Mécanique des fluides

MF2

Actions de contact dans un fluide
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Questions de cours

* Pression : définition, expression de la force de pression, démonstration de la force volumique
de pression.

* Démontrer la relation fondamentale de la statique des fluides, et I'appliquer a un liquide
incompressible en présentant quelques applications.

* Démontrer l'expression du champ de pression au sein d’un gaz parfait isotherme soumis
uniquement au champ de pesanteur. Interpréter physiquement en explicitant la signification
du facteur de Boltzmann.

* Présenter ’écoulement de Couette plan. Interpréter physiquement la force de viscosité élé-

- (Y — . A . 4 7’ .
mentaire § F, = n——dSe,. Odg de la viscosité dynamique de I’eau. Démontrer I’équivalent
z

volumique des forces de viscosité dans le cas de ’écoulement de Couette plan, puis donner
la forme générale.

Ce travail est mis en ligne sous la licence CC BY-NC-SA /.0. 1
E@®®© Lycée Rabelais - PC - 2025-2026 - C. Logé


https://creativecommons.org/licenses/by-nc-sa/4.0/

Il existe de nombreuses expériences montrant 'importance des forces de pression : un
verre rempli d’eau avec une feuille & son sommet ne se vide pas lorsqu’on le retourne,

* un plongeur décompresse lorsqu’il plonge dans l'océan, la cabine d’un avion est sous-
pressurisée lors d’un vol... Cette force de pression est une action de contact s’exercant
sur la surface d’un systéme. Ce chapitre a pour but de décrire l'origine et de déterminer
les expressions des actions de contact s’exercant dans un fluide.

Ce chapitre a trois objectifs principaux :

1. Démontrer ’équation fondamentale de la statique des fluides et ’appliquer pour déterminer
la pression dans un fluide incompressible, puis dans un gaz parfait isotherme, puis I’équation
d’une surface libre.

2. Comprendre que 'origine des forces de viscosité est 'adhérence entre particules de fluides.

3. Déterminer ’équivalent volumique des forces de viscosité.

I Forces volumiques et surfaciques dans un fluide

Il existe deux types de forces extérieures s’exergant sur un volume (V) de fluide.

Une force volumique est une force qui s’exerce sur tous les points du volume (V). On la caractérise

e
. . -2 ro = s . ,
par une densité volumique de force f, = —— ou 6F est la force élémentaire s’exercant sur

-
I’élément d7. La force totale est alors I'intégrale de la densité volumique de force :

F= Hf Fodr (L1)
V)

Citons par exemple :

« le poids 6P = 6mq = pdr g (p : masse volumique) conduisant & ?U =pgq.
¢ la force de Lorentz 6F; = q(E + U A B) = pdr(E + U A B) (p. : densité volumique de
charges) conduisant a 71; = pc (E + T A §> = pcﬁ + 7 A B.

—

Dans un référentiel non galiléen, on doit prendre en compte des forces d’inertie, dont on peut
aussi exprimer les équivalents volumiques.

¢ Cas d’un référentiel R’ en translation par rapport a& un référentiel R

galiléen : N

Force volumique d’inertie d’entrainement : § f ;. = —md, = —pd7d . conduisant
N 4 — — 212 . ’ N

& fuie=—pa.avec a. : accélération de R’ par rapport a R.

« Cas d’un référentiel R’ en rotation autour d’un axe fixe d’un référentiel
R galiléen : N
= fuie = pQ2HM avec H le projeté orthogonal de M sur l’axe de rotation.
- Force volumique d’inertie de Coriolis : 71,70 = —2p§73, R A U(M)/Rs

Considérons un élément de surface inﬁnitésimal)dg> = dS7 autour de M, avec 7 la normale
en M a cette surface. La force ¢lémentaire JF exercée sur la surface dS peut généralement
se décomposer en une composante normale §F',, correspondant & une force de pression, et une
composante tangentielle 6 F'; appelée force de cisaillement ou force de viscosité.
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systeme

On peut ainsi définir une force surfacique, encore appelée contrainte, et exprimée en Nm~—2 ou
en pascal :
— — —
- OF O0F,  OF;

.
=0, + 0

9745 T as T as ~

On va étudier dans les deux prochaines parties ces deux types de contraintes, jouant un role
essentiel dans I’écoulement des fluides.

Probléme des forces surfaciques lors de 1’application du PFD :

Dans la suite, on appliquera le PFD a une particule de fluide, dans le référentiel du
laboratoire galiléen. Or, on a :

N dv ov L, —
md = (pdT)E = (pdr) <6t + (v ~grad)v>

On ne peut pas exprimer ce terme en faisant intervenir une surface élémentaire. Donc,
* le PFD s’écrira :

pdr (aa: + (T grad)?f) = fodr +5,dS + 5dS

qui dépend a la fois de d7 et dS... Pour se ramener & une équation universelle (ne
dépendant pas de la forme de la particule de fluide), on va donc chercher un équivalent
volumique de chacune des contraintes. (On simplifiera alors par dr.)

II Forces de pression

La pression dans un fluide correspond & des actions de contact, c’est-a-dire des actions de courte
portée : interactions répulsives (liées a 'agitation moléculaire et au principe d’exclusion de Pauli)
et interactions attractives (Van der Waals par exemple). En un point M d’une surface délimitant
le fluide étudié, la force de pression élémentaire exercée par l'extérieur sur le systéme étudié s’écrit

5F pression = TP(M)dS = +P(M)dST
avec dS la surface élémentaire autour de M et 7 le vecteur normal. Ainsi on identifie la pression
a la contrainte normale, @,, = £P(M)7. On choisit le signe avec le sens physique tel que la force

soit dirigée vers le systéme.

L’unité de la pression est le pascal (Pa), ou celle d’'une force surfacique en Nm~2. On rencontre
d’autres unités, dont une est & connaitre : 1bar = 10° Pa.

La force totale s’exergant sur une surface S finie correspond alors & la somme des forces élémen-
taires :
Fpression = ff(SFpression == JJP(M)dSﬁ
() (5)
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i) Force de pression sur une surface plane

barrage

y air eau

|

I
=
Y
O f

Considérons un barrage plan de hauteur H et largeur L, soumis d’un cété aux forces de pression
de lair, et de l'autre a celles de 'eau. On se place en coordonnées cartésiennes, avec 'axe (0Oz)
ascendant (origine placé & la surface de leau). On précise qu’il régne dans I’eau une pression
P(z) = Py — pgz, avec p la masse volumique de l’eau et Py = 1 bar la pression atmosphérique, et
on supposera la pression de ’air uniforme, de valeur Py. Calculons la résultante F des forces de
pression sur le barrage.

Considérons un élément de surface as = dydze,. N
. Faw_,bam,age = SS(S +P0dS (entre parenthéses : Faw_,bm«mge = PyHLe,).

FGG/IJ.*) rra = z dS
* Donc la restl{ tanto degsfg%ces sur b rragggésg écrit pg )

H2
H pgzdydze; = ng dyf zdze; = —pgl—-e:
()

On constate, et c’est souvent le cas, que seule la surpression dans l’eau P(z) — Py joue un role
dans le calcul des forces de pression.

Remarque : Le point d’application de la résultante des forces de pression, appelé centre de poussée
P, est tel que la somme des moments en P de toutes les forces élémentaires de pression est nul
SS(S) ./\_/l>p(5ﬁprcssion) = SS(S) PM A (iP(M)dg) — 0. Pour le barrage plan précédent, on sait par
symétrie que P se trouve en y = L/2 ; le calcul montre alors que P est & une hauteur z = H/3.

ii) Force de pression sur une surface non plane

On considére un barrage constitué par une portion de cylindre, de rayon R, d’angle « et de
hauteur H. Il est soumis d’'un coté aux forces de pression de 'air et de 'autre & celles de I’eau.
On se place en coordonnées cylindriques, avec un axe (Oz) ascendant (O est sur la surface de
leau). La pression de l'eau s’écrit alors toujours P(z) = Py — pgh. On cherche a déterminer la
résultante F' des forces de pression sur le barrage.

4 E@®®O Lycée Rabelais - PC - 2025-2026 - C. Logé



On 1ntrodu1t as = Rdédze;.
* Fazr—>barrage = SS(S) +POdS

Fcau—»b rrage _,SS d—)
Donc la résultante s'éeldt
* F = JJ pgzRdfdze,

(5)

La direction de e, dépend du point M considéré. Il ne faut jamais calculer une
intégrale avec un vecteur mobile.

