'orientation des
vecteurs de la base dépend du point choisi, et en 'occurence, de ’angle 6.

Ex. 4 Ecoulement irrotationnel autour d’un cylindre

On considére un cylindre de rayon R et de hauteur infinie (H — +0o0), qui se trouve comme obstacle dans un
écoulement de vitesse @ = w,.(r,0)e, + ug(r,0)eg, en coordonnées cylindriques. Le cylindre étant imperméable, le
fluide le contournera, comme schématisé sur la figure ci-dessous. Loin en amont et en aval du cylindre, ’écoulement
tend vers un écoulement uniforme Ue,.

, I. Formulaire :
* Laplacien scalaire en coordonnées cylindriques :

1 u

L 1| Ap_ 10 (,02), 130 o0
“; ) ror \' or * r2 062 * 022

=l y * Gradient en coordonnées cylindriques :

— P 100 P
ﬁ» r grad(@):a—_ﬂ—fa—e_é—%-ie_;

0 X or " T r o8 0z

On suppose I'écoulement irrotationnel et incompressible. L’objectif est de calculer, sous ces hypothéses, ’expression
du vecteur vitesse U en tout point du fluide.

1. Montrer qu’il existe un potentiel des vitesses @ tel que @ = grad(®) et vérifiant I'équation de Laplace A® = 0.
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Avant de résoudre cette équation, on cherche les conditions aux limites que ® doit respecter.

2. Loin du cylindre, I’écoulement tend vers un écoulement uniforme et en conséquence, le potentiel ® tend
vers une fonction ®, a l'infini. Montrer que 'on peut choisir ®,, = Uz, puis exprimer ®,, en coordonnées
cylindriques. Caractériser les surfaces équipotentielles et les lignes de courant.

3. Le cylindre étant imperméable, on a V8, u,.(r = R,0) = 0. Déterminer la condition aux limites du potentiel en
r=R.

Au vu de la symétrie du probléme, on cherche un potentiel ® qui posséde la méme dépendance en 6 que la fonction
®,,. Ainsi, on cherchera un potentiel ® sous la forme ®(r,0) = f(r) cos(f) ot f(r) est une fonction & déterminer.

4. Déterminer ’équation différentielle vérifiée par f(r). On cherche f(r) sous la forme f(r) = r™ avec n un entier
relatif. Déterminer les valeurs de n possibles et en déduire I'expression générale de la solution de 1’équation
différentielle.

5. En déduire le champ de vitesse @ dans tout le fluide.

Un programme Python permet alors de tracer les lignes de courant autour du cylindre dans le plan (Ozy).

- ———
e
,’A
—— N
v
v
M
= =

6. En supposant de plus 1’écoulement stationnaire, homogeéne et parfait, on pourra montrer (chapitre MF5) que

la quantité P + §p|\ﬂ’||2 est une constante dans tout le fluide (P désigne la pression). Commenter alors

I’évolution de la pression dans I’écoulement au voisinage du cylindre. Que dire de la résultante des forces de
pression exercées par le fluide sur le cylindre ?

Correction de ’exercice 4

1. Ecoulement irrotationnel : rot(@) = 0. Dong, il existe ® tel que @ = @(@).
Ecoulement incompressible : div(@) = 0 = A®. Equation de Laplace.

2. Pour r — 400, on a ¥ = Ue,. Donc, ®,, = Uz + cste = Uz (choix arbitraire de la constante comme étant
nulle). En cylindrique : ®, = Ur cos(0).
Les surfaces équipotentielles sont d’équation x = cste et les ldc sont orthogonales a ces surfaces, soit paralléles

a (Ox).
., b
3. On en déduit que grad(®) - e, = 0 = (Z—T(r = R,0) =0.

4. En utilisant I’équation de Laplace et la forme fournie de ®, on obtient :
df  f(r)

cos<e>d(rw>ms<9>fm_0:ﬁ+1:o

rodr \ dr 72 B dr?2  rdr 72
On teste une solution polynomiale : f(r) = ™. On aboutit & Vr, (n(n—1)+n—1)r""2 =0=n = £1.

Ainsi, on a obtenu une base des solutions : f(r) = Ar + —.
r

5. On détermine A et B avec les CL.
* Enr - 4ow,ona A="U.

d B
°EnT=R,ona—f(R)=O=U——2,soitB=UR2.
Donc : dr R
2

f(r):U(er]i) = & =U cos(9) <r+]j2)
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Avec U = grad(®), on en déduit :
2
u, =U (1 - i) cos(6) et ug = —-U <1 + 152) sin(0)

6. Les lignes de courant se resserrent au voisinage du cylindre pour 6 = : la vitesse est plus importante,

T
2
donc la pression est plus faible qu’a U'infini. En revanche, pour 8 = 0 ou m, la vitesse diminue en norme, donc
la pression augmente par rapport a l'infini.

