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Mécanique des fluides

Actions de contact dans un fluide
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Questions de cours
• Pression : définition, expression de la force de pression, démonstration de la force volumique

de pression.
• Démontrer la relation fondamentale de la statique des fluides, et l’appliquer à un liquide

incompressible en présentant quelques applications.
• Démontrer l’expression du champ de pression au sein d’un gaz parfait isotherme soumis

uniquement au champ de pesanteur. Interpréter physiquement en explicitant la signification
du facteur de Boltzmann.

• Présenter l’écoulement de Couette plan. Interpréter physiquement la force de viscosité élé-

mentaire δ
#»

F v “ η
Bvx
Bz

dS #»ex. Odg de la viscosité dynamique de l’eau. Démontrer l’équivalent
volumique des forces de viscosité dans le cas de l’écoulement de Couette plan, puis donner
la forme générale.
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‹

Il existe de nombreuses expériences montrant l’importance des forces de pression : un
verre rempli d’eau avec une feuille à son sommet ne se vide pas lorsqu’on le retourne,
un plongeur décompresse lorsqu’il plonge dans l’océan, la cabine d’un avion est sous-
pressurisée lors d’un vol... Cette force de pression est une action de contact s’exerçant
sur la surface d’un système. Ce chapitre a pour but de décrire l’origine et de déterminer
les expressions des actions de contact s’exerçant dans un fluide.

Ce chapitre a trois objectifs principaux :

1. Démontrer l’équation fondamentale de la statique des fluides et l’appliquer pour déterminer
la pression dans un fluide incompressible, puis dans un gaz parfait isotherme, puis l’équation
d’une surface libre.

2. Comprendre que l’origine des forces de viscosité est l’adhérence entre particules de fluides.
3. Déterminer l’équivalent volumique des forces de viscosité.

I Forces volumiques et surfaciques dans un fluide

Il existe deux types de forces extérieures s’exerçant sur un volume pVq de fluide.

I.1 Les forces volumiques

Une force volumique est une force qui s’exerce sur tous les points du volume pVq. On la caractérise

par une densité volumique de force
#»

f v “
δ

#»

F

dτ
où δ

#»

F est la force élémentaire s’exerçant sur
l’élément dτ . La force totale est alors l’intégrale de la densité volumique de force :

#»

F “

¡

pVq

#»

f vdτ (I.1)

Citons par exemple :

• le poids δ
#»

P “ δm #»g “ ρdτ #»g (ρ : masse volumique) conduisant à
#»

f v “ ρ #»g .
• la force de Lorentz δ

#»

FL “ qp
#»

E ` #»v ^
#»

Bq “ ρcdτp
#»

E ` #»v ^
#»

Bq (ρc : densité volumique de
charges) conduisant à

#»

f v “ ρc

´

#»

E ` #»v ^
#»

B
¯

“ ρc
#»

E `
#»
j ^

#»

B.

Dans un référentiel non galiléen, on doit prendre en compte des forces d’inertie, dont on peut
aussi exprimer les équivalents volumiques.

‹

• Cas d’un référentiel R1 en translation par rapport à un référentiel R
galiléen :
Force volumique d’inertie d’entraînement : δ

#»

f ie “ ´m #»a e “ ´ρdτ #»a e conduisant
à

#»

f v,ie “ ´ρ #»a e avec #»a e : accélération de R1 par rapport à R.
• Cas d’un référentiel R1 en rotation autour d’un axe fixe d’un référentiel
R galiléen :

–
#»

f v,ie “ ρΩ2 #      »

HM avec H le projeté orthogonal de M sur l’axe de rotation.
– Force volumique d’inertie de Coriolis :

#»

f v,c “ ´2ρ
#»

ΩR1{R ^ #»v pMq{R1

I.2 Les forces de contact surfaciques

Considérons un élément de surface infinitésimal d
#»

S “ dS #»n autour de M , avec #»n la normale
en M à cette surface. La force élémentaire δ

#»

F exercée sur la surface dS peut généralement
se décomposer en une composante normale δ

#»

F n correspondant à une force de pression, et une
composante tangentielle δ

#»

F t appelée force de cisaillement ou force de viscosité.
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système

extérieur dS
δFn

δFt

δF

n

On peut ainsi définir une force surfacique, encore appelée contrainte, et exprimée en Nm´2 ou
en pascal :

#»σ “
δ

#»

F

dS
“

δ
#»

F n

dS
`

δ
#»

F t

dS
“ #»σ n ` #»σ t

On va étudier dans les deux prochaines parties ces deux types de contraintes, jouant un rôle
essentiel dans l’écoulement des fluides.

Problème des forces surfaciques lors de l’application du PFD :

‹

Dans la suite, on appliquera le PFD à une particule de fluide, dans le référentiel du
laboratoire galiléen. Or, on a :

m #»a “ pρdτq
d #»v

dt
“ pρdτq

ˆ

B #»v

Bt
` p #»v ¨

#      »

gradq #»v

˙

On ne peut pas exprimer ce terme en faisant intervenir une surface élémentaire. Donc,
le PFD s’écrira :

ρdτ
ˆ

B #»v

Bt
` p #»v ¨

#      »

gradq #»v

˙

“
#»

fvdτ ` # »σndS ` #»σtdS

qui dépend à la fois de dτ et dS... Pour se ramener à une équation universelle (ne
dépendant pas de la forme de la particule de fluide), on va donc chercher un équivalent
volumique de chacune des contraintes. (On simplifiera alors par dτ .)

II Forces de pression

II.1 Une force surfacique

a Définition de la pression

La pression dans un fluide correspond à des actions de contact, c’est-à-dire des actions de courte
portée : interactions répulsives (liées à l’agitation moléculaire et au principe d’exclusion de Pauli)
et interactions attractives (Van der Waals par exemple). En un point M d’une surface délimitant
le fluide étudié, la force de pression élémentaire exercée par l’extérieur sur le système étudié s’écrit
:

δ
#»

F pression “ ˘P pMqd
#»

S “ ˘P pMqdS #»n

avec dS la surface élémentaire autour de M et #»n le vecteur normal. Ainsi on identifie la pression
à la contrainte normale, #»σ n “ ˘P pMq #»n . On choisit le signe avec le sens physique tel que la force
soit dirigée vers le système.

L’unité de la pression est le pascal (Pa), ou celle d’une force surfacique en Nm´2. On rencontre
d’autres unités, dont une est à connaître : 1 bar “ 105 Pa.

La force totale s’exerçant sur une surface S finie correspond alors à la somme des forces élémen-
taires :

#»

F pression “

ĳ

pSq

δ
#»

F pression “ ˘

ĳ

pSq

P pMqdS #»n
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b Calcul de la résultante des forces de pression sur une surface

i) Force de pression sur une surface plane

Considérons un barrage plan de hauteur H et largeur L, soumis d’un côté aux forces de pression
de l’air, et de l’autre à celles de l’eau. On se place en coordonnées cartésiennes, avec l’axe pOzq

ascendant (origine placé à la surface de l’eau). On précise qu’il règne dans l’eau une pression
P pzq “ P0 ´ ρgz, avec ρ la masse volumique de l’eau et P0 “ 1 bar la pression atmosphérique, et
on supposera la pression de l’air uniforme, de valeur P0. Calculons la résultante

#»

F des forces de
pression sur le barrage.

‹

Considérons un élément de surface
#  »

dS “ dydz #»ex.
•

#»

F airÑbarrage “
ť

pSq
`P0

#  »

dS (entre parenthèses :
#»

F airÑbarrage “ P0HL #»ex).
•

#»

F eauÑbarrage “
ť

pSq
´P pzq

#  »

dS “ ´
ť

pSq
pP0 ´ ρgzq

#  »

dS
Donc, la résultante des forces sur le barrage s’écrit :

#»

F “

ĳ

pSq

ρgzdydz #»ex “ ρg

ż L

y“0

dy
ż 0

z“´H

zdz #»ex “ ´ρgL
H2

2
#»ex

On constate, et c’est souvent le cas, que seule la surpression dans l’eau P pzq ´ P0 joue un rôle
dans le calcul des forces de pression.