Meéthode pour calculer une force de pression sur une surface non plane :

1. On détermine la direction de la force par symétrie.
2. On ne calcule que la projection de la force sur la direction déterminée.

Par symétrie, on a F= F,e,. On calcule donc :

* F, = Jf pgzR cos(6)dfdz

(9)
Tous calculs faits, on trouve :

F= —pgRH? sin%e_;

iii) Cas d’un champ de pression uniforme

Lorsque le champ de pression est uniforme (ce sera fréquemment le cas dans les gaz), P(M) =
Py = cste, on peut assez simplement calculer la résultante des forces de pression sur une surface
fermée. Si on considére par exemple un cube de coté a, les forces de pression vont s’opposer deux
a deux pour chaque face, et la résultante des forces de pression sur le cube est nulle. Le résultat
peut se généraliser :

#Podsﬁ -0 (IL.1)

(5)

Exemple : On considére une lance a incendie
de pompier, placée dans l’air de pression uni-
forme Py. L’eau présente dans la lance passe
par un rétrécissement du tuyau, passant de la
surface Sp a la surface S5. On cherche la résul-
tante des forces de pression exercées par lair
sur la portion de tuyau entre S et So.

)

|
|

On étudie momentanément une situation fictive : on ferme le tuyau de part et d’autre
et on le suppose entouré entiérement d’air. Schéma.
La surface étant fermée, on a (orienter e, vers la droite) :

* # Qd_> J:f P()dS + P()Slew — P052€$ = Jf ]DO_S> —Po(Sl — Sg)e_;
(S) (Slat) (Slat)

Dans la verltable situation, la résultante des forces de pression de 'air sur le tuyau
est donc : Fp’mrﬁmyau = —Py(S1 — Sa)e,.

Les forces de pression peuvent s’exprimer avec une force volumique équivalente. Pour la déter-
miner, considérons une particule de fluide dr, cubique de cotés dz, dy et dz en coordonnées
cartésiennes.
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Calcul de la résultante des forces de pression sur cette particule de fluide (schéma) :

5F = (P(z,y,2) — P(z + dz,y,2))dydze,
(P(:z:, ,2) — P(zy + dy,z )dxdze_y)
))

+
+ (P(z,y,2) — P(z,y,z + dz))dzdye?
* P P P .
a— € a— €y or e, | dedydz = — grad(P)dr
:C (9y o 0z vy

d’ou l'on tire la densité volumique de force de pression :

fv, pression — fgrad(P)

Cela s’interpréte aisément : la résultante des forces de pression sur un petit élément est dirigée
dans le sens opposé du gradient de pression, c’est-a-dire des zones de fortes pressions vers celles
de faibles pressions.

On se place dans un référentiel galiléen dans lequel leﬂﬂuide est & l’équilibre (c’est-a-dire que
toutes les particules de fluide sont a I’équilibre : ¥ = 0). On suppose qu’en plus des forces de
pression, le fluide est soumis a des forces dont la résultante est décrite par une densité volumique

de force f,.

En appliquant le PFD & une particule de fluide & I’équilibre :

— — —

7v7pressiond7- + T’U(M)dT = 6) Aand _grad(P) + f’U(M) =

— Relation fondamentale de la statique des fluides
Dans un référentiel galiléen, pour un fluide statique :
—grad(P) + TU(M) =

avec 71, la résultante des densités volumiques de forces extérieures. Si le fluide est statique
dans un référentiel non galiléen, il faut ajouter les densités volumiques des forces d’inertie.

La résolution de cette équation peut nous permettre de déterminer le champ de pression au sein
d’un fluide en statique, ce qu’on illustre par les différents exemples qui suivent.

Considérons le cas d’un liquide incompressible, de masse volumique constante et uniforme p, placé
dans un champ de pesanteur uniforme § = —ge,. On suppose le fluide statique dans le référentiel
terrestre.
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» Référentiel terrestre galiléen
epére cartésien (faire un schéma
La relatlgn %e a stathue (ﬁes Eulgesnsl’ecrlt

—grad(P) — pgez = 0

soit projetée selon les trois axes :
opP
oz
oP
0y
oP
0z

) =0= P(y,2)
y,z

R

) = —pg=>\P(Z) =Py — pgz
z,Y

avec Py = P(z = 0).

L’expression du champ de pression n’est valable que si ’axe vertical est orienté vers le
haut, & 'opposé de ¢. Si on inverse le sens de I’axe, on trouve P(z) = Py + pgz. De
plus, il faut que lorigine de I’axe vertical soit placée de sorte que P(z = 0) = P,.

On peut en conclure que la pression augmente avec la profondeur. On constate également que les

surfaces de niveau isobares sont des plans horizontaux.

Ordre de grandeur a retenir : pg ~ 0.1barm~! pour I’eau liquide, c’est-a-dire une aug-
mentation de pression de 1 bar tous les 10 m.

Quelques applications :

airala
pression P,
h
P 0
H,0

* deux points du méme fluide situés & la méme altitude ont la méme pression. Les surfaces
libres, soumises & la méme pression atmosphérique Py ont donc la méme altitude (principe
des vases communicants), et sont horizontales ;

* Au niveau de la surface libre en contact avec ’atmosphére, la pression dans le fluide
est Py. Donc, au sein du tube, la pression décroit avec ’altitude, jusqu’a une pression
P, = Py — pgh au sommet du tube.

Contrairement au cas des liquides, la masse volumique d’un gaz dépend de la pression. Donc, la
relation : P = Py — pgz est fausse !!! Supposons que ’on assimile I’air de 'atmosphére & un gaz
parfait dont la température Ty est constante (modeéle de 'atmosphére isotherme).

Exercice : Déterminer ’expression de la pression dans I’atmosphére, dans le cadre du modéle
isotherme. On supposera que lair est statique dans le référentiel terrestre galiléen. On in-
troduira une distance caractéristique H dont on donnera ’expression et dont on réalisera une
application numérique.
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» Référentiel terrestre galiléen

* Repére cartésien

_om  ngaM MP

~dr V. RI

En suivant le méme calcul que précédemment, le systéme de trois équations devient
(axe (Oz) orienté vers le haut) :

p

dP dP MP dpP 1
- =0 «— —+—09g=0 << —+ —=P(2)=0
*rg & " RR,? e Tat?
RTy s o ) e
en posant H = —— une hauteur caractéristique associée a cette équation différentielle

d’ordre 1. La condition & la limite P(z = 0) = Py conduit alors a

P(z)=F e #H

* la pression diminue exponentiellement avec ’altitude, avec une distance carac-
téristique H valant pour l'air ambiant (M = 29.0gmol_1) a la température
To =288K, H ~ 8.4km ;

* on pourra considérer la pression constante a 1’échelle de la centaine de métres

Interprétation avec le facteur de Boltzmann :

Mgz mgz
Le terme exponentiel se met sous la forme e_ RTy — e_ ksTo avec m = /\%' La densité volu-
mgz
mique de particules n = ‘;—]Z =z BPTO oC e_ ksTo . Ce terme correspond & un facteur de Boltzmann

qui traduit la compétition entre deux phénoménes physiques : la pesanteur, d’énergie potentielle
de pesanteur mgz, et l'agitation thermique, d’énergie kg7, qui conduit les molécules de gaz a
occuper tout I’espace.

Définition de la poussée d’Archiméde

Dans un référentiel R, la poussée d’Archiméde est la résultante des forces de pression qui
s’exerce sur un objet immobile dans R, par le fluide au repos qui ’entoure.

*

Dans un exercice, ne pas prendre en compte la poussée d’Archiméde ET Ia
A résultante des forces de pression : c¢’est la méme force qui a deux noms différents
m
Considérons le cas d’un objet plongé dans un fluide, et entiérement entouré par du fluide. On se
place dans un référentiel galiléen. Seuls les champs de pression et de pesanteur sont considérés
ici.

