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‹
Prise de notes : On a déterminé les forces s’exerçant sur une particule de fluide (chapitre
MF2), on a déterminé l’accélération d’une particle de fluide (chapitre MF1). On est
donc prêts à exprimer le PFD dans un référentiel galiléen et à en déduire le champ de
vitesse et de pression dans un fluide en mouvement.

Ce chapitre a trois objectifs principaux :

1. Démontrer l’équation de Navier-Stokes régissant la dynamique des fluides visqueux.
2. Définir le nombre de Reynolds et l’évaluer sur des exemples concrets.
3. Appliquer une méthode-type pour déterminer le champ de vitesses dans un écoulement

visqueux, laminaire, stationnaire et incompressible.

Dans ce chapitre, on se contentera d’étudier des fluides en mouvement dans des référentiels
galiléens.

Hypothèse : Tous les écoulements de ce chapitre sont supposés être incompressibles.

I Équation de Navier-Stokes et nombre de Reynolds

I.1 Établissement de l’équation de Navier-Stokes

Considérons une particule de fluide de volume élémentaire dτ soumise aux forces de pression, aux
forces de viscosité (on suppose que le fluide est newtonien en écoulement incompressible) et à
une résultante des autres forces de densité volumique

#»

f v. On note ρ la masse volumique de la
particule de fluide et η la viscosité dynamique du fluide.

‹

L’application du PFD dans un référentiel galiléen donne :

δm #»a “ ρdτ
ˆ

B #»v

Bt
` p #»v ¨

#      »

gradq #»v

˙

“ ´
#      »

gradpP qdτ ` η∆ #»v dτ `
#»

f vdτ

D’où l’équation universelle suivante :

ρ

ˆ

B #»v

Bt
` p #»v ¨

#      »

gradq #»v

˙

“ ´
#      »

gradpP q ` η∆ #»v `
#»

f v

appelée équation de Navier-Stokes (1845).
Cette équation aux dérivées partielles est une équation locale, non linéaire (à cause du
terme en p #»v ¨

#      »

gradq #»v ).

La non-linéarité de l’équation aux dérivées partielles rend sa résolution exacte dans le cas général
impossible (ou en tout cas, non déterminée à ce jour).

Vocabulaire :

ρ
B #»v

Bt
` ρp #»v ¨

#      »

gradq #»v “ ´
#      »

gradpP q ` η∆ #»v `
#»

f v

‹ Entourer "terme convectif", "terme diffusif".

Autre écriture de l’équation de Navier-Stokes :

En utilisant la seconde écriture de la dérivée particulaire de la vitesse, on peut ré-écrire l’équation
de Navier-Stokes sous la forme :

ρ

˜

B #»v

Bt
`

#      »

grad

˜

|| #»v ||
2

2

¸

`
#  »rotp #»v q ^ #»v

¸

“ ´
#      »

gradpP q ` η∆ #»v `
#»

f v

Cas fréquent du seul champ extérieur de pesanteur :
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Dans le cas courant où les seules forces s’exerçant sur la particule de fluide sont les forces de
pression, de viscosité et de pesanteur, l’équation de Navier-Stokes s’écrit :

ρ

ˆ

B #»v

Bt
` p #»v ¨

#      »

gradq #»v

˙

“ ´
#      »

gradpP q ` η∆ #»v ` ρ #»g

I.2 Expérience historique de Reynolds

En 1883, Osborne Reynolds a mené une célèbre expérience illustrant les différents régimes d’écoulement,
représentée ci-dessous. Un mince filet de permanganate de potassium, de couleur violette, est
injecté à l’entrée d’un tube en verre dans lequel s’écoule de l’eau. Le débit volumique est réglé
via une vanne, et le colorant permet d’observer l’écoulement dans le tube.

Reynolds constata alors deux régimes d’écoulements :

• pour de faibles débits volumiques, le filet de permanganate reste rectiligne, parallèle aux
parois du tuyau horizontal, traduisant le fait que les couches de fluide glissent les unes sur
les autres sans se mélanger. On qualifie l’écoulement de laminaire ;

• pour de grands débits volumiques, le filet coloré se mélange très vite à l’eau qui l’entoure,
en suivant une trajectoire désordonnée et semblant aléatoire. Les particules de fluide tour-
billonnent de façon non régulière et chaotique, se coupent, voire fusionnent : on qualifie
l’écoulement de turbulent. Il est alors impossible de donner l’équation des lignes de courant
et de prédire la vitesse du fluide en un point donné à partir de sa connaissance à un instant
donné antérieur.