Remarque : Le point d’application de la résultante des forces de pression, appelé centre de poussée
P , est tel que la somme des moments en P de toutes les forces élémentaires de pression est nul
ť

pSq

#  »MP pδ
#»
F pressionq “

ť

pSq

#      »
PM ^ p˘P pMqd

#»
S q “

#»
0 . Pour le barrage plan précédent, on sait par

symétrie que P se trouve en y “ L{2 ; le calcul montre alors que P est à une hauteur z “ H{3.

ii) Force de pression sur une surface non plane

On considère un barrage constitué par une portion de cylindre, de rayon R, d’angle α et de
hauteur H. Il est soumis d’un côté aux forces de pression de l’air et de l’autre à celles de l’eau.
On se place en coordonnées cylindriques, avec un axe pOzq ascendant (O est sur la surface de
l’eau). La pression de l’eau s’écrit alors toujours P pzq “ P0 ´ ρgh. On cherche à déterminer la
résultante

#»

F des forces de pression sur le barrage.
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‹

On introduit
#  »

dS “ Rdθdz #»er.
•

#»

F airÑbarrage “
ť

pSq
`P0

#  »

dS
•

#»

F eauÑbarrage “
ť

pSq
´P pzq

#  »

dS
Donc, la résultante s’écrit :

#»

F “

ĳ

pSq

ρgzRdθdz #»er

" La direction de #»er dépend du point M considéré. Il ne faut jamais calculer une
intégrale avec un vecteur mobile.

Méthode pour calculer une force de pression sur une surface non plane :

1. On détermine la direction de la force par symétrie.
2. On ne calcule que la projection de la force sur la direction déterminée.

‹
Par symétrie, on a

#»

F “ Fx
#»ex. On calcule donc :

Fx “

ĳ

pSq

ρgzR cospθqdθdz

Tous calculs faits, on trouve :
#»

F “ ´ρgRH2 sin
α

2
#»ex

iii) Cas d’un champ de pression uniforme

Lorsque le champ de pression est uniforme (ce sera fréquemment le cas dans les gaz), P pMq “

P0 “ cste, on peut assez simplement calculer la résultante des forces de pression sur une surface
fermée. Si on considère par exemple un cube de côté a, les forces de pression vont s’opposer deux
à deux pour chaque face, et la résultante des forces de pression sur le cube est nulle. Le résultat
peut se généraliser :

£

pSq

P0dS #»n “
#»
0 (II.1)

Exemple : On considère une lance à incendie
de pompier, placée dans l’air de pression uni-
forme P0. L’eau présente dans la lance passe
par un rétrécissement du tuyau, passant de la
surface S1 à la surface S2. On cherche la résul-
tante des forces de pression exercées par l’air
sur la portion de tuyau entre S1 et S2.

‹

On étudie momentanément une situation fictive : on ferme le tuyau de part et d’autre
et on le suppose entouré entièrement d’air. Schéma.
La surface étant fermée, on a (orienter #»ex vers la droite) :

£

pSq

P0
#  »

dS “
#»
0 “

ĳ

pSlatq

P0
#  »

dS ` P0S1
#»ex ´ P0S2

#»ex ñ

ĳ

pSlatq

P0
#  »

dS “ ´P0pS1 ´ S2q #»ex

Dans la véritable situation, la résultante des forces de pression de l’air sur le tuyau
est donc :

#»

F p,airÑtuyau “ ´P0pS1 ´ S2q #»ex.

II.2 Équivalent volumique de la force de pression
Les forces de pression peuvent s’exprimer avec une force volumique équivalente. Pour la déter-
miner, considérons une particule de fluide dτ , cubique de côtés dx, dy et dz en coordonnées
cartésiennes.
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‹

Calcul de la résultante des forces de pression sur cette particule de fluide (schéma) :

δ
#»

F “
`

P px,y,zq ´ P px ` dx,y,zq
˘

dydz #»ex

`
`

P px,y,zq ´ P px,y ` dy,zq
˘

dxdz #»ey

`
`

P px,y,zq ´ P px,y,z ` dzq
˘

dxdy #»ez

“ ´

˜

BP

Bx

˙

y,z

#»ex `
BP

By

˙

x,z

#»ey `
BP

Bz

˙

x,y

#»ez

¸

dxdydz “ ´
#      »

gradpP qdτ

d’où l’on tire la densité volumique de force de pression :

#»

f v, pression “ ´
#      »

gradpP q

Cela s’interprète aisément : la résultante des forces de pression sur un petit élément est dirigée
dans le sens opposé du gradient de pression, c’est-à-dire des zones de fortes pressions vers celles
de faibles pressions.

II.3 Statique des fluides

a Relation fondamentale de la statique des fluides

On se place dans un référentiel galiléen dans lequel le fluide est à l’équilibre (c’est-à-dire que
toutes les particules de fluide sont à l’équilibre : #»v “

#»
0 ). On suppose qu’en plus des forces de

pression, le fluide est soumis à des forces dont la résultante est décrite par une densité volumique
de force

#»

f v.

En appliquant le PFD à une particule de fluide à l’équilibre :

#»

f v,pressiondτ `
#»

f vpMqdτ “
#»
0 ðñ ´

#      »

gradpP q `
#»

f vpMq “
#»
0

Relation fondamentale de la statique des fluides

Dans un référentiel galiléen, pour un fluide statique :

´
#      »

gradpP q `
#»

f vpMq “
#»
0

avec
#»

f v la résultante des densités volumiques de forces extérieures. Si le fluide est statique
dans un référentiel non galiléen, il faut ajouter les densités volumiques des forces d’inertie.

La résolution de cette équation peut nous permettre de déterminer le champ de pression au sein
d’un fluide en statique, ce qu’on illustre par les différents exemples qui suivent.

b Champ de pression dans un liquide incompressible soumis uniquement au champ
de pesanteur uniforme

Considérons le cas d’un liquide incompressible, de masse volumique constante et uniforme ρ, placé
dans un champ de pesanteur uniforme #»g “ ´g #»ez. On suppose le fluide statique dans le référentiel
terrestre.
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‹

• Référentiel terrestre galiléen
• Repère cartésien (faire un schéma)

La relation de la statique des fluides s’écrit :

´
#      »

gradpP q ´ ρg #»ez “
#»
0

soit projetée selon les trois axes :

BP

Bx

˙

y,z

“ 0 ùñ P py,zq

BP

By

˙

x,z

“ 0 ùñ P pzq

BP

Bz

˙

x,y

“ ´ρg ùñ P pzq “ P0 ´ ρgz

avec P0 “ P pz “ 0q.

"
L’expression du champ de pression n’est valable que si l’axe vertical est orienté vers le
haut, à l’opposé de #»g . Si on inverse le sens de l’axe, on trouve P pzq “ P0 ` ρgz. De
plus, il faut que l’origine de l’axe vertical soit placée de sorte que P pz “ 0q “ P0.

On peut en conclure que la pression augmente avec la profondeur. On constate également que les
surfaces de niveau isobares sont des plans horizontaux.

Ordre de grandeur à retenir : ρg » 0.1 barm´1 pour l’eau liquide, c’est-à-dire une aug-
mentation de pression de 1 bar tous les 10m.

Quelques applications :

• deux points du même fluide situés à la même altitude ont la même pression. Les surfaces
libres, soumises à la même pression atmosphérique P0 ont donc la même altitude (principe
des vases communicants), et sont horizontales ;

• Au niveau de la surface libre en contact avec l’atmosphère, la pression dans le fluide
est P0. Donc, au sein du tube, la pression décroît avec l’altitude, jusqu’à une pression
P1 “ P0 ´ ρgh au sommet du tube.

c Champ de pression au sein d’un gaz parfait isotherme soumis uniquement au
champ de pesanteur uniforme

Contrairement au cas des liquides, la masse volumique d’un gaz dépend de la pression. Donc, la
relation : P “ P0 ´ ρgz est fausse !!! Supposons que l’on assimile l’air de l’atmosphère à un gaz
parfait dont la température T0 est constante (modèle de l’atmosphère isotherme).

Exercice : Déterminer l’expression de la pression dans l’atmosphère, dans le cadre du modèle
isotherme. On supposera que l’air est statique dans le référentiel terrestre galiléen. On in-
troduira une distance caractéristique H dont on donnera l’expression et dont on réalisera une
application numérique.
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‹

• Référentiel terrestre galiléen
• Repère cartésien

ρ “
δm

dτ
“

nqmM

V
“

MP

RT0

En suivant le même calcul que précédemment, le système de trois équations devient
(axe pOzq orienté vers le haut) :

dP
dz

` ρg “ 0 ðñ
dP
dz

`
MP

RT0
g “ 0 ðñ

dP
dz

`
1

H
P pzq “ 0

en posant H “
RT0

Mg
une hauteur caractéristique associée à cette équation différentielle

d’ordre 1. La condition à la limite P pz “ 0q “ P0 conduit alors à

P pzq “ P0 e´z{H

• la pression diminue exponentiellement avec l’altitude, avec une distance carac-
téristique H valant pour l’air ambiant (M “ 29.0 gmol´1) à la température
T0 “ 288K, H » 8.4 km ;

• on pourra considérer la pression constante à l’échelle de la centaine de mètres

Interprétation avec le facteur de Boltzmann :

Le terme exponentiel se met sous la forme e
´
Mgz

RT0 “ e
´
mgz

kBT0 avec m “
M

NA
. La densité volu-

mique de particules n “ δN
dτ “ P

kBT0
9 e

´
mgz

kBT0 . Ce terme correspond à un facteur de Boltzmann
qui traduit la compétition entre deux phénomènes physiques : la pesanteur, d’énergie potentielle
de pesanteur mgz, et l’agitation thermique, d’énergie kBT , qui conduit les molécules de gaz à
occuper tout l’espace.

d Poussée d’Archimède

Définition de la poussée d’Archimède

Dans un référentiel R, la poussée d’Archimède est la résultante des forces de pression qui
s’exerce sur un objet immobile dans R, par le fluide au repos qui l’entoure.