—
A Il
fluide fluide ...
: systéme :-‘ systéme':
Pystome * pﬂuide o
pﬂuide SR pﬂuide Sey g
) —>
mf g

En STATIQUE, le champ de pression dans le fluide entourant I'objet est identique que 1'objet

soit présent ou non. En effet, dans le fluide, on vérifie toujours : 0=- grad(P) + p¢d et on peut
bien intégrer ceci entre la surface et tout le reste du fluide.
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Donc, on peut considérer la situation fictive dans lequel 'objet est remplacé par le méme volume
de fluide Viysteme. En statique, on applique le PFD & ce volume de fluide :

H+P=0 < Il =-mf7 = —pAuide Vaysteme §

— Expression de la poussée d’Archiméde

Un corps entiérement plongé dans un fluide au repos dans un référentiel galiléen subit une
force verticale ascendante opposée au poids du fluide déplacé :

II = —mf? = _pﬂuidevvsystéme?

avec my la masse de fluide déplacé, payide la masse volumique du fluide (pas du systéme),
et Viysteme le volume occupé par le systéme.

On ne peut appliquer la poussée d’Archiméde qu’en statique, si le systéme a une surface
fermée et s’il est entiérement entouré d’un ou de plusieurs fluides. Il n’est pas possible
d’appliquer la poussée d’Archiméde si le systéme est en contact avec une surface solide.

Remarque : La formule de la poussée d’Archiméde est modifiée si I’étude est réalisée dans un référentiel
non galiléen ou si d’autres forces extérieures que la force de pesanteur s’appliquent.

Considérons la situation concréte suivante. Un récipient cylindrique
contenant un liquide de masse volumique p est en rotation autour
de son axe de révolution (Oz) a la vitesse constante w. On note la
pression atmosphérique Fy.

liquide

Deux référentiels doivent étre distingués :
* le référentiel terrestre R supposé galiléen. Dans ce référentiel, le fluide n’est pas

statique.
* le référentiel R’ en rotation a la vitesse w autour de I'axe fixe (Oz) de R. Dans
ce référentiel, le fluide est, statique, ce qui étude plus simple.
* cferentiel, le fluide est statique, ge qui rend Iétude plus simpl
n se place en coordonnées cylindriques d’axe ( ,?)

Dans R/, la relation fondamentale de la statique des fluides donne :
— grad(P) — pges + pw?HM = — grad(P) — pge: + pw’rér = 0
On cherche alors I’équation de la surface libre.

Définition : Surface libre

Interface entre un fluide et ’air.

Dans le cas d’un fluide statique sans tension superficielle, il y a continuité de la pression a
linterface fluide/air. Donc, la pression dans le fluide vaut P = Py = cste au niveau de la surface
libre.

Ainsi, si on se déplace de dr sur la surface libre, on a dP = 0 : grad(P) -dr = 0. Donc :

w?r?

* pgdz = pw’rdr = z(r) = + cste

La surface libre forme une parabole.

III Forces de viscosité

En mécanique des fluides, on étudie principalement trois types d’écoulement de fluides :
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* I'écoulement de Couette est un écoulement de fluide visqueux dans une conduite dont les
parois se déplacent & des vitesses constantes, mais différentes : le fluide est mis en mouve-
ment par le mouvement des parois ;

* I'écoulement de Poiseuille est un écoulement de fluide visqueux dans une conduite dont les
parois sont immobiles : le fluide est mis en mouvement par le gradient de pression entre
I’entrée et la sortie de la conduite ;

o I"écoulement gravitaire est un écoulement de fluide provoqué par la pesanteur.

On va s’appuyer dans ce chapitre sur un premier type d’écoulement, appelé écoulement de Couette
plan. Un fluide s’écoule entre deux plans paralléles, celui en z = 0 est maintenu fixe dans le
référentiel du laboratoire, et celui en z = h se translate horizontalement (a partir de ¢t = 0) a la
vitesse constante T = vge,.

A N A N A N
[ N % [N I NN
* U(M,tzo*):v_r(z,t:()*)gm H ;(M,t):vx(z,t)gx I U(M,t:oo):vx(z)el
0 > 0 >0 ’ >
t=07 t t=00

Lors de la mise en mouvement de la plaque, on observe un régime transitoire durant lequel les
couches de fluide & son voisinage se mettent en mouvement, et transmettent de proche en proche
de la quantité de mouvement & des couches de fluide plus éloignées. Au bout d’un certain temps,
le profil de vitesse est linéaire.

L’écoulement de Couette plan est un exemple d’une famille d’écoulement appelée les écoule-
ments paralléles ou écoulements de cisaillement : la vitesse dépend d’une coordonnée
d’une direction transverse & la direction de I’écoulement.

Considérons deux particules de fluide de surface
dS horizontale et de hauteur dz I'une au-dessus
de 'autre, I'interface étant a4 une altitude z. On
exprime la force élémentaire exercée par la par-
ticule de fluide du dessus sur celle du dessous :

v 8

ov

OF 1. = n5dse;

ou 7 est appelé viscosité dynamique du fluide.
1

Unité de 7 : kgm~!s™!, mais on utilise plus couramment une unité secondaire, le
poiseuille (symbole P?), correspondant a des Pas.

Commentaires sur la force de viscosité :

+ Attention aux variables/vecteurs :
L’origine de la force de viscosité est la différence de vitesse entre deux particules

de fluide. Ici, la vitesse des particules de fluide ne varie que selon z : il est donc

ov ov ov
* logique de faire apparaitre — et non pas — ou —. Par contre, la force est

0z oz oy

bien dirigée selon te, (sens du mouvement).
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* plus la différence de vitesse entre les deux particules est importante, plus la force est im-
portante ;

la particule de fluide va étre freinée ou accélérée par la couche du dessus, selon la

Ug

* vitesse relative des deux : si > 0, celle du dessus est plus rapide et la force

z
est bien dirigée selon +e, de sorte a l’accélérer, et vice versa

* plus la surface de contact est grande, plus la norme de la force est importante ;

* la force dépend du fluide choisi, caractérisé par le coefficient 7.

La force exercée par la particule de fluide du dessous sur celle du dessus s’exprime par :

* 0V,

§F,_ = 5 dse; (IIL.1)

Quelques ordres de grandeur de la viscosité dynamique :

* Phélium liquide a trés basse température : n = 0 (état superfluide, sans viscosité) ;
cairaT=298Ket P=1bar: n=18x107°Pl;

cecaua T =298K et P=1bar: n=1.0x 1072 Pl (& connaitre) ;

* glycérine pure : n = 0.80 P,

Pour une grande majorité de fluides, qualifiés de fluides newtoniens, 'expression précédente est
valable et la viscosité ne dépend que de la température et de la pression.

Cependant, certains fluides qualifiés alors de non newtoniens ont un comportement plus complexe.
Citons notamment :

* les fluides rhéofluidifiants dont la viscosité décroit si la vitesse de cisaillement augmente
(ketchup, moutarde, sables mouvants, sang) ;

* les fluides rhéoépaississants dont la viscosité croit si la vitesse de cisaillement augmente
(ciment liquide, suspension de maizéna) ;

* les fluides pseudo-plastiques (et les fluides de Bingham) présentent un seuil de contrainte en
dega duquel le fluide ne s’écoule pas (utile pour les peintures qui doivent pouvoir s’étaler et
ensuite ne plus couler spontanément). Par exemple : le dentifrice, la mayonnaise, les fluides
électro- ou magnétorhéologiques.

fluide de Bingham
0F/S
A rhéoépaississant

seuil fluide newtonien

'8111 /0=

De méme que pour les forces de pression, malgré la nature fondamentalement surfacique de la
force de viscosité, on peut en donner un équivalent volumique.
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On s’intéresse a4 un écoulement paralléle & une dimension d’un fluide newtonien, comme I’écoulement
de Couette plan : ¥ = v,(2)e,.

Considérons a nouveau le systéme : particule de fluide cubique, de volume d7. Schéma.

— 0 N
La particule de fluide en z + dz exerce une force 0F;+ = +7 % dSe, avec
% lztdz
dS = dzdy.
La particule de fluide en z exerce une force 5?,;, = -7 % dzdye,
z

z
Ainsi, la résultante des forces de viscosité sur la particule de fluide est :

2 2

0 Ve — 0 Vg
7.2 dzdxdye, = nﬁ

51_5:77 dre,

d’ott 'on tire la densité volumique de force de viscosité :

P27 (2)

022

—
fv,viscosite =n

On admet alors la généralisation & trois dimensions de ’équivalent volumique de la force de
viscosité :

— Densité volumique de force de viscosité

Pour un fluide newtonien en écoulement incompressible, la densité volumique de force de
viscosité est :
-
o = AT
fv, viscosite = 1AV

ot le laplacien est ici 'opérateur vectoriel.