Reynolds a pu également constater que le diamètre de la conduite influençait l’écoulement et
l’apparition du régime turbulent, tout comme la nature du fluide (sa viscosité). Conclusion :
l’apparition de la turbulence dépend de manière couplée d’un certain nombre de paramètres.
Nous allons chercher à créer une grandeur comparant ces différents paramètres, afin de prédire
l’apparition du régime turbulent.

I.3 Interprétation de l’expérience de Reynolds

a Compétition entre deux modes de transport de la quantité de mouvement

Deux phénomènes physiques distincts permettent de transférer de la quantité de mouvement dans
un fluide. Pour les distinguer, considérons un fluide dans une conduite cylindrique de diamètre L.
On suppose qu’une seule particule de fluide possède une quantité de mouvement non nulle à un
instant t. Comment est-ce que cette quantité de mouvement est transférée aux autres particules
de fluide ?
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‹

• Transport de quantité de mouvement par convection : la particule
de fluide met en mouvement les particules de fluide devant elle, vu
que sa masse volumique ne peut pas changer (écoulement incompress-
ible et homogène). Ce transport de quantité de mouvement se fait
dans la direction de l’écoulement : on parle de transport longitudinal.

• Transport de quantité de mouvement par diffusion : la particule de fluide
met en mouvement les particules de fluide situées au-dessus et en-dessous
d’elle, du fait de la viscosité du fluide. Ce transport de quantité de
mouvement se fait dans la direction transverse à l’écoulement : on parle
de transport transversal. Notez que, bien que la quantité de mouvement,
grandeur vectorielle, soit orientée selon #»ex, le phénomène de diffusion se
produit selon la direction transverse #»ez.

Ces deux modes d’écoulement qui viennent d’être mis en évidence ont des effets contraires :

‹

• la diffusion, c’est-à-dire la viscosité, tend à homogénéiser le champ de vitesse dans
un écoulement et sera donc le phénomène majoritaire d’un écoulement laminaire.
Elle est caractérisée par le terme diffusif η∆ #»v dans l’équation de Navier-Stokes ;

• la convection, c’est-à-dire l’inertie, tend à rendre au contraire l’écoulement plus
agité (les particules se "poussent") et sera donc le phénomène majoritaire d’un
écoulement turbulent. Elle est caractérisée par le terme convectif ρp #»v ¨

#      »

gradq #»v
dans l’équation de Navier-Stokes.

b Nombre de Reynolds

Pour savoir si l’écoulement est laminaire ou turbulent, nous allons donc comparer le terme diffusif
et le terme convectif de l’équation de Navier-Stokes, en ordre de grandeur.

Notons L l’échelle caractéristique spatiale du problème et U l’ordre de grandeur de la vitesse dans
le fluide.

‹
En ordre de grandeur :

terme convectif
terme diffusif

“
ρ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
p #»v ¨

#      »

gradq #»v
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

η ||∆ #»v ||
„

ρU2{L

ηU{L2
“

ρUL

η

On appelle ce rapport le nombre de Reynolds. Cette définition du nombre de Reynolds est
générale, et ne s’applique pas qu’aux écoulements dans une conduite.

Nombre de Reynolds

Re “
terme convectif
terme diffusif

“
ρUL

η

‹

Ce nombre sans dimension caractérise le régime d’écoulement :
• si Re ! 1, l’écoulement est laminaire le transport de quantité de mouvement

par diffusion domine ;
• si Re " 1, l’écoulement est turbulent, le transport de quantité de mouvement

par convection domine.

En pratique, l’expérience montre que l’écoulement reste laminaire pour Re „ 1. Dans une
conduite cylindrique, la transition entre régime laminaire et turbulent s’effectue même pour
Relim „ 2000.

c Exemples de détermination du nombre de Reynolds

Le point délicat dans le nombre de Reynolds est bien souvent de savoir quelle longueur carac-
téristique L on doit prendre en compte pour calculer Re. Citons quelques exemples :

• écoulement dans une conduite cylindrique :
‹ L “ D “ 2R
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• écoulement autour d’une voiture :
‹ L “ Ltotale

Exercice : À partir de quelle vitesse U l’écoulement de l’eau dans un tube de rayon R “ 5 cm
devient-il turbulent ?