‹ " Dans un exercice, ne pas prendre en compte la poussée d’Archimède ET la
résultante des forces de pression : c’est la même force qui a deux noms différents
!!!

Considérons le cas d’un objet plongé dans un fluide, et entièrement entouré par du fluide. On se
place dans un référentiel galiléen. Seuls les champs de pression et de pesanteur sont considérés
ici.

fluide

ρfluide

fluide

ρfluide
ρsystème

Vsystème
ρfluide

Vsystème

mf g

Π

En STATIQUE, le champ de pression dans le fluide entourant l’objet est identique que l’objet
soit présent ou non. En effet, dans le fluide, on vérifie toujours : #»

0 “ ´
#      »

gradpP q ` ρ #»g et on peut
bien intégrer ceci entre la surface et tout le reste du fluide.
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Donc, on peut considérer la situation fictive dans lequel l’objet est remplacé par le même volume
de fluide Vsystème. En statique, on applique le PFD à ce volume de fluide :

#»

Π `
#»

P “
#»
0 ðñ

#»

Π “ ´mf
#»g “ ´ρfluideVsystème

#»g

Expression de la poussée d’Archimède

Un corps entièrement plongé dans un fluide au repos dans un référentiel galiléen subit une
force verticale ascendante opposée au poids du fluide déplacé :

#»

Π “ ´mf
#»g “ ´ρfluideVsystème

#»g

avec mf la masse de fluide déplacé, ρfluide la masse volumique du fluide (pas du système),
et Vsystème le volume occupé par le système.

"
On ne peut appliquer la poussée d’Archimède qu’en statique, si le système a une surface
fermée et s’il est entièrement entouré d’un ou de plusieurs fluides. Il n’est pas possible
d’appliquer la poussée d’Archimède si le système est en contact avec une surface solide.

Remarque : La formule de la poussée d’Archimède est modifiée si l’étude est réalisée dans un référentiel
non galiléen ou si d’autres forces extérieures que la force de pesanteur s’appliquent.

e Surface libre dans le cas d’un référentiel non galiléen

Considérons la situation concrète suivante. Un récipient cylindrique
contenant un liquide de masse volumique ρ est en rotation autour
de son axe de révolution pOzq à la vitesse constante ω. On note la
pression atmosphérique P0.

‹

Deux référentiels doivent être distingués :
• le référentiel terrestre R supposé galiléen. Dans ce référentiel, le fluide n’est pas

statique.
• le référentiel R1 en rotation à la vitesse ω autour de l’axe fixe pOzq de R. Dans

ce référentiel, le fluide est statique, ce qui rend l’étude plus simple.
On se place en coordonnées cylindriques d’axe pOzq.
Dans R1, la relation fondamentale de la statique des fluides donne :

´
#      »

gradpP q ´ ρg #»ez ` ρω2 #      »

HM “ ´
#      »

gradpP q ´ ρg #»ez ` ρω2r #»er “
#»
0

On cherche alors l’équation de la surface libre.

Définition : Surface libre
Interface entre un fluide et l’air.
Dans le cas d’un fluide statique sans tension superficielle, il y a continuité de la pression à
l’interface fluide/air. Donc, la pression dans le fluide vaut P “ P0 “ cste au niveau de la surface
libre.

‹

Ainsi, si on se déplace de
# »

dr sur la surface libre, on a dP “ 0 :
#      »

gradpP q ¨
# »

dr “ 0. Donc :

ρgdz “ ρω2rdr ñ zprq “
ω2r2

2g
` cste

La surface libre forme une parabole.

III Forces de viscosité

III.1 Étude de l’écoulement de Couette plan

En mécanique des fluides, on étudie principalement trois types d’écoulement de fluides :
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• l’écoulement de Couette est un écoulement de fluide visqueux dans une conduite dont les
parois se déplacent à des vitesses constantes, mais différentes : le fluide est mis en mouve-
ment par le mouvement des parois ;

• l’écoulement de Poiseuille est un écoulement de fluide visqueux dans une conduite dont les
parois sont immobiles : le fluide est mis en mouvement par le gradient de pression entre
l’entrée et la sortie de la conduite ;

• l’écoulement gravitaire est un écoulement de fluide provoqué par la pesanteur.

On va s’appuyer dans ce chapitre sur un premier type d’écoulement, appelé écoulement de Couette
plan. Un fluide s’écoule entre deux plans parallèles, celui en z “ 0 est maintenu fixe dans le
référentiel du laboratoire, et celui en z “ h se translate horizontalement (à partir de t “ 0) à la
vitesse constante #»v 0 “ v0

#»ex.

a Observation du champ de vitesse

x

z

t=0+

v(M,t=0+)=v
x
(z,t=0+)e

x

x

z

t

v(M,t)=v
x
(z,t)e

x

v0

x

z

t=∞

v(M,t=∞)=v
x
(z)e

x

v0

0

h

0

h

0

h
v0

Lors de la mise en mouvement de la plaque, on observe un régime transitoire durant lequel les
couches de fluide à son voisinage se mettent en mouvement, et transmettent de proche en proche
de la quantité de mouvement à des couches de fluide plus éloignées. Au bout d’un certain temps,
le profil de vitesse est linéaire.

L’écoulement de Couette plan est un exemple d’une famille d’écoulement appelée les écoule-
ments parallèles ou écoulements de cisaillement : la vitesse dépend d’une coordonnée
d’une direction transverse à la direction de l’écoulement.

b Expression de la force de viscosité

Considérons deux particules de fluide de surface
dS horizontale et de hauteur dz l’une au-dessus
de l’autre, l’interface étant à une altitude z. On
exprime la force élémentaire exercée par la par-
ticule de fluide du dessus sur celle du dessous :

δ
#»

F t,` “ η
Bvx
Bz

dS #»ex

où η est appelé viscosité dynamique du fluide.

‹ Unité de η : kgm´1 s´1, mais on utilise plus couramment une unité secondaire, le
poiseuille (symbole Pℓ), correspondant à des Pa s.

Commentaires sur la force de viscosité :

• Attention aux variables/vecteurs :

‹

L’origine de la force de viscosité est la différence de vitesse entre deux particules
de fluide. Ici, la vitesse des particules de fluide ne varie que selon z : il est donc

logique de faire apparaître
Bvx
Bz

et non pas
Bvx
Bx

ou
Bvx
By

. Par contre, la force est

bien dirigée selon ˘ #»ex (sens du mouvement).
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• plus la différence de vitesse entre les deux particules est importante, plus la force est im-
portante ;

• .

‹
la particule de fluide va être freinée ou accélérée par la couche du dessus, selon la

vitesse relative des deux : si
Bvx
Bz

ą 0, celle du dessus est plus rapide et la force
est bien dirigée selon ` #»ex de sorte à l’accélérer, et vice versa

• plus la surface de contact est grande, plus la norme de la force est importante ;
• la force dépend du fluide choisi, caractérisé par le coefficient η.

‹
La force exercée par la particule de fluide du dessous sur celle du dessus s’exprime par :

δ
#»

F t,´ “ ´η
Bvx
Bz

dS #»ex (III.1)

Quelques ordres de grandeur de la viscosité dynamique :

• l’hélium liquide à très basse température : η “ 0 (état superfluide, sans viscosité) ;
• air à T “ 298K et P “ 1 bar : η “ 1.8 ˆ 10´5 Pl ;
• eau à T “ 298K et P “ 1 bar : η “ 1.0 ˆ 10´3 Pl (à connaître) ;
• glycérine pure : η “ 0.80Pl;

III.2 Différents types de fluides

Pour une grande majorité de fluides, qualifiés de fluides newtoniens, l’expression précédente est
valable et la viscosité ne dépend que de la température et de la pression.