Dans le cadre de 'écoulement de Couette plan, nous montrerons (cf. chapitre MF3) que 'application
du principe fondamental de la dynamique & une particule de fluide dans le référentiel du labora-
toire galiléen conduit & :

Cela correspond a une équation de diffusion, de coefficient de diffusion D = n_ v, appelé

viscosité cinématique. Ainsile champ des vitesses obéit 4 une équation de diffusion, correspondant
physiquement & la diffusion de quantité de mouvement de proche en proche au sein des différentes
couches de fluide en mouvement.

IV  Conditions aux limites

= Condition d’adhérence

A Dinterface entre un fluide et un solide, du fait de la viscosité, le fluide adhére &
* la paroi solide :
V(M € fluide,t) = (M, € solide,t)

en notant M un point de 'interface, My un point appartenant au fluide infiniment proche
de M, et M, un point appartenant au solide infiniment proche de M également.
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On étudiera également une modélisation simplifiée des fluides appelée la modélisation des fluides
parfaits. Ces fluides parfaits s’écoulent sans aucune viscosité : il n’y a donc aucune adhérence du
fluide aux parois solides. On dit que le fluide glisse sur la paroi.

Il existe alors une autre condition aux limites, moins restrictive :

— Condition d’impermeéabilité

Le fluide ne peut pas traverser la paroi solide : {}-
U (M € fluide,t) - 7 = T(Mj € solide,t) - 77 Fluide
n
avec 7 la normale & I'interface. .
Solide

IV.2 Conditions aux limites a une interface entre deux fluides non mis-
cibles

Condition d’adhérence

A Tinterface entre deux fluides non miscibles, du fait de la viscosité, les fluides adhérent
I'un a autre :
T (M, € fluide 1,t) = T (M, € fluide 2,t)

Dans le cas d’une interface entre deux fluides non miscibles, il existe une seconde condition limite.
)

Nous allons ici prendre le cas simplifié d’une interface plane située en z = 0, mais les résultats se

généralisent aisément au cas d’une interface non plane.

— Conditions limites dynamiques

S’il n’y a pas de tension superficielle, alors il y a continuité des
forces surfaciques a 'interface :
* continuité de la pression a linterface (force surfacique z

normale) : Pi(z = 0) = Py(z = 0) Liquide 2
* continuité de la force surfacique tangentielle a I'interface

61}1,1 6vw,2 "

: = e
=5~ . 2 =5~ o
Ovy.a Jvy2 Liquide 1

m o =12 —&—

z z=0 aZ z=0

Condition d’imperméabilité

3|

T (M € fluide 1,t) - @ = ¥(M; € fluide 2,t) -

avec T la normale & interface.

Dans le cas d’une interface plane en z = 0 :

Condition limite dynamique

Il y a continuité de la force surfacique normale : P;(z = 0) = Py(z = 0)
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Dans le cas d’une interface liquide/air, I'interface s’appelle une surface libre.

Comme la viscosité dynamique de lair est bien plus faible que celle de la plupart des liquides,
on considére souvent l'air comme un fluide non visqueux. Cela implique les conditions limites
suivantes pour le fluide liquide :

Condition d’imperméabilité

T(My € fluide,t) - @ = U(M, € air,t) - 7

avec 1 la normale & 'interface.

Pour une interface plane en z = 0 :

— Conditions limites dynamiques

* continuité de la pression a U'interface (force surfacique normale) : P(z = 0) = Py avec
Py la pression atmosphérique

v
+ continuité de la force surfacique tangentielle & l'interface : 1 —— =0 et
% lz=0
vy
- =0
K 0z 2=0
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Exercices

Ex. 1 Vol en ballon

Estimer le nombre de ballons d’hélium (et leur volume)
pour soulever un homme.

Correction de l’exercice 1

Appropriation :

Pourquoi ’homme décolle-t-il 7 Parce que la masse volumique de I'hélium est plus faible que celle de 'air : la
résultante de la poussée d’Archimeéde et du poids peut donc étre dirigée vers le haut. (Meéme principe que la
montgolfiére.)

On se place a la situation limite du décollage : le passager est au sol, mais la réaction du support devient nulle.
L’accélération du passager est nulle (elle est & la limite de devenir verticale ascendante). On est donc dans une
situation statique : la poussée d’Archiméde s’applique.

Quel systéme choisir ? Plusieurs choix sont possibles :

* Idée 1 : homme seul. Bilan des forces : poids, force des cables sur 'homme. Mais la force des cables est
inconnue. Pour connaitre cette force, il faut considérer un second systéme : ballons + cables. Bilan des forces
: poids, force de ’homme sur les cables et poussée d’Archiméde. Puis, il faut utiliser le principe des actions
réciproques.
Ce choix de systémes rend la résolution longue, car on fait apparaitre une force intermédiaire
a déterminer : la force des cables sur ’homme ou sa réciproque.

* Idée 2 : homme + cables + ballons. Bilan des forces : poids, poussée d’Arichimeéde.
Ce choix de systéme rend la résolution bien plus rapide, car la force des cables sur I’homme
devient une force interne au systéme, donc inutile dans les équations dynamiques.

Stratégie :

1. Bilan des forces sur le systéme.
2. Détermination de la masse volumique de I’hélium et A.N.

Résolution :

1. Bilan des forces : poids sur 'homme, poids sur les ballons, poussée d’Archiméde sur ’homme, poussée
d’Archiméde sur les ballons. On néglige la poussée d’Archiméde sur 'homme devant le poids de '’homme
(Phomme = Peau > Pair) ou devant la poussée d’Archiméde sur les ballons (Viemme € Vhallons)-

PFD en statique projeté sur e, vertical ascendant :
m
—mg + Vballong(pair - pHe) =0= Vballon =
Pair — PHe

2. Masse volumique de I’hélium : Comme pour tous les gaz, on utilise la relation des gaz parfaits pour
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] PM
aboutir a : py. = d—m = Jp avec P =1bar, T = 300K et M = 4 x 1073kgmol ™" pour Phélium (valeur a
T
3

connaitre, cf. tableau périodique). Donc : pg. = 0.16kgm™>.
Application numérique : On prend m = 70kg et p.ir = 1.2kgm 3. On obtient :

3
Vballons =67m

Sur la photo, on estime R ~ 1m. Donc, Npalions = 16.
Si on prend un rayon de ballon plus faible : R ~ 50 cm, on obtient Npajions = 129

Validation :

Photo semble valider le résultat numérique obtenu (nombre de ballons entre les deux résultats déterminés).
Si m augmente, le volume des ballons augmente. Le volume des ballons diminue si la différence des masses
volumiques augmente : c’est bien la différence des masses volumiques qui est la cause du décollage.

et on ferait une

On confirme qu’on ne peut pas négliger le poids des ballons, sinon on obtiendrait V' =
Pair
erreur relative de 20 % sur le résultat final...

Bonus : Film La-haut, pour la maison m ~ 10t, il faudrait V ~ 9.6 x 10°m?. L’image du film (au moment
du décollage) semble a peu prés a I'échelle ! (Mais cela représenterait avec R = 1 m, environ 18000 ballons, et
il est str qu’il n’y a pas autant de ballons de représentés !)

2 Equilibre d’un fluide dans un récipient en translation

(R,) est le référentiel galiléen du

A
laboratoire. Un récipient de longueur :
L, lié au référentiel (R), contient de
I’eau sur une hauteur z; lorsqu’il est (R,) (R)
au. repos. Oz est la verticale I 0 T .

ascendante. La cavité posseéde dans
(R,) un mouvement de translation rectiligne d’accélération y =y u, constante.

L’objectif de lexercice est de déterminer le champ de pression P(z,z) dans tout le fluide, ainsi que ’équation de la
surface libre z4(x) en contact avec atmosphére de pression Py. On suppose 1’équilibre du fluide établi.

1.
2.

On suppose 7 > 0. Déterminer qualitativement la forme de la surface libre.

En appliquant la relation fondamentale de la statique des fluides, déterminer une équation reliant P(x,z),
la masse volumique p de ’eau, ’accélération de la pesanteur g et 'accélération . En déduire le champ de
pression dans tout le fluide, en faisant intervenir une constante K que ’on ne cherchera pas a déterminer pour
le moment.

En déduire lexpression de la surface libre zg(x) en fonction, entre autres, de la constante K.