Par symétrie de la carte du champ des vitesses, la résultante des forces de pression sur le cylindre est nulle.

Ex. 5 Accélération des particules de fluide (2)

On étudie un fluide ayant une masse volumique variant avec le temps selon une fonction affine. On appelle pg sa
masse volumique a t = 0. Pour ¢ = 0, ce fluide est le siége d’'un écoulement dont le champ de vitesses est donné en
coordonnées cartésiennes par :

Bz

— e,
po — Bt "

avec  une constante réelle positive. La durée d’étude de ’écoulement est telle que St est toujours inférieur & pyg.

V(wy,zt) =

1. Quelle est I’équation des lignes de courants & un instant ¢ fixé 7
L’écoulement est-il stationnaire ?
3. Calculer I'accélération des particules de fluide dans cet écoulement.

N

Correction de ’exercice 5

1. Le vecteur vitesse est selon e,, donc nécessairement, les lignes de courant, tangentes aux vecteurs vitesse, sont
selon e,. Leur équation est donc y = cste et z = cste.

il BT G . Pecoulement west pas stati
= ecou ement n es as sta 10nna1re
ot~ (uo— p2 P

3. Accélération :

d7 o7 — B2x ( Bx &>< Bx _,>_ B2x
(

—_ = + (7 -grad) v = er + — er | =2 €
dt ot (¢ grad) (po — pt)? po — Bt ox ) \ po — Bt to — Bt)?

Ex. 6 Diffuseur de fluide

Un fluide circule dans un tuyau avec un débit volumique D, fixé. A 'extrémité O du tuyau, un diffuseur envoie le
fluide de maniére isotrope (on néglige la présence du tuyau) : ¥ (M,t) = v(r,t)e, en coordonnées sphériques. On
suppose ’écoulement incompressible.

1. Déterminer I'expression du champ de vitesse. On exprimera la constante d’intégration en fonction du débit

volumique D,,.

En déduire accélération des particules de fluide.

Vérifier le caractére irrotationnel du champ de vitesses.

4. Maintenant qu’on a montré que I'écoulement est irrotationnel, nous allons redéterminer I'accélération d’une
particule de fluide, par un calcul différent de la Q.2. En utilisant la relation d’analyse vectorielle (U -grad)v =

LN

71" H —

+ 10t(7) A U, déterminer & nouveau l’accélération des particules de fluide.

5. Définir le potentiel des vitesses ®. Déterminer une expression du potentiel des vitesses. Représenter les lignes
de courant et les surfaces équipotentielles.

Formulaire : en coordonnnées sphériques

===tk of . 19f _ 1 df_,
BLaC) =ty U r 90 " rsing (),,

or
le? % 724,q) " 1 0(%111945) i

- - pas a savoir
or rsin 6 51116’ dg,, ( )

e

— 1 d(sin HA,A) 0 49 - A LAY o 1 (0(rds) OA,\
tA = e S e = [ ,
ro‘ rsin ( o ) (r sin ¢/ d\y # o ¥ o or o ) "¢
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Correction de ’exercice 6

1 d(r?v(rt))

. Etant donné que ’écoulement est incompressible, on a divd = 0 = R e Ainsi en intégrant,
r r
A
v(rt) = —. Pour déterminer la constante, calculons le débit volumique :
r
D, = J T dS =o(rt) J-J r2df sinfde = v(rt) x 4nr? = 4w A (Ex.1)
) (8)
. Dy :
Cela impose A = . D’ott un champ de vitesse :
T
— DV —
v = mer (EXQ)
. L’accélération des particules de fluide est alors
ov — - D, 0 (D D?
=Y (T amad)T = 0 v O o) o e
“ ot (V- grad)v * 47r? Or (47TT2€ ) 825

On vérifie que rot ¥ = 0 a l'aide d'un formulaire pour le rotationnel en sphérique.
Via la formule d’analyse vectorielle fournie, on en déduit que

7 —gad (L7P) = - Lo
@ =grad | = || =-——"2¢,
& 2 8mrd

Comme 1ot(T) = 0, on déduit directement qu’il existe ® tel que ¥ = grad(®). Enfin il faut déterminer le
potentiel ¢ associé :

D, . _ d® _ D,

d® = grad(®) -dr = U -dr = i el

(Ex.3)

Dy
soit ®(r) = T

0
Les équipotentielles sont alors des sphéres concentriques de centre O, et les lignes de courant sont des droites
perpendiculaires aux équipotentielles et passant donc par O.
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