Cependant, certains fluides qualifiés alors de non newtoniens ont un comportement plus complexe.
Citons notamment :

• les fluides rhéofluidifiants dont la viscosité décroît si la vitesse de cisaillement augmente
(ketchup, moutarde, sables mouvants, sang) ;

• les fluides rhéoépaississants dont la viscosité croît si la vitesse de cisaillement augmente
(ciment liquide, suspension de maïzéna) ;

• les fluides pseudo-plastiques (et les fluides de Bingham) présentent un seuil de contrainte en
deça duquel le fluide ne s’écoule pas (utile pour les peintures qui doivent pouvoir s’étaler et
ensuite ne plus couler spontanément). Par exemple : le dentifrice, la mayonnaise, les fluides
électro- ou magnétorhéologiques.

δF/S

∂vx/∂z

fluide newtonien

rhéofluidifiant

rhéoépaississant

fluide de Bingham

pseudo-plastique

seuil

seuil

III.3 Equivalent volumique de la force de viscosité dans un écoulement
incompressible

De même que pour les forces de pression, malgré la nature fondamentalement surfacique de la
force de viscosité, on peut en donner un équivalent volumique.
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a Cas particulier : écoulement parallèle à une dimension

On s’intéresse à un écoulement parallèle à une dimension d’un fluide newtonien, comme l’écoulement
de Couette plan : #»v “ vxpzq #»ex.

‹

Considérons à nouveau le système : particule de fluide cubique, de volume dτ . Schéma.

La particule de fluide en z ` dz exerce une force δ
#»

F t,` “ `η
Bvx
Bz

ˇ

ˇ

ˇ

ˇ

z`dz
dS #»ex avec

dS “ dxdy.

La particule de fluide en z exerce une force δ
#»

F t,´ “ ´η
Bvx
Bz

ˇ

ˇ

ˇ

ˇ

z

dxdy #»ex

Ainsi, la résultante des forces de viscosité sur la particule de fluide est :

δ
#»

F “ η
B2vx
Bz2

dzdxdy #»ex “ η
B2vx
Bz2

dτ #»ex

d’où l’on tire la densité volumique de force de viscosité :

#»

f v,viscosite “ η
B2 #»v pzq

Bz2

b Cas général : écoulement incompressible d’un fluide newtonien

On admet alors la généralisation à trois dimensions de l’équivalent volumique de la force de
viscosité :

Densité volumique de force de viscosité

Pour un fluide newtonien en écoulement incompressible, la densité volumique de force de
viscosité est :

#»

f v, viscosité “ η∆ #»v

où le laplacien est ici l’opérateur vectoriel.

c Interprétation physique : un phénomène de diffusion

Dans le cadre de l’écoulement de Couette plan, nous montrerons (cf. chapitre MF3) que l’application
du principe fondamental de la dynamique à une particule de fluide dans le référentiel du labora-
toire galiléen conduit à :

ρ
Bvx
Bt

“ η∆vx ðñ
Bvx
Bt

“
η

ρ
∆vx “

η

ρ

B2vx
Bz2

Cela correspond à une équation de diffusion, de coefficient de diffusion D “
η

ρ
“ ν, appelé

viscosité cinématique. Ainsi le champ des vitesses obéit à une équation de diffusion, correspondant
physiquement à la diffusion de quantité de mouvement de proche en proche au sein des différentes
couches de fluide en mouvement.

IV Conditions aux limites

IV.1 Conditions aux limites à une interface fluide/solide

a Cas d’un fluide visqueux

Condition d’adhérence

‹
À l’interface entre un fluide et un solide, du fait de la viscosité, le fluide adhère à
la paroi solide :

#»v pMf P fluide,tq “ #»v pMs P solide,tq

en notant M un point de l’interface, Mf un point appartenant au fluide infiniment proche
de M , et Ms un point appartenant au solide infiniment proche de M également.
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b Cas d’un fluide non visqueux

On étudiera également une modélisation simplifiée des fluides appelée la modélisation des fluides
parfaits. Ces fluides parfaits s’écoulent sans aucune viscosité : il n’y a donc aucune adhérence du
fluide aux parois solides. On dit que le fluide glisse sur la paroi.

Il existe alors une autre condition aux limites, moins restrictive :

Condition d’imperméabilité

Le fluide ne peut pas traverser la paroi solide :

#»v pMf P fluide,tq ¨ #»n “ #»v pMs P solide,tq ¨ #»n

avec #»n la normale à l’interface.

IV.2 Conditions aux limites à une interface entre deux fluides non mis-
cibles

a Cas de deux fluides visqueux

Condition d’adhérence

A l’interface entre deux fluides non miscibles, du fait de la viscosité, les fluides adhèrent
l’un à l’autre :

#»v pM1 P fluide 1,tq “ #»v pM2 P fluide 2,tq

Dans le cas d’une interface entre deux fluides non miscibles, il existe une seconde condition limite.
Nous allons ici prendre le cas simplifié d’une interface plane située en z “ 0, mais les résultats se
généralisent aisément au cas d’une interface non plane.

Conditions limites dynamiques

S’il n’y a pas de tension superficielle, alors il y a continuité des
forces surfaciques à l’interface :

• continuité de la pression à l’interface (force surfacique
normale) : P1pz “ 0q “ P2pz “ 0q

• continuité de la force surfacique tangentielle à l’interface

: η1
Bvx,1

Bz

ˇ

ˇ

ˇ

ˇ

z“0

“ η2
Bvx,2

Bz

ˇ

ˇ

ˇ

ˇ

z“0

et

η1
Bvy,1

Bz

ˇ

ˇ

ˇ

ˇ

z“0

“ η2
Bvy,2

Bz

ˇ

ˇ

ˇ

ˇ

z“0

b Cas de deux fluides non visqueux

Condition d’imperméabilité

#»v pM1 P fluide 1,tq ¨ #»n “ #»v pM2 P fluide 2,tq ¨ #»n

avec #»n la normale à l’interface.

Dans le cas d’une interface plane en z “ 0 :

Condition limite dynamique

Il y a continuité de la force surfacique normale : P1pz “ 0q “ P2pz “ 0q
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c Cas d’une interface liquide/air

Dans le cas d’une interface liquide/air, l’interface s’appelle une surface libre.

Comme la viscosité dynamique de l’air est bien plus faible que celle de la plupart des liquides,
on considère souvent l’air comme un fluide non visqueux. Cela implique les conditions limites
suivantes pour le fluide liquide :

Condition d’imperméabilité

#»v pMf P fluide,tq ¨ #»n “ #»v pMa P air,tq ¨ #»n

avec #»n la normale à l’interface.

Pour une interface plane en z “ 0 :

Conditions limites dynamiques

• continuité de la pression à l’interface (force surfacique normale) : P pz “ 0q “ P0 avec
P0 la pression atmosphérique

• continuité de la force surfacique tangentielle à l’interface : η
Bvx
Bz

ˇ

ˇ

ˇ

ˇ

z“0

“ 0 et

η
Bvy
Bz

ˇ

ˇ

ˇ

ˇ

z“0

“ 0

14 cbna Lycée Rabelais - PC - 2025-2026 - C. Logé



Exercices

Ex. 1 Vol en ballon

Estimer le nombre de ballons d’hélium (et leur volume)
pour soulever un homme.

Correction de l’exercice 1

Appropriation :

Pourquoi l’homme décolle-t-il ? Parce que la masse volumique de l’hélium est plus faible que celle de l’air : la
résultante de la poussée d’Archimède et du poids peut donc être dirigée vers le haut. (Même principe que la
montgolfière.)

On se place à la situation limite du décollage : le passager est au sol, mais la réaction du support devient nulle.
L’accélération du passager est nulle (elle est à la limite de devenir verticale ascendante). On est donc dans une
situation statique : la poussée d’Archimède s’applique.

Quel système choisir ? Plusieurs choix sont possibles :

• Idée 1 : homme seul. Bilan des forces : poids, force des câbles sur l’homme. Mais la force des câbles est
inconnue. Pour connaître cette force, il faut considérer un second système : ballons + câbles. Bilan des forces
: poids, force de l’homme sur les câbles et poussée d’Archimède. Puis, il faut utiliser le principe des actions
réciproques.
Ce choix de systèmes rend la résolution longue, car on fait apparaitre une force intermédiaire
à déterminer : la force des câbles sur l’homme ou sa réciproque.

• Idée 2 : homme + câbles + ballons. Bilan des forces : poids, poussée d’Arichimède.
Ce choix de système rend la résolution bien plus rapide, car la force des câbles sur l’homme
devient une force interne au système, donc inutile dans les équations dynamiques.