On cherche désormais & déterminer explicitement la constante K. En utilisant la situation au repos (accéléra-
tion nulle du récipient dans le référentiel (Rp)), exprimer la constante K et en déduire l'expression de la
surface libre z;(z) en fonction de zo, v, L, g et x.

On mesure la différence d’altitude maximale dans le fluide : 25 max — %s, min = ——. En déduire la valeur

) 10
numérique de 7.

Pour finir, exprimer la pression P(x,z) en tout point du fluide, sans la constante K. Donner qualitativement
la direction et le sens de la poussée d’Archiméde sur un corps solide immergé dans le fluide.

Correction de ’exercice 2

. Le fluide est a I’équilibre dans le référentiel (R) en translation par rapport au référentiel galiléen (Rp). Con-

sidérons alors une particule de fluide & ’équilibre dans (R) au contact de la surface libre. Bilan des forces : le
poids 6P, la force d’inertie d’entrainement 6 f;c = —(dm)ye, et la résultante des forces de pression 6F),.
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Connaissant la direction de JF », orthogonal & la surface libre, on en déduit la forme de la surface libre.
2. + Référentiel (R) en translation par rapport a (Ry) galiléen.
Relation fondamentale de la statique des fluides :

opP
d(P e, &2 =0 %:_p’}/
—grad(P) — pge, — pyez = 0 = op
P

En intégrant une fois par rapport a x on aboutit a : P(x,z) = f(z) — pyx. Puis avec I’équation portant sur
z, on en déduit :
P(z,2) = K — pgz — pyz

Remarque : On peut aussi de maniére plus efficace ré-écrire I’équation vectorielle comme :
—grad(P + pgz + pyx) = 0

menant au fait que la fonction P(x,z) + pgz + pyxr = K est une constante dans tout I’espace.
3. Au niveau de la surface libre, il y a continuité de la pression : P = Fy. Donc :

K-
Py =K — pgzs(x) — pyx = zs(x) = 0 _ 7y
P9 )

La surface libre a donc I'allure d’une droite affine de pente 2 : cohérent avec la Q.1 et cohérent avec le fait
g

que la surface est horizontale si v = 0.
4. Par conservation du volume de fluide, on a :

h L zs ()
VYrepos = Vequilibre = zoLh = dyJ f dz | dx
y=0 =0 z=0

avec h la profondeur du récipient selon e,. Donc :

L
K — P
z0L=J zs(z)dx = 0L—%L2 =>K=P0+¥L+zopg

z=0 Prg
Ainsi : I
v v
2s\x) =20+ — — —x
(@) =20+ 32
Remarque : Cela est intuitif avec un profil affine : zo est 'altitude de la surface libre en x = L/2.
5.
gl L g -
Zs,max — Rs,min = —L = TO =7 = TO =0.98ms 2
, ce qui est un ordre de grandeur réaliste de I'accélération d’un véhicule.
6. Avec la Q.2 :

P(z,2) = Py — pg(z — z0) — py(xz — L/2)

La pression augmente lorsque z diminue et lorsque x diminue. Ainsi, la résultante des forces de pression a
Péquilibre, i.e. la poussée d’Archimede, est dirigée du bas a gauche vers le haut a droite (si v > 0).
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Ex. 3 (Dapres écrit Mines PC 2025)  Pression dans ’atmosphére non isotherme

Il s’agit d’un sujet Mines-Pont : les calculatrices sont donc interdites. Pour les applications numériques de-
mandées, on se contentera de 2 chiffres significatifs.

Données numériques :

+ Champ de pesanteur au sol : gg = 9.8 ms™2

« Constante molaire des gaz parfaits : R = 8.3JK ! mol ™!
* Masse molaire moyenne de 'air : M;, = 29gmol_1

* Pression au sol : Py = 1.0bar

* Rayon terrestre : Ry = 6400 km

*« 0°C=273K

+ 1bar = 10° Pa

5
210
e {— | ~0.15
300
L’atmosphére sera décrite comme un mélange idéal de gaz parfaits de masse molaire moyenne M,;,., en équilibre
dans le champ de pesanteur. Dans un premier temps, 1’étude sera limitée aux couches les plus basses (la troposphére)

dans lesquelles la température décroit linéairement de sa valeur Ty = 27 °C au sol a la valeur minimale T}, = —64°C
a laltitude maximale h = 14 km.

1. On confond les champs de pesanteur et de gravitation terrestre et on admet pour la Terre une symétrie
sphérique de répartition des masses. Montrer que 'intensité g du champ de pesanteur dans la tropospheére
varie de moins de 0,5% par rapport a sa valeur au sol.

Dans la suite on négligera les variations de g mais aussi la courbure de la Terre et le sol est le plan z = 0 ou l'axe
(Oz) est vertical ascendant.

La pression P(z), la température T(z) = To(1 — T'z) et la masse volumique p(z) ne dépendent que de z. Les
paramétres Ty et I' sont constants.

2. Montrer I’équation différentielle suivante :

dP 1 dz
P~ % H
H,
et exprimer les altitudes caractéristiques Hy et Hy en fonction de My, g, R, Ty et de I respectivement, puis
calculer numériquement Hy et Hj.
3. Montrer que P(z) = Py (1 — z/H;)" et déterminer k puis la valeur numérique P(h) de la pression au sommet
de la troposphére.

Dans la suite de cet exercice, on se propose de déterminer le champ de pression dans toute 'atmosphére, que 'on
suppose encore étre un gaz parfait, mais non isotherme. On procédera cette fois avec une résolution numérique.
Dans le cadre du modéle ISA (International Standard Atmosphere), atmosphére est divisée en différentes couches,
au sein desquelles la température est supposée suivre une loi affine. La valeur du gradient vertical de température
dans chacune de ces couches est normalisée.

Couche atmosphérique | Altitude de la base | Gradient thermigue vertical
{en km) (en K/km)
Troposphére 0 —6.5
Tropopause 11 0
Stratosphire 20 +1.0
Stratosphére 32 +2.8
Stratopanse 47 0
Mesosphere 51 —2.8
Mesosphere 71 —2.0
Mesopause 85 -

On doit donc résoudre le systéme différentiel :
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o

dT’

E(z)=klsé.(z) Pla=0y=T;
dp ‘."I i aveoc

ey aEY Lopiy Plz=0=Eu
TR A TP e e

On propose de conduire la résolution numérique au moyen de la fonction odeint, disponible dans le module
scipy.integrate, et dont 'importation a déja été réalisée. L’appel de la fonction odeint requiert les trois arguments
suivants :

* la fonction définissant le systéme différentiel a résoudre, qui doit elle-méme présenter impérativement deux
arguments : le vecteur inconnu que l’on souhaite déterminer, suivi de la variable d’influence par rapport a
laquelle on conduit 'intégration numérique du systéme. Cette fonction retourne le vecteur dérivée premiére.

* les conditions initiales/aux limites du probléme, données sous forme d’une liste ou d’un tableau numpy a une
dimension.

* le tableau numpy des valeurs de z pour lesquelles on cherche & obtenir une estimation numérique de la solution ;
le premier élément de ce tableau doit impérativement correspondre & "I’endroit" ot les conditions initiales/aux
limites précédemment données s’appliquent.

La fonction odeint retourne alors la solution du systéme différentiel sous la forme d’un tableau numpy, dans lequel le
nombre de lignes correspond au nombre de valeurs z et le nombre de colonne correspond au nombre de coordonnées
du vecteur cherché.

On donne un extrait du code Python déja implémenté.