‹ Ulim “
Reη

ρL
“

Reη
ρp2Rq

» 0.02m s´1 pour l’eau en prenant Re „ 2000. Ainsi

l’écoulement d’eau dans une conduite est rarement laminaire.

Exercice : Une voiture sur l’autoroute avance à 130 km{h. L’écoulement de l’air autour de la
voiture est-il laminaire ou turbulent ? On donne ηpairq “ 1.8 ˆ 10´5 Pℓ.

‹ U “ 130 km{h “ 36m{s Donc Re “ 9.6 ˆ 106 ą 1 ˆ 103 : écoulement turbulent

II Exemples d’écoulements laminaires, stationnaires et in-
compressibles de fluides visqueux

Fiche-méthode : Déterminer le champ de vitesse #»v et le champ de pression P

1. Réaliser un schéma et préciser le système de coordonnées et le référentiel d’étude.
2. Hypothèse : Ecoulement laminaire (les lignes de courant sont bien définies). Déter-

miner la direction du champ de vitesse par symétries.
3. Hypothèse : Ecoulement stationnaire. Déterminer par invariances les variables dont

dépendent #»v et P .
4. Hypothèse : Ecoulement incompressible. Si possible, simplifier davantage les vari-

ables dont dépend la vitesse #»v en utilisant divp #»v q “ 0.
5. Ecrire l’équation de Navier-Stokes en simplifiant les termes nuls (ce sera quasi toujours le

cas de l’accélération locale et convective). Résoudre l’équation en faisant intervenir des
constantes d’intégration.

6. Déterminer les conditions aux limites. Les appliquer pour déterminer les constantes
d’intégration.

II.1 Écoulement de Couette plan

Définition (rappel) : Écoulement de Couette
Écoulement de fluide visqueux dans une conduite dont les parois se déplacent à des vitesses
constantes, mais différentes : le fluide est mis en mouvement par le mouvement des parois.

Nous étudions ici un écoulement de Couette plan, donc on considère un fluide s’écoulant entre
deux plans infinis parallèles, celui en z “ 0 étant maintenu fixe dans le référentiel du laboratoire,
et celui en z “ h se translatant horizontalement à la vitesse constante #»v 0 “ v0

#»ex.

‹

Schéma.
1. Coordonnées cartésiennes. Référentiel du laboratoire galiléen.
2. On suppose l’écoulement laminaire. Par symétrie, #»v “ vpx,y,z,tq #»ex.
3. On suppose l’écoulement stationnaire et il y a invariance par translations selon #»ex

et #»ey : #»v “ vpzq #»ex et P pzq.
Remarque : On parle d’écoulement parallèle (ou de cisaillement) car #»v est dirigé
selon #»ex mais ne dépend pas de x.

4. On suppose l’écoulement incompressible, donc divp #»v q “
Bv

Bx
“ 0 : n’apporte rien

de plus ici.
5. Equation de Navier-Stokes :

ρ

ˆ

�
��B #»v

Bt
` p #»v ¨

#      »

gradq #»v

˙

“ ´
#      »

gradpP q ` η∆ #»v ` ρ #»g
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‹

Annulation du terme convectif :

L’écoulement étant laminaire, on a en ordre de grandeur : Re “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ρp #»v ¨

#      »

gradq #»v
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

||η∆ #»v ||
! 1, et

on peut donc négliger le terme convectif devant le terme diffusif. Mais ici, vu le champ

de vitesse, on a même exactement : p #»v ¨
#      »

gradq #»v “ pvpzq
B

Bx
qvpzq #»ex “

#»
0 . Donc :

#»
0 “ ´

dP
dz

#»ez ` η
d2v

dz2
#»ex ´ ρg #»ez

En projetant sur #»ex :
d2v

dz2
“ 0 ñ vpzq “ A ` Bz

En projetant sur #»ez :
dP
dz

“ ´ρg ñ P pzq “ C ´ ρgz

(même évolution qu’en statique des fluides)
6. On détermine les constantes d’intégration à l’aide des conditions aux limites. Par

adhérence du fluide aux parois solides, en z “ 0, #»v pz “ 0q “
#»
0 , donc A “ 0 ; en

z “ h, #»v “ v0
#»ex, donc B “

v0
h

. Ainsi :

#»v “
v0
h
z #»ex

(Représenter le profil de vitesse sur le schéma.)