Stratégie :

1. Bilan des forces sur le système.
2. Détermination de la masse volumique de l’hélium et A.N.

Résolution :

1. Bilan des forces : poids sur l’homme, poids sur les ballons, poussée d’Archimède sur l’homme, poussée
d’Archimède sur les ballons. On néglige la poussée d’Archimède sur l’homme devant le poids de l’homme
(ρhomme » ρeau " ρair) ou devant la poussée d’Archimède sur les ballons (Vhomme ! Vballons).
PFD en statique projeté sur #»ez vertical ascendant :

´mg ` Vballongpρair ´ ρHeq “ 0 ñ Vballon “
m

ρair ´ ρHe

2. Masse volumique de l’hélium : Comme pour tous les gaz, on utilise la relation des gaz parfaits pour
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aboutir à : ρHe “
δm

dτ
“

PM

RT
avec P “ 1 bar, T “ 300K et M “ 4 ˆ 10´3 kgmol´1 pour l’hélium (valeur à

connaître, cf. tableau périodique). Donc : ρHe “ 0.16 kgm´3.
Application numérique : On prend m “ 70 kg et ρair “ 1.2 kgm´3. On obtient :

Vballons “ 67m3

Sur la photo, on estime R „ 1m. Donc, Nballons “ 16.
Si on prend un rayon de ballon plus faible : R „ 50 cm, on obtient Nballons “ 129

Validation :

• Photo semble valider le résultat numérique obtenu (nombre de ballons entre les deux résultats déterminés).
• Si m augmente, le volume des ballons augmente. Le volume des ballons diminue si la différence des masses

volumiques augmente : c’est bien la différence des masses volumiques qui est la cause du décollage.
• On confirme qu’on ne peut pas négliger le poids des ballons, sinon on obtiendrait V “

m

ρair
et on ferait une

erreur relative de 20 % sur le résultat final...
• Bonus : Film Là-haut, pour la maison m „ 10 t, il faudrait V „ 9.6 ˆ 103 m3. L’image du film (au moment

du décollage) semble à peu près à l’échelle ! (Mais cela représenterait avec R “ 1m, environ 18000 ballons, et
il est sûr qu’il n’y a pas autant de ballons de représentés !)

Ex. 2 Equilibre d’un fluide dans un récipient en translation

L’objectif de l’exercice est de déterminer le champ de pression P px,zq dans tout le fluide, ainsi que l’équation de la
surface libre zspxq en contact avec l’atmosphère de pression P0. On suppose l’équilibre du fluide établi.

1. On suppose γ ą 0. Déterminer qualitativement la forme de la surface libre.
2. En appliquant la relation fondamentale de la statique des fluides, déterminer une équation reliant P px,zq,

la masse volumique ρ de l’eau, l’accélération de la pesanteur g et l’accélération γ. En déduire le champ de
pression dans tout le fluide, en faisant intervenir une constante K que l’on ne cherchera pas à déterminer pour
le moment.

3. En déduire l’expression de la surface libre zspxq en fonction, entre autres, de la constante K.
4. On cherche désormais à déterminer explicitement la constante K. En utilisant la situation au repos (accéléra-

tion nulle du récipient dans le référentiel pR0q), exprimer la constante K et en déduire l’expression de la
surface libre zspxq en fonction de z0, γ, L, g et x.

5. On mesure la différence d’altitude maximale dans le fluide : zs, max ´ zs, min “
L

10
. En déduire la valeur

numérique de γ.
6. Pour finir, exprimer la pression P px,zq en tout point du fluide, sans la constante K. Donner qualitativement

la direction et le sens de la poussée d’Archimède sur un corps solide immergé dans le fluide.

Correction de l’exercice 2

1. Le fluide est à l’équilibre dans le référentiel pRq en translation par rapport au référentiel galiléen pR0q. Con-
sidérons alors une particule de fluide à l’équilibre dans pRq au contact de la surface libre. Bilan des forces : le
poids

#  »

δP , la force d’inertie d’entraînement
# »

δf ie “ ´pδmqγ #»ex et la résultante des forces de pression
#  »

δF p.

16 cbna Lycée Rabelais - PC - 2025-2026 - C. Logé



Connaissant la direction de
#  »

δF p, orthogonal à la surface libre, on en déduit la forme de la surface libre.
2. • Référentiel pRq en translation par rapport à pR0q galiléen.

Relation fondamentale de la statique des fluides :

´
#      »

gradpP q ´ ρg #»ez ´ ργ #»ex “
#»
0 ñ

$

’

&

’

%

BP

Bx
“ ´ργ

BP

Bz
“ ´ρg

En intégrant une fois par rapport à x on aboutit à : P px,zq “ fpzq ´ ργx. Puis avec l’équation portant sur
z, on en déduit :

P px,zq “ K ´ ρgz ´ ργx

Remarque : On peut aussi de manière plus efficace ré-écrire l’équation vectorielle comme :

´
#      »
gradpP ` ρgz ` ργxq “

#»
0

menant au fait que la fonction P px,zq ` ρgz ` ργx “ K est une constante dans tout l’espace.
3. Au niveau de la surface libre, il y a continuité de la pression : P “ P0. Donc :

P0 “ K ´ ρgzspxq ´ ργx ñ zspxq “
K ´ P0

ρg
´

γ

g
x

La surface libre a donc l’allure d’une droite affine de pente ´
γ

g
: cohérent avec la Q.1 et cohérent avec le fait

que la surface est horizontale si γ “ 0.
4. Par conservation du volume de fluide, on a :

Vrepos “ Vequilibre ñ z0Lh “

ż h

y“0

dy
ż L

x“0

˜

ż zspxq

z“0

dz

¸

dx

avec h la profondeur du récipient selon #»ey. Donc :

z0L “

ż L

x“0

zspxqdx “
K ´ P0

ρg
L ´

γ

2g
L2 ñ K “ P0 `

γρ

2
L ` z0ρg

Ainsi :
zspxq “ z0 `

γL

2g
´

γ

g
x

Remarque : Cela est intuitif avec un profil affine : z0 est l’altitude de la surface libre en x “ L{2.
5.

zs,max ´ zs,min “
γ

g
L “

L

10
ñ γ “

g

10
“ 0.98m s´2

, ce qui est un ordre de grandeur réaliste de l’accélération d’un véhicule.
6. Avec la Q.2 :

P px,zq “ P0 ´ ρgpz ´ z0q ´ ργpx ´ L{2q

La pression augmente lorsque z diminue et lorsque x diminue. Ainsi, la résultante des forces de pression à
l’équilibre, i.e. la poussée d’Archimède, est dirigée du bas à gauche vers le haut à droite (si γ ą 0).
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Ex. 3 (D’après écrit Mines PC 2025) Pression dans l’atmosphère non isotherme

Il s’agit d’un sujet Mines-Pont : les calculatrices sont donc interdites. Pour les applications numériques de-
mandées, on se contentera de 2 chiffres significatifs.

Données numériques :

• Champ de pesanteur au sol : g0 “ 9.8m s´2

• Constante molaire des gaz parfaits : R “ 8.3 JK´1 mol´1

• Masse molaire moyenne de l’air : Mair “ 29 gmol´1

• Pression au sol : P0 “ 1.0 bar
• Rayon terrestre : RT “ 6400 km
• 0 ˝C=273K
• 1 bar = 105 Pa

•

ˆ

210

300

˙5

» 0.15

L’atmosphère sera décrite comme un mélange idéal de gaz parfaits de masse molaire moyenne Mair, en équilibre
dans le champ de pesanteur. Dans un premier temps, l’étude sera limitée aux couches les plus basses (la troposphère)
dans lesquelles la température décroît linéairement de sa valeur T0 “ 27 ˝C au sol à la valeur minimale Th “ ´64 ˝C
à l’altitude maximale h “ 14 km.

1. On confond les champs de pesanteur et de gravitation terrestre et on admet pour la Terre une symétrie
sphérique de répartition des masses. Montrer que l’intensité g du champ de pesanteur dans la troposphère
varie de moins de 0,5% par rapport à sa valeur au sol.

Dans la suite on négligera les variations de g mais aussi la courbure de la Terre et le sol est le plan z “ 0 où l’axe
pOzq est vertical ascendant.

La pression P pzq, la température T pzq “ T0p1 ´ Γzq et la masse volumique ρpzq ne dépendent que de z. Les
paramètres T0 et Γ sont constants.

2. Montrer l’équation différentielle suivante :

dP
P

“ ´
1

1 ´
z

H1

dz
H0

et exprimer les altitudes caractéristiques H0 et H1 en fonction de Mair, g, R, T0 et de Γ respectivement, puis
calculer numériquement H0 et H1.

3. Montrer que P pzq “ P0 p1 ´ z{H1q
k et déterminer k puis la valeur numérique P phq de la pression au sommet

de la troposphère.