## Definition des constantes du probleme

T I e

g = 9.81 # acceleration de la pesanteur (en m/s~2)

Mair = 29e-3 # masse molaire de 1’air (en kg/mol)

R = 8.314 # constante du gaz parfait (en J/K/mol)

Tsol = 288 # temperature de 1’atmosphere au niveau du sol (en K)
Psol = 1.013e5 # pression de 1’atmosphere au niveau du sol (en Pa)

## Definition du gradient thermique vertical selon le modele ISA
L i et i TR

def kISA(z):
""" z est l’altitude en metres. La fonction renvoie la valeur du gradient thermique
vertical a 1l’altitude z (en K/m). """
if 0 <= z < 11e3: return -6.5e-3

elif z < 20e3: return O

elif z < 32e3: return 1.0e-3
elif z < 47e3: return 2.8e-3
elif z < 51e3: return O

elif z < 71e3: return -2.8e-3
elif z < 85e3: return -2.0e-3
else: return None

## Definition de 1l’ensemble des valeurs de z pour lesquelles on cherche la solution
## numerique approchee du systeme differentiel precedent

z = np.linspace (0, 85e3, 10000) # on choisit 10000 points regulierement espaces entre O
# et 85 km d’altitude

4. (a) Proposer des lignes de code permettant de calculer un tableau numpy & une dimension 7' et un tableau
numpy & une dimension P solutions du systéme différentiel.
(b) Commenter les graphiques des solutions numériques obtenues.
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Evolution de la température avec l'altitude Evolution de la pression avec l'altitude

—— Modéle ISA
- Madéle isatherme (T = Tsa)

an + ao
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Correction de ’exercice 3

1. On cherche le champ gravitationnel créé par la Terre en un point M a Uextérieur de la Terre (M est situé

dans la troposphére). Il s’agit d’un probléme type champ électrostatique créé a 'extérieur d’une boule.

(a) Coordonnées sphériques de centre O, le centre de la Terre. On cherche uniquement ¢ pour r > Rr.

(b) Symétries : Les plans (M,e;.e5) et (M,e;.e;) sont des plans de symétrie de la distribution de masse.

DOHC, 3 = 9(7’,97(,0)6_;.

(c) Invariances par rotations d’angles 6 et ¢ : § = g(r)e,

(d) Surface de Gauss fermée et orientée : cf. schéma

(e) Théoréme de Gauss gravitationnel :

— M
# 7 -dS = —4nG M, = g(r)dnr? = —4nGMrp = g(r) = ¢ 2T
r
(S)
My 1 de la Terye.
Ainsiz,3L gcvar%rati%lrln rae zftiv(é &(Le gefir;ns la troposphére est de :
|9g(Br) —g(Rr+h)| (1 1 Ry \’
Vgr = =R |55~ 55 )=1—
g(RT) RT (RT + h)2 Rr+h
Ry \° 4096 0,18
A.N.: On calcule 6.4% = 40.96, puis 6,414% ~ 41,14, donc (RT i h) = 41:14 et donc Vi = 41’714 ~ 0,4% <
0,5%
2. » Référentiel terrestre supposé galiléen

* Vu les simplifications de géométrie, on se place en coordonnées cartésiennes, d’axe (Oz) vertical ascendant.
Relation fondamentale de la statique des fluides :

—grad(P) + pg = 0= T +p(2)g=0
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car les fonctions ne dépendent que de z d’aprés ’énoncé.
Or, I’atmosphére étant supposé étre un GP :

P(:)dr — dnRT = p(z) = 27 — P Mair

dr RT(z)
Donc, la RFSF donne :
dpP Mairg dpP Mairg
—_— Pz)=0= —+ ———P(2)=0
= TR TE T TRy T
, . o . . i , RTy
En séparant les variables, on aboutit a la solution fournie dans 1’énoncé avec Hy = et Hy = =
airg
24
A.N. : On calcule Hy = fgf x 103 = 8.8 km.
1 Ty, — Ti Toh
AN.: H = T avec —1pl" = %. Donc, H, = ﬁ = 46 km

3. On intégre ’équation aux variables séparées précédente :

PG gp i 1 dz P(z) H, z 2 \*
S = %o — A m(1- 2 )= Pe) =P (1- 2
JPPO P Lol—I;Ho ( Py ) Hy ( Hl) (=) 0( Hl)

1

H
avec k = ﬁ;'
AN.: k=5.2.

Pour P(h), vu la donnée numérique (210/300)5 fournie, on comprend qu’il vaut mieux reformuler P(h) en
faisant intervenir les températures. En effet, on a :

P(h) = Py (“h)k =P (1-Th)" =B @)k

AN.: P(h) ~0.15bar
4. (a) On commence par définir la fonction utile pour odeint.

## Definition du systeme differentiel a resoudre

1
3 def systDiff (TP,z):
4

TP designe le vecteur inconnu de dimension 2 (TP[0] : temperature ; TP[1] : pression
)

6 z designe 1l’altitude.

7 La fonction renvoie un vecteur dont les composantes sont respectivement la derivee
de la temperature et la derivee de
8 la pression a l’altitude z.

10 # Lois prevues par le modele theorique

11 dT = kISA(z) # derivee verticale de la temperature
12 dP = - Mairxg/R*TP[1]/TP [0] # derivee verticale de la pression

13

14 return [dT, dP]

Puis, on définit les conditions aux limites :

1 ## Definition des conditions aux limites

SN

CAL = [Tsol, Psoll]

Il ne reste plus qu’a appeler odeint.

1 TP = odeint (systDiff, CAL, z)
TP[:,0] # extraction des valeurs de la temperature
TP[:,1] # extraction des valeurs de la pression

N
-

1
(b) Le graphique de la température avec l’altitude correspond directement au modeéle ISA : rien a redire.
Sur le graphique de la pression, on peut réaliser plusieurs commentaires :
* le modeéle isotherme correspond bien & une décroissance exponentielle de la pression avec I'altitude,
ce qui se traduit par une droite dans un diagramme semi-log. On retrouve qu’au bout de 8.5 km, la
pression a chuté de 63 % par rapport a sa valeur initiale (typique d’une décroissance exponentielle).
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* sur les premiers km, il y a égalité des deux modéles. Cela est cohérent : la température est environ
constante et égale & celle au sol.

* La température en altitude reste toujours inférieure a celle au sol. Dans la forme théorique, ceci
devrait se traduire par un gradient de la pression qui est donc plus grand en valeur absolue que dans
le cas isotherme. On retrouve effectivement une pression qui décroit plus rapidement avec l'altitude
que dans le cas isotherme.

* Chaque changement de pente de T'(z) se traduit par une cassure de la courbe de P(z) : cohérent.

Ex. 4 (0ra banque PT) Force de pression sur un tube & essais

On considere un tube a essais rempli d’un liquide incompressible de masse volumique p. On
raisonne sur un axe vertical z descendant dont I’origine se trouve comme indiqué sur le schéma

H ci-contre.
1. Calculer la pression P(z).
W . 2. Donner sans calcul la direction de la résultante des forces de pression subies par le tube.
4 3. Faire le calcul. Commenter.
< R > Données :
— Aire d’une couronne sphérique élémentaire (ci-contre) : S = 2w R? sin ()d6.
— Aides au calcul : 5%
fcos (0) sin (0)dl = —M + cte
(6
fcosQ (0) sin (0)df = —&3() + cte
z
Correction de ’exercice 4
1. » Référentiel du laboratoire supposé galiléen
+ Repére cartésien avec un axe (Oz) descendant, cf. schéma de I’énoncé
RFSF :
—grad(P) + pg = 0
Les projections selon €, et €, donnent que P(z). La projection selon €2 donne :
dP
—— 4+ pg =0= P(z) = pgz + cste
dz
On détermine la constante avec la CL a la surface libre en z = —H : P(—H) = Py avec Py la pression
atmosphérique. Ainsi : P(z) = Py + pg(z + H)
2. Décomposons le tube a essais en deux sous-surfaces : la surface latérale cylindrique entre z = —H et z = 0 et

la surface sphérique entre z = 0 et z = R.
Sur la portion cylindrique, par symétrie, les forces de pression se compensent et la résultante est nulle.
Sur la portion sphérique, par symétrie, la résultante des forces de pression est portée par 'axe (Oz) : F=Fe¢ Le,.
3. * Etant donné que seule la surface sphérique est utile pour le calcul de F,, on passe en coordonnées
sphériques de centre O.
A ce stade, il y a deux possibilités de rédaction. L’énoncé a tendance a nous faire privilégier la seconde
méthode de rédaction.
(a) Posons dS = R? sin(f)dfdye,. En prenant en compte les forces de pression de I'air sur le tube et du
liquide sur le tube, la résultante des forces de pression est :

Jf PodS + Jf dS prg 2+ H)R? sin(f)dfdye,
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La projection selon e, est donc :

F, = fjpg(z + H)R? sin(#) cos(0)dfdyp
()

avec en coordonnées sphériques z = R cos(6). Donc :

r= ([ a0 ( [ costo) + 11y sino cos<9>d9> ~2etta (54 5)

©=0 6=0

=27

(b) Posons dS = 27 R? sin(f)dfe, la surface élémentaire de la couronne sphérique. En prenant en compte
les forces de pression de ’air sur le tube et du liquide sur le tube, la résultante des forces de pression est

P H _pydd + ﬂp(z)d_s’ - Hpg(z + H)dSe
(S) (S)

en utilisant 'uniformité de la pression sur la couronne sphérique. La projection selon e, est donc :
F, = Jpg(z + H)2wR? sin(6) cos(#)do

avec en coordonnées sphériques z = R cos(6). Donc :

7T/2 H
F, = pg2mR? <L (R cos(0) + H) sin(6) cos(&)dﬁ) = 21R?pg <I; + 2>
=0

Ainsi, on conclut

Rl

2
= pg (37TR3 + 7TR2H> e,

Cette force est bien dirigée selon +e, : cohérent. Cette force est égale au poids du fluide dans le tube & essais
I Ceci est attendu, étant donné que le fluide est statique (on peut par exemple appliquer le PFD au tube a
essais + fluide et en déduire la force de I'opérateur sur le tube & essais, puis appliquer le PFD au tube & essais
seul et en déduire la résultante des forces de pression). Cette force de pression est ici trés faible (poids d’une
cinquantaine de mL de liquide).