Remarque : On sera souvent amené à négliger la pesanteur pour les écoulements dans une direction
horizontale, car la pesanteur n’influe alors que sur la pression et pas sur le champ de vitesse. Dans le cas
où on néglige la pesanteur, on trouve alors que le champ de pression est uniforme.

Application : Force exercée par le fluide sur les plaques

On rappelle que la force de viscosité élémentaire s’exerçant entre deux particules de fluide en

contact sur la surface dS est : dF “ η
Bvx
Bz

dS si #»v “ vxpzq #»ex.

Déterminer la force (vectorielle) que le fluide exerce sur chacune des deux plaques de section
identique S.

‹

Sur la plaque du bas :

#»

F bas “ `

ĳ

pSq

η
Bvx
Bz

ˇ

ˇ

ˇ

ˇ

z“0

dS #»ex “ η
v0
h
S #»ex

Sur la plaque du haut :

#»

F haut “ ´

ĳ

pSq

η
Bvx
Bz

ˇ

ˇ

ˇ

ˇ

z“h

dS #»ex “ ´η
v0
h
S #»ex

Exercice : On considère un fluide newtonien en écoulement laminaire, stationnaire et incom-
pressible. Ce fluide a une hauteur h et se trouve sur une plaque infinie située en z “ 0. Le fluide
est mis en mouvement par la plaque, à laquelle on donne la vitesse #»v “ v0

#»ex dans le référentiel
du laboratoire. La surface en z “ h est au contact avec l’air à la pression atmosphérique P0.

Déterminer le champ de vitesse et de pression dans le fluide, par analogie avec l’écoulement de
Couette plan.
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‹

Les étapes 1, 2, 3, 4 et 5 sont identiques. Seules les conditions aux limites sont
modifiées :

• en z “ 0, par adhérence à la paroi : #»v “ v0
#»ex. Donc : A “ v0.

• en z “ h, la surface est libre, donc P pz “ hq “ P0 et η
Bv

Bz
pz “ hq “ 0 “ B

Donc : #»v “ v0
#»ex (écoulement uniforme) et P pzq “ P0 ´ ρgpz ´ hq.

II.2 Ecoulement de Poiseuille cylindrique
Définition (rappel) : Ecoulement de Poiseuille
Ecoulement de fluide visqueux dans une conduite dont les parois sont immobiles : le fluide est
mis en mouvement par le gradient de pression entre l’entrée et la sortie de la conduite.

Nous étudions ici un écoulement de Poiseuille cylindrique, donc on considère un fluide s’écoulant
dans une conduite cylindrique d’axe pOxq, de longueur L et de rayon R. La conduite est fixe
dans le référentiel du laboratoire. Pour simplifier, comme la conduite est horizontale, on néglige
la pesanteur.

‹

Schéma (indiquer : Pe, Ps et ∆P “ Pe ´ Ps ą 0)
1. Coordonnées cylindriques d’axe pOxq. Référentiel du labo galiléen.
2. On suppose l’écoulement laminaire. Par symétrie, #»v “ vpr,θ,x,tq #»ex.
3. Ecoulement stationnaire + invariance par rotation d’angle θ : #»v “ vpr,xq #»ex et

P pr,xq.

4. Ecoulement incompressible : divp #»v q “ 0 “
Bv

Bx
. Donc, #»v “ vprq #»ex.

5. Equation de Navier-Stokes :

ρ

ˆ

�
��B #»v

Bt
` p #»v ¨

#      »

gradq #»v

˙

“ ´
#      »

gradpP q ` η∆ #»v

Terme convectif : p #»v ¨
#      »

gradq #»v “ pvprq
B

Bx
qvprq #»ex “

#»
0

Le formulaire d’analyse vectorielle donne l’expression du laplacien en cylindrique
(début du raisonnement à savoir avec ∆vx

#»ex, car même principe qu’en cartésien
(vecteur #»ex fixe)) :

∆ #»v “ ∆vx
#»ex avec ∆vx “

1

r

B

Br

ˆ

r
Bvx
Br

˙

`