Dans la suite de cet exercice, on se propose de déterminer le champ de pression dans toute l’atmosphère, que l’on
suppose encore être un gaz parfait, mais non isotherme. On procèdera cette fois avec une résolution numérique.
Dans le cadre du modèle ISA (International Standard Atmosphere), l’atmosphère est divisée en différentes couches,
au sein desquelles la température est supposée suivre une loi affine. La valeur du gradient vertical de température
dans chacune de ces couches est normalisée.

On doit donc résoudre le système différentiel :
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On propose de conduire la résolution numérique au moyen de la fonction odeint, disponible dans le module
scipy.integrate, et dont l’importation a déjà été réalisée. L’appel de la fonction odeint requiert les trois arguments
suivants :

• la fonction définissant le système différentiel à résoudre, qui doit elle-même présenter impérativement deux
arguments : le vecteur inconnu que l’on souhaite déterminer, suivi de la variable d’influence par rapport à
laquelle on conduit l’intégration numérique du système. Cette fonction retourne le vecteur dérivée première.

• les conditions initiales/aux limites du problème, données sous forme d’une liste ou d’un tableau numpy à une
dimension.

• le tableau numpy des valeurs de z pour lesquelles on cherche à obtenir une estimation numérique de la solution ;
le premier élément de ce tableau doit impérativement correspondre à "l’endroit" où les conditions initiales/aux
limites précédemment données s’appliquent.

La fonction odeint retourne alors la solution du système différentiel sous la forme d’un tableau numpy, dans lequel le
nombre de lignes correspond au nombre de valeurs z et le nombre de colonne correspond au nombre de coordonnées
du vecteur cherché.

On donne un extrait du code Python déjà implémenté.

1 ## Definition des constantes du probleme
2 ## -------------------------------------
3

4 g = 9.81 # acceleration de la pesanteur (en m/s^2)
5 Mair = 29e-3 # masse molaire de l’air (en kg/mol)
6 R = 8.314 # constante du gaz parfait (en J/K/mol)
7 Tsol = 288 # temperature de l’atmosphere au niveau du sol (en K)
8 Psol = 1.013e5 # pression de l’atmosphere au niveau du sol (en Pa)
9

10 ## Definition du gradient thermique vertical selon le modele ISA
11 ## -------------------------------------------------------------
12

13 def kISA(z):
14 """ z est l’altitude en metres. La fonction renvoie la valeur du gradient thermique
15 vertical a l’altitude z (en K/m). """
16 if 0 <= z < 11e3: return -6.5e-3
17 elif z < 20e3: return 0
18 elif z < 32e3: return 1.0e-3
19 elif z < 47e3: return 2.8e-3
20 elif z < 51e3: return 0
21 elif z < 71e3: return -2.8e-3
22 elif z < 85e3: return -2.0e-3
23 else: return None
24

25 ## Definition de l’ensemble des valeurs de z pour lesquelles on cherche la solution
26 ## numerique approchee du systeme differentiel precedent
27

28 z = np.linspace(0, 85e3, 10000) # on choisit 10000 points regulierement espaces entre 0
29 # et 85 km d’altitude

4. (a) Proposer des lignes de code permettant de calculer un tableau numpy à une dimension T et un tableau
numpy à une dimension P solutions du système différentiel.

(b) Commenter les graphiques des solutions numériques obtenues.
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Correction de l’exercice 3

1. On cherche le champ gravitationnel créé par la Terre en un point M à l’extérieur de la Terre (M est situé
dans la troposphère). Il s’agit d’un problème type champ électrostatique créé à l’extérieur d’une boule.
(a) Coordonnées sphériques de centre O, le centre de la Terre. On cherche uniquement #»g pour r ě RT .
(b) Symétries : Les plans pM, #»er,

#»eθq et pM, #»er,
# »eφq sont des plans de symétrie de la distribution de masse.

Donc, #»g “ gpr,θ,φq #»er.
(c) Invariances par rotations d’angles θ et φ : #»g “ gprq #»er
(d) Surface de Gauss fermée et orientée : cf. schéma
(e) Théorème de Gauss gravitationnel :

£

pSq

#»g ¨
#  »

dS “ ´4πGMint ñ gprq4πr2 “ ´4πGMT ñ gprq “ ´
GMT

r2

avec MT la masse de la Terre.
Ainsi, la variation relative de g dans la troposphère est de :

VR “

ˇ

ˇ

ˇ

ˇ

gpRT q ´ gpRT ` hq

gpRT q

ˇ

ˇ

ˇ

ˇ

“ R2
T

ˆ

1

R2
T

´
1

pRT ` hq2

˙

“ 1 ´

ˆ

RT

RT ` h

˙2

A.N. : On calcule 6.42 “ 40.96, puis 6,4142 » 41,14, donc
ˆ

RT

RT ` h

˙2

“
40,96

41,14
et donc VR “

0,18

41,14
» 0,4% ă

0,5%
2. • Référentiel terrestre supposé galiléen

• Vu les simplifications de géométrie, on se place en coordonnées cartésiennes, d’axe pOzq vertical ascendant.
Relation fondamentale de la statique des fluides :

´
#      »

gradpP q ` ρ #»g “
#»
0 ñ

dP
dz

` ρpzqg “ 0

20 cbna Lycée Rabelais - PC - 2025-2026 - C. Logé



car les fonctions ne dépendent que de z d’après l’énoncé.
Or, l’atmosphère étant supposé être un GP :

P pzqdτ “ dnRT ñ ρpzq “
δm

dτ
“

P pzqMair

RT pzq

Donc, la RFSF donne :

dP
dz

`
Mairg

RT pzq
P pzq “ 0 ñ

dP
dz

`
Mairg

RT0p1 ´ Γzq
P pzq “ 0

En séparant les variables, on aboutit à la solution fournie dans l’énoncé avec H0 “
RT0

Mairg
et H1 “

1

Γ
.

A.N. : On calcule H0 “
2490

284
ˆ 103 “ 8.8 km.

A.N. : H1 “
1

Γ
avec ´T0Γ “

Th ´ T0

h
. Donc, H1 “

T0h

T0 ´ Th
“ 46 km

3. On intègre l’équation aux variables séparées précédente :
ż P pzq

P“P0

dP
P

“ ´

ż z

z“0

1

1 ´
z

H1

dz
H0

ñ ln

ˆ

P pzq

P0

˙

“
H1

H0
ln

ˆ

1 ´
z

H1

˙

ñ P pzq “ P0

ˆ

1 ´
z

H1

˙k

avec k “
H1

H0
.

A.N. : k “ 5.2.
Pour P phq, vu la donnée numérique p210{300q5 fournie, on comprend qu’il vaut mieux reformuler P phq en
faisant intervenir les températures. En effet, on a :

P phq “ P0

ˆ

1 ´
h

H1

˙k

“ P0 p1 ´ Γhq
k

“ P0

ˆ

Th

T0

˙k

A.N. : P phq » 0.15 bar
4. (a) On commence par définir la fonction utile pour odeint.

1 ## Definition du systeme differentiel a resoudre
2

3 def systDiff(TP,z):
4 """
5 TP designe le vecteur inconnu de dimension 2 (TP[0] : temperature ; TP[1] : pression

) ;
6 z designe l’altitude.
7 La fonction renvoie un vecteur dont les composantes sont respectivement la derivee

de la temperature et la derivee de
8 la pression a l’altitude z.
9 """

10 # Lois prevues par le modele theorique
11 dT = kISA(z) # derivee verticale de la temperature
12 dP = - Mair*g/R*TP[1]/TP[0] # derivee verticale de la pression
13

14 return [dT , dP]
15

Puis, on définit les conditions aux limites :
1 ## Definition des conditions aux limites
2

3 CAL = [Tsol , Psol]
4

Il ne reste plus qu’à appeler odeint.
1 TP = odeint(systDiff , CAL , z)
2 T = TP[:,0] # extraction des valeurs de la temperature
3 P = TP[:,1] # extraction des valeurs de la pression
4

5

(b) Le graphique de la température avec l’altitude correspond directement au modèle ISA : rien à redire.
Sur le graphique de la pression, on peut réaliser plusieurs commentaires :

• le modèle isotherme correspond bien à une décroissance exponentielle de la pression avec l’altitude,
ce qui se traduit par une droite dans un diagramme semi-log. On retrouve qu’au bout de 8.5 km, la
pression a chuté de 63 % par rapport à sa valeur initiale (typique d’une décroissance exponentielle).
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• sur les premiers km, il y a égalité des deux modèles. Cela est cohérent : la température est environ
constante et égale à celle au sol.

• La température en altitude reste toujours inférieure à celle au sol. Dans la forme théorique, ceci
devrait se traduire par un gradient de la pression qui est donc plus grand en valeur absolue que dans
le cas isotherme. On retrouve effectivement une pression qui décroit plus rapidement avec l’altitude
que dans le cas isotherme.