Ex. 5 (Ecrit Mines PSI 20200 Lévitation acoustique

| Il s’agit d’un sujet Mines-Pont : les calculatrices sont donc interdites.

La lévitation acoustique consiste & maintenir de la matiére en suspension au sein d’un milieu fluide ambiant, I'air
par exemple, en opposant au poids de 'objet 1évitant la force résultant de la pression de radiation d’ondes sonores
intenses.

En 2013, une équipe de chercheurs suisses a mis au point un dispositif de lévitation acoustique permettant un
transport controlé de petits objets. Ils sont ainsi parvenus a mélanger une gouttelette d’eau et un granulé de
café soluble. Cette expérience a priori ludique recéle en réalité des applications technologiques et industrielles
extrémement précieuses, telle que le controle de certains procédés chimiques ou biologiques.

En 2015, c’est une équipe de recherche sud-américaine qui a mis au point un dispositif de lévitation acoustique
permettant de transporter des objets avec une grande stabilité donc sans aucun risque d’en perdre le controle
mécanique, ce qui intéresse particulierement les secteurs sensibles du nucléaire et de la chimie, ot la dangerosité de
la matiére transportée impose de prendre en compte les risques inhérents aux chocs ou a la dissémination.
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Membrane
h 13 du
; transducteur

I. — La lévitation grace a
une onde sonore

Le dispositif de lévitation acoustique est pré-
senté et modélisé sur la figure 1.

Un transducteur, de surface S = 10 cm?, est en
vibration au voisinage de la hauteur h a la vi-
tesse i, (t) = U, sin(wt)e, avec U, = 10cm -
s~ 11 génére une onde sonore de fréquence f =
20 kHz supposée plane, harmonique, et pro-
gressive selon la verticale descendante. Cette

Objet en :
lévitation ®

étlecteur

Ficure 1 — A gauche : lévitation acoustique

onde est totalement réfléchie par une paroi fixe g, particules de polystyréne expansé. A droite :
placée en 2 = 0. ) schéma de principe du dispositif de lévitation
Le milieu de propagation est de 'air, supposé

homogene et compressible. Il est caractérisé au

acoustique.

repos (en I'absence d’onde sonore) par une masse volumique 1 = 1,2kg - m™ uniforme. Les
champs de température et pression sont eux aussi stationnaires; la température Tj étant en
outre uniforme alors que la pression est une fouction de z soit Py = Fy(z).

On suppose que la propagation est unidimensionnelle, de célérité ¢ = 3.4 x 10°m - s~ dans le
milieu. Dans 'approximation acoustique, les champs de pression, masse volumique, et vitesse
sont alors décrits respectivement par :

P(zt) = B(z) + p(zt)
wzt) = po + pa(zd)
¥(zt) = v1(2.t) €.

Une étude des ondes acoustiques montre que la surpression p; s’écrit

wocUp, wz

p1(z,t) = Sm(wh> cos(wt) cos (?)

2
avec w = %c (X est la longueur d’onde de I'onde acoustique).

12. On considére une bille, de rayon a « A et donc assimilable a un volume ¢lémentaire sans influence sur la
propagation de 'onde acoustique. Déterminer la résultante F' des forces de pression s’exercant sur la bille,

ainsi que sa moyenne temporelle <F> Le modéle proposé permet-il d’interpréter la lévitation de cette bille ?

On modifie la hauteur h de sorte & augmenter amplitude V; de la vitesse associée & 'onde acoustique jusqu’a
Vi =50ms L.
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On pose maintenant :

2

P(zt) = PFy(z) +pi(z,t) + pa(z,0)
v(z,t) = v1(2,t) + va(2,t)

<

ot les termes d'indice 0 sont les grandeurs constantes au repos (en 'absence d’onde sonore),
les termes d’'indice 1 sont les solutions étudiées précédemment et les termes d'indice 2 sont des
corrections d’ordre 2, résultant des termes non linéaires des équations aux dérivées partielles
décrivant le phénomene.

d 13 — On admet que la surpression ps(z,t) est de la forme

1 W
p2(z,t) EVilcos (

|
=-—pu + f(2) cos(2wt)
4 c
ou f(z) est une fonction dont il n’est pas nécessaire de connaitre I'expression.
Déterminer les valeurs des entiers ¢ et ¢. Déterminer la moyeune temporelle (F.) (z) de la
résultante des forces de pression qui s’exercent sur la bille.

d 14 — Montrer, sans les déterminer explicitement, qu’il existe des positions d’équilibre tant
que la masse volumique ji, de la bille reste inférieure a une valeur f4, .. dont on précisera
I'expression. En vous appuyant sur une représentation graphique de la force moyenne (F.) (z),
discuter la stabilité des positions d’équilibre.

d 15 — Calculer g max et proposer une estimation de la masse maximale my, ., d'une bille
susceptible de léviter avec le dispositif présenté ici. Commenter les valeurs numériques.

d 16 — Comme on le voit sur la figure 1 le dispositif permet de faire léviter plusieurs objets.
Quelle est la distance qui les sépare? Exprimer le nombre maximal de ces objets en fonction
de A et h.

Correction de ’exercice 5

12. Etant donné qu’on considére que la bille correspond & un systéme infinitésimal du point de vue de 'onde
acoustique, la résultante des forces de pression s’écrit directement :

— e P 4
F = —grad(P)dr = — glraud(P)§7mL3
On calcule
grad(P) = grad(Pp) + grad(py)

Concernant Py : On se place en ’absence d’onde sonore : I'air est alors statique.
» Référentiel terrestre supposé galiléen

La RFSF donne : —grad(Py) + po g = 0= grad(Py) = piogd = —poge,
Concernant p; :

— op1 _» Un . —
grad(py) = %ez = _% cos(wt) sin (%) €.
sin | —

c
Ainsi, finalement :
wl,

- 4
F=_md’u | g+

3 cos(wt) sin (%) e

__Tm
. (wh) c
sin [ —
c
= 4 3 — < 1: , . . : 903
En moyenne : <F > = —ma’upge,, c’est-a-dire une résultante des forces de pression opposée au poids de ’air

déplacé par la bille. Ce modéle ne permet pas de mettre en lévitation une bille de masse volumique différente
de celle de lair.

13. Remarque : On pousse I’étude & 'ordre 2, ce qui rend les EDP des ondes acoustiques non linéaires. Cela se voit
trés bien dans I'expression de p2 qui oscille & 2w, alors que la membrane du haut-parleur bouge & w.
On méne une analyse dimensionnelle.
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14.

15.

16.

Ex.

M M L

= = Vil=2

[pQ] L2 [H“O] 3 [ 1] T
On en déduit que £ =1 et g = 2.
Moyenne des forces de pression :

ey 1 2
Le raisonnement est semblable a la Q. précédente. On calcule : grad(ps) = —i,rofL—u sin (wz> e,
c c

df

i cos(2wt)e,. Ainsi, en moyenne :
4 V2 2
(F,)= gwaguo (g + ;Cw sin (?))