• Chaque changement de pente de T pzq se traduit par une cassure de la courbe de P pzq : cohérent.

Ex. 4 (Oral banque PT) Force de pression sur un tube à essais

Correction de l’exercice 4

1. • Référentiel du laboratoire supposé galiléen
• Repère cartésien avec un axe pOzq descendant, cf. schéma de l’énoncé

RFSF :
´

#      »

gradpP q ` ρ #»g “
#»
0

Les projections selon #»ex et #»ey donnent que P pzq. La projection selon #»ez donne :

´
dP
dz

` ρg “ 0 ñ P pzq “ ρgz ` cste

On détermine la constante avec la CL à la surface libre en z “ ´H : P p´Hq “ P0 avec P0 la pression
atmosphérique. Ainsi : P pzq “ P0 ` ρgpz ` Hq

2. Décomposons le tube à essais en deux sous-surfaces : la surface latérale cylindrique entre z “ ´H et z “ 0 et
la surface sphérique entre z “ 0 et z “ R.
Sur la portion cylindrique, par symétrie, les forces de pression se compensent et la résultante est nulle.
Sur la portion sphérique, par symétrie, la résultante des forces de pression est portée par l’axe pOzq :

#»

F “ Fz
#»ez.

3. • Etant donné que seule la surface sphérique est utile pour le calcul de Fz, on passe en coordonnées
sphériques de centre O.

A ce stade, il y a deux possibilités de rédaction. L’énoncé a tendance à nous faire privilégier la seconde
méthode de rédaction.
(a) Posons

#  »

dS “ R2 sinpθqdθdφ #»er. En prenant en compte les forces de pression de l’air sur le tube et du
liquide sur le tube, la résultante des forces de pression est :

#»

F “

ĳ

pSq

´P0
#  »

dS `

ĳ

pSq

P pzq
#  »

dS “

ĳ

pSq

ρgpz ` HqR2 sinpθqdθdφ #»er
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La projection selon #»ez est donc :

Fz “

ĳ

pSq

ρgpz ` HqR2 sinpθq cospθqdθdφ

avec en coordonnées sphériques z “ R cospθq. Donc :

Fz “ ρgR2

ˆ
ż 2π

φ“0

dφ
˙

looooomooooon

“2π

˜

ż π{2

θ“0

pR cospθq ` Hq sinpθq cospθqdθ

¸

“ 2πR2ρg

ˆ

R

3
`

H

2

˙

(b) Posons
#  »

dS “ 2πR2 sinpθqdθ #»er la surface élémentaire de la couronne sphérique. En prenant en compte
les forces de pression de l’air sur le tube et du liquide sur le tube, la résultante des forces de pression est
:

#»

F “

ĳ

pSq

´P0
#  »

dS `

ĳ

pSq

P pzq
#  »

dS “

ĳ

ρgpz ` HqdS #»er

en utilisant l’uniformité de la pression sur la couronne sphérique. La projection selon #»ez est donc :

Fz “

ż

ρgpz ` Hq2πR2 sinpθq cospθqdθ

avec en coordonnées sphériques z “ R cospθq. Donc :

Fz “ ρg2πR2

˜

ż π{2

θ“0

pR cospθq ` Hq sinpθq cospθqdθ

¸

“ 2πR2ρg

ˆ

R

3
`

H

2

˙

Ainsi, on conclut

#»

F “ ρg

ˆ

2

3
πR3 ` πR2H

˙

#»ez

Cette force est bien dirigée selon ` #»ez : cohérent. Cette force est égale au poids du fluide dans le tube à essais
! Ceci est attendu, étant donné que le fluide est statique (on peut par exemple appliquer le PFD au tube à
essais + fluide et en déduire la force de l’opérateur sur le tube à essais, puis appliquer le PFD au tube à essais
seul et en déduire la résultante des forces de pression). Cette force de pression est ici très faible (poids d’une
cinquantaine de mL de liquide).

Ex. 5 (Ecrit Mines PSI 2020) Lévitation acoustique

Il s’agit d’un sujet Mines-Pont : les calculatrices sont donc interdites.

La lévitation acoustique consiste à maintenir de la matière en suspension au sein d’un milieu fluide ambiant, l’air
par exemple, en opposant au poids de l’objet lévitant la force résultant de la pression de radiation d’ondes sonores
intenses.

En 2013, une équipe de chercheurs suisses a mis au point un dispositif de lévitation acoustique permettant un
transport contrôlé de petits objets. Ils sont ainsi parvenus à mélanger une gouttelette d’eau et un granulé de
café soluble. Cette expérience a priori ludique recèle en réalité des applications technologiques et industrielles
extrêmement précieuses, telle que le contrôle de certains procédés chimiques ou biologiques.

En 2015, c’est une équipe de recherche sud-américaine qui a mis au point un dispositif de lévitation acoustique
permettant de transporter des objets avec une grande stabilité donc sans aucun risque d’en perdre le contrôle
mécanique, ce qui intéresse particulièrement les secteurs sensibles du nucléaire et de la chimie, où la dangerosité de
la matière transportée impose de prendre en compte les risques inhérents aux chocs ou à la dissémination.
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Une étude des ondes acoustiques montre que la surpression p1 s’écrit

p1pz,tq “
µ0cUm

sin
ˆ

ωh

c

˙ cospωtq cos
´ωz

c

¯

avec ω “
2πc

λ
(λ est la longueur d’onde de l’onde acoustique).

12. On considère une bille, de rayon a ! λ et donc assimilable à un volume élémentaire sans influence sur la
propagation de l’onde acoustique. Déterminer la résultante

#»

F des forces de pression s’exerçant sur la bille,
ainsi que sa moyenne temporelle

A

#»

F
E

. Le modèle proposé permet-il d’interpréter la lévitation de cette bille ?

On modifie la hauteur h de sorte à augmenter l’amplitude V1 de la vitesse associée à l’onde acoustique jusqu’à
V1 “ 50m s´1.
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Correction de l’exercice 5

12. Etant donné qu’on considère que la bille correspond à un système infinitésimal du point de vue de l’onde
acoustique, la résultante des forces de pression s’écrit directement :

#»

F “ ´
#      »

gradpP qdτ “ ´
#      »

gradpP q
4

3
πa3

On calcule
#      »

gradpP q “
#      »

gradpP0q `
#      »

gradpp1q

Concernant P0 : On se place en l’absence d’onde sonore : l’air est alors statique.
• Référentiel terrestre supposé galiléen

La RFSF donne : ´
#      »

gradpP0q ` µ0
#»g “

#»
0 ñ

#      »

gradpP0q “ µ0
#»g “ ´µ0g

#»ez
Concernant p1 :
#      »

gradpp1q “
Bp1
Bz

#»ez “ ´
µ0ωUm

sin
ˆ

ωh

c

˙ cospωtq sin
´ωz

c

¯

#»ez

Ainsi, finalement :

#»

F “
4

3
πa3µ0

¨

˚

˚

˝

g `
ωUm

sin
ˆ

ωh

c

˙ cospωtq sin
´ωz

c

¯

˛

‹

‹

‚

#»ez

En moyenne :
A

#»

F
E

“
4

3
πa3µ0g

#»ez, c’est-à-dire une résultante des forces de pression opposée au poids de l’air
déplacé par la bille. Ce modèle ne permet pas de mettre en lévitation une bille de masse volumique différente
de celle de l’air.

13. Remarque : On pousse l’étude à l’ordre 2, ce qui rend les EDP des ondes acoustiques non linéaires. Cela se voit
très bien dans l’expression de p2 qui oscille à 2ω, alors que la membrane du haut-parleur bouge à ω.
On mène une analyse dimensionnelle.
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rp2s “
M

L.T 2
; rµ0s “

M

L3
; rV1s “

L

T

On en déduit que ℓ “ 1 et q “ 2.
Moyenne des forces de pression :

Le raisonnement est semblable à la Q. précédente. On calcule :
#      »

gradpp2q “ ´
1

2
µ0V

2
1

ω

c
sin

ˆ

2ωz

c

˙

#»ez `

df
dz

cosp2ωtq #»ez. Ainsi, en moyenne :

xFzy “
4

3
πa3µ0

ˆ

g `
V 2
1 ω

2c
sin

ˆ

2ωz

c

˙˙

14. • Référentiel terrestre galiléen
• Système : tBilleu de masse mb “

4

3
πa3µb

Les positions d’équilibre vérifient :

xFzy #»ez ` mb
#»g “

#»
0 ñ µ0

ˆ

g `
V 2
1 ω

2c
sin

ˆ

2ωz

c

˙˙

“ µbg

Au maximum, sin
ˆ

2ωz

c

˙

“ 1. Donc,

µb,max “ µ0

ˆ

1 `
V 2
1 ω

2cg

˙

ą µ0

Stabilité des positions d’équilibre

Position d’équilibre de type A : Perturbons l’état d’équilibre. Si la bille se décale vers les z croissants, alors
xFzy diminue, et la résultante des forces de pression sur la bille est dirigée selon ´ #»ez : la bille redescent et
revient à sa position d’équilibre. Ces positions d’équilibre sont stables.
Position d’équilibre de type B : Si la bille se décale vers les z croissants, la résultante des forces de pression
augmente, et donc la résultante des forces de pression sur la bille est selon ` #»ez : ces positions d’équilibre sont
instables.

15. A.N. : µb,max “ 5.7 ˆ 104 kgm´3

Pour estimer la masse de la bille, il faut estimer son rayon a. On sait que a ! λ. Or, λ “
2πc

ω
“

c

f
. A.N. :

λ “ 17mm. Prenons alors a “ 1mm. On en déduit que : mb “ 0.24 g
Ces valeurs numériques sont faibles pour des matériaux solides (la masse volumique d’un métal est de l’ordre
de 106 kgmr´3s) et les matériaux transportés ici doivent être nécessairement de rayon très petit (a ă 1mm).
Néanmoins, ce calcul montre la possibilité d’application pour des matériaux peu denses et petits.

16. La distance minimale séparant deux objets lévitant est la distance entre deux positions d’équilibre stable

consécutives, soit
λ

2
. Ainsi, sur la distance h, on peut faire léviter au maximum

h

λ{2
“

2h

λ
objets.

Remarque : Dans l’expérience réelle, plus on place d’objets, plus l’onde acoustique est perturbée (ce qu’on a ici
négligé), et plus il est difficile de faire léviter de nouveaux objets.

Ex. 6 Aplatissement de la Terre
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Newton fut le premier à évaluer l’aplatissement de la Terre par rapport à une boule parfaite. Il a modélisé cet
aplatissement en supposant que la Terre se comporte comme un fluide incompressible de masse volumique ρ en
rotation uniforme à la vitesse angulaire Ω autour de l’axe pOzq des pôles (modèle valable pour des déformations de
la Terre sur le temps long).

Cet exercice a pour but d’estimer l’aplatissement relatif de la Terre. Des données sont regroupées en fin d’énoncé.

1. Par un raisonnement qualitatif, déterminer si la Terre est aplatie au niveau des pôles ou au niveau de
l’Equateur.

Pour déterminer quantitativement cet aplatissement, il nous faut commencer par exprimer les forces volumiques
auxquelles sont soumises les particules de fluide.

2. Cette question porte sur le champ gravitationnel uniquement. En supposant, pour cette question seulement,
que l’on peut approximer le champ gravitationnel créé par la Terre comme celui d’une boule moyenne de rayon
R et de masse uniformément répartie en volume, exprimer le champ gravitationnel à l’intérieur de la Terre en
fonction de la masse M de la Terre, de R, de G et de la distance r au centre de la Terre.

Dans toute la suite, nous poserons la notation ω0 “

c

GM
R3

. On définit un système de coordonnées sphériques de

centre O, le centre de la Terre, associé à un référentiel RT en rotation uniforme autour de l’axe pOzq des pôles à la
vitesse Ω par rapport au référentiel géocentrique. On suppose le référentiel géocentrique galiléen.

3. Justifier que le référentiel RT n’est pas galiléen.
4. Montrer que le champ de pression à l’intérieur de la Terre s’exprime par :

P pr,θq “
ρr2

2

`

Ω2 sin2
pθq ´ ω2

0

˘

` K

où K est une constante que l’on ne cherchera pas à exprimer.
5. On s’intéresse désormais à la surface libre du fluide modélisant la Terre. On note Rp le rayon de la Terre aux

pôles et Re le rayon de la Terre à l’Equateur. Déterminer une relation reliant Rp, Re, Ω et ω0.
6. On suppose que l’aplatissement relatif de la Terre est petit devant 1, ce qui permet de supposer que Re » R

et que |Re ´ Rp| ! R. Définir et déterminer l’expression de l’aplatissement relatif de la Terre. Réaliser
l’application numérique.

7. La valeur de l’aplatissement relatif régulièrement utilisé en physique est de 0.3%. Commenter le résultat
déterminé à la question précédente.

Données :

• Masse de la Terre : M “ 6.0 ˆ 1024 kg
• Rayon moyen de la Terre : R “ 6.4 ˆ 106 m
• Vitesse angulaire de rotation de la Terre autour des pôles : Ω “ 7.3 ˆ 10´5 rad s´1

• Constante de gravitation universelle : G “ 6.67 ˆ 10´11 m3kg´1s´2

Correction de l’exercice 6

1. On suppose que le fluide modélisant la Terre est en équilibre dans le référentiel terrestre. Raisonnons sur une
particule de fluide au niveau de la surface libre. Bilan des forces : force gravitationnelle

#  »

δF g, force d’inertie
d’entraînement

# »

δf ie et résultante des forces de pression
#  »

δF p.
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Comme
# »

δf ie augmente en norme des pôles vers l’Equateur, on en déduit que la Terre est aplatie au niveau
des pôles : Rp ă Re.

2. .

• Coordonnées sphériques de centre O, le centre de la Terre.
• Les plans pM, #»er,

#»eθq et pM, #»er,
# »eφq sont des plans de symétrie de la distribution de masse. Donc, #»g “

gpr,θ,φq #»er
• Invariance de la distribution de masse par rotations d’angles θ et φ : #»g “ gprq #»er.
• Surface pSq de Gauss fermée et orientée : cf. schéma.
• Théorème de Gauss gravitationnel (r ď R) :

£

pSq

#»g ¨
#  »

dS “ gprq4πr2 “ ´4πGMint “ ´4πG ˆ ρ
4

3
πr3

pour r ď R et avec ρ “
M

4

3
πR3

. Donc :

gprq “ ´GM

R3
r ñ #»g pr ď Rq “ ´

GM
R3

r #»er “ ´ω2
0r

#»er

3. Le référentiel RT n’est pas en translation rectiligne uniforme par rapport au référentiel géocentrique galiléen
: le référentiel RT n’est donc pas galiléen.

4. • Référentiel RT en rotation uniforme autour d’un axe fixe d’un référentiel galiléen
La densité volumique de force gravitationnelle est donc

#»

f v,g “ ´ρω2
0r

#»er et celle de force d’inertie d’entraînement
est :

#»

f v,ie “ ρΩ2HM #»ex “ ρΩ2pr sinpθqqp sinpθq #»er ` cospθq #»eθq

Relation fondamentale de la statique des fluides :

#»
0 “ ´

#      »

gradpP q `
#»

f v,g `
#»

f v,ie ñ

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

BP

Br
“ ´ρω2

0r ` ρΩ2 sin2
pθqr

1

r

BP

Bθ
“ ρΩ2 cospθq sinpθqr

BP

Bφ
“ 0

On tire de la 3ème équation que P pr,θq (logique au vu de la symétrie du problème). En intégrant la première

équation par rapport à r, on trouve : P pr,θq “ ρpΩ2 sin2
pθq ´ ω2

0q
r2

2
` fpθq où fpθq est une fonction ne

dépendant que de θ. On détermine cette fonction f à l’aide de la 2ème équation :
df
dθ

“ 0. Donc, fpθq “ K

avec K une constante. On trouve donc le résultat donné dans l’énoncé.
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5. Au niveau de la surface libre, la pression vaut P0 la pression atmosphérique. En exprimant les deux relations
pour r “ Rp (θ “ 0) et r “ Re (θ “ π{2) et en les soustrayant, on aboutit à :

R2
eΩ

2 ` ω2
0pR2

p ´ R2
eq “ 0

6. On définit l’aplatissement relatif de la Terre par A “
Re ´ Rp

R
. Avec les approximations proposées, on arrive

à :

R2Ω2 ` ω2
0pRp ` ReqpRp ´ Req » R2Ω2 ` 2ω2

0RpRp ´ Req “ 0 ñ A “
Ω2

2ω2
0

A.N. : A “ 0.17%. Ce résultat valide l’approximation effectuée ci-avant en considérant que Re ´ Rp ! R (et
donc également celle Re » R).

7. On a donc déterminé un résultat très proche du résultat utilisé couramment (0.2% au lieu de 0.3%). L’erreur
effectuée peut provenir de la modélisation du champ gravitationnel, qui suppose que la Terre est sphérique,
alors qu’on démontre dans la suite qu’elle ne l’est pas... Il faudrait procéder par itérations successives en
corrigeant la détermination du champ gravitationnel à l’aide de la forme non sphérique de la surface libre
déterminée, et déterminer une forme plus précise de la surface libre, et ainsi de suite.
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