4
* Systéme : {Bille} de masse m; = gwa?’ub

» Référentiel terrestre galiléen

Les positions d’équilibre vérifient :

FSE +mF = T = o (g+

Viw . <2wz))
sin (= ) ) = g
2c c

. . 2wz
Au maximum, sin < = 1. Donc,
c

Vfw)
> po
2cg

Hbmaxz = MO (1 +

Stabilité des positions d’équilibre

\__,\_C' ) \A’
D
R
S

Position d’équilibre de type A : Perturbons I’état d’équilibre. Si la bille se décale vers les z croissants, alors
(F,) diminue, et la résultante des forces de pression sur la bille est dirigée selon —e, : la bille redescent et
revient a sa position d’équilibre. Ces positions d’équilibre sont stables.

Position d’équilibre de type B : Si la bille se décale vers les z croissants, la résultante des forces de pression
augmente, et donc la résultante des forces de pression sur la bille est selon +¢, : ces positions d’équilibre sont
instables.

AN. : lpmaz = 5.7 x 101 kgm—3

2me c

Pour estimer la masse de la bille, il faut estimer son rayon a. On sait que a < A. Or, A = — = ? AN.:
w

A = 17mm. Prenons alors a = 1mm. On en déduit que : my = 0.24g
Ces valeurs numeériques sont faibles pour des matériaux solides (la masse volumique d’un métal est de 'ordre
de 10 kgm[—3]) et les matériaux transportés ici doivent étre nécessairement de rayon trés petit (a < 1 mm).
Néanmoins, ce calcul montre la possibilité d’application pour des matériaux peu denses et petits.
La distance minimale séparant deux objets lévitant est la distance entre deux positions d’équilibre stable
N2 = % objets.

Dans l'expérience réelle, plus on place d’objets, plus I'onde acoustique est perturbée (ce qu’on a ici

consécutives, soit 5 Ainsi, sur la distance h, on peut faire léviter au maximum

Remarque :
négligé), et plus il est difficile de faire léviter de nouveaux objets.

6 Aplatissement de la Terre

26 E®SO Lycée Rabelais - PC - 2025-2026 - C. Logé



Newton fut le premier & évaluer I'aplatissement de la Terre par rapport & une boule parfaite. Il a modélisé cet
aplatissement en supposant que la Terre se comporte comme un fluide incompressible de masse volumique p en
rotation uniforme a la vitesse angulaire Q) autour de 'axe (Oz) des poles (modéle valable pour des déformations de
la Terre sur le temps long).

Cet exercice a pour but d’estimer I'aplatissement relatif de la Terre. Des données sont regroupées en fin d’énoncé.

1. Par un raisonnement qualitatif, déterminer si la Terre est aplatie au niveau des poles ou au niveau de
I’Equateur.

Pour déterminer quantitativement cet aplatissement, il nous faut commencer par exprimer les forces volumiques
auxquelles sont soumises les particules de fluide.

2. Cette question porte sur le champ gravitationnel uniquement. En supposant, pour cette question seulement,
que ’on peut approximer le champ gravitationnel créé par la Terre comme celui d’une boule moyenne de rayon
R et de masse uniformément répartie en volume, exprimer le champ gravitationnel a I'intérieur de la Terre en
fonction de la masse M de la Terre, de R, de G et de la distance r au centre de la Terre.

gM
R
centre O, le centre de la Terre, associé a un référentiel Ry en rotation uniforme autour de 'axe (Oz) des poles a la
vitesse €2 par rapport au référentiel géocentrique. On suppose le référentiel géocentrique galiléen.

Dans toute la suite, nous poserons la notation wy = On définit un systéme de coordonnées sphériques de

3. Justifier que le référentiel Ry n’est pas galiléen.
4. Montrer que le champ de pression a l'intérieur de la Terre s’exprime par :

pr?
P(r0) = - (2% sin®(0) — wg) + K

ol K est une constante que ’on ne cherchera pas & exprimer.

5. On s’intéresse désormais & la surface libre du fluide modélisant la Terre. On note R, le rayon de la Terre aux
poles et R, le rayon de la Terre a ’'Equateur. Déterminer une relation reliant R, R., Q et wy.

6. On suppose que Paplatissement relatif de la Terre est petit devant 1, ce qui permet de supposer que R, ~ R
et que |R. — Rp| « R. Définir et déterminer I’expression de l'aplatissement relatif de la Terre. Réaliser
I’application numérique.

7. La valeur de 'aplatissement relatif réguliérement utilisé en physique est de 0.3%. Commenter le résultat
déterminé a la question précédente.

Données :

* Masse de la Terre : M = 6.0 x 10** kg

» Rayon moyen de la Terre : R = 6.4 x 10°m

* Vitesse angulaire de rotation de la Terre autour des poles : = 7.3 x 10~ rads™!
« Constante de gravitation universelle : G = 6.67 x 1012 m3kg 1s~2

Correction de ’exercice 6

1. On suppose que le fluide modélisant la Terre est en équilibre dans le référentiel terrestre. Ralsonnons sur une
particule de fluide au niveau de la surface libre. Bilan des forces : force gravitationnelle 5Fg, force d’inertie

d’entrainement gj‘ie et résultante des forces de pression Sf -

—
g!?
N
D N
AR
Q %“ ) 73 b;
e N An 4 95> I ‘—\3
'l ki % )
L '-Ji\/ it %G/{) 4
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Comme 5_f)ie augmente en norme des pdles vers ’Equateur, on en déduit que la Terre est aplatie au niveau
des poles : R, < R..
2. .

» Coordonnées sphériques de centre O, le centre de la Terre.

* Les plans (M.e,.e3) et (M,e;,e;) sont des plans de symétrie de la distribution de masse. Donc, § =
g(r,0,p)e;

« Invariance de la distribution de masse par rotations d’angles 6 et ¢ : g = g(r)e;.

* Surface (S) de Gauss fermée et orientée : cf. schéma.

+ Théoréme de Gauss gravitationnel (r < R) :

s 4
#?’ -dS = g(r)dmr? = —4nG My, = —47G x p§7r7”3
()

M
pour r < R et avec p = T . Donc :

gM — 2 —

g Ter = —wWorer

3. Le référentiel R n’est pas en translation rectiligne uniforme par rapport au référentiel géocentrique galiléen
: le référentiel Ry n’est donc pas galiléen.

4. + Référentiel Ry en rotation uniforme autour d’un axe fixe d’un référentiel galiléen
La densité volumique de force gravitationnelle est donc f, 4 = — pwire,. et celle de force d’inertie d’entrainement
est :

M
9(r)=-Gr=790r<R)=-

?U’ie = pQPHMe; = pQ2(r sin(0))( sin(0)e, + cos(f)ég)

Relation fondamentale de la statique des fluides :

aa—P = —pwir + pQ? sin*(O)r
”

1op
r 00
oP _
dp

On tire de la 3éme équation que P(r,0) (logique au vu de la symétrie du probléme). En intégrant la premiére

0= —grad(P) + Tv,g + 71},726 = = pQ? cos(f) sin(0)r

0

équation par rapport a r, on trouve : P(r,0) = p(Q? sin?(6) — w%)% + f(0) ou f(0) est une fonction ne

d
dépendant que de . On détermine cette fonction f a l'aide de la 2éme équation : d—g = 0. Done, f(#) = K

avec K une constante. On trouve donc le résultat donné dans ’énoncé.
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5. Au niveau de la surface libre, la pression vaut Py la pression atmosphérique. En exprimant les deux relations
pour r = R, (0 =0) et r = R, (§ = 7/2) et en les soustrayant, on aboutit & :

R20? + wi(R, — R2) = 0

6. On définit Paplatissement relatif de la Terre par A = %. Avec les approximations proposées, on arrive
a:
QQ
R?0% + Wi(R, + R)(R, — R.) ~ R*O? + 202R(R, — R.) =0 = A = 57
0

AN.: A=0.17%. Ce résultat valide ’approximation effectuée ci-avant en considérant que R. — R, < R (et
donc également celle R, ~ R).

7. On a donc déterminé un résultat trés proche du résultat utilisé couramment (0.2% au lieu de 0.3%). L’erreur
effectuée peut provenir de la modélisation du champ gravitationnel, qui suppose que la Terre est sphérique,
alors qu’on démontre dans la suite qu’elle ne 'est pas... Il faudrait procéder par itérations successives en
corrigeant la détermination du champ gravitationnel a ’aide de la forme non sphérique de la surface libre
déterminée, et déterminer une forme plus précise de la surface libre, et ainsi de suite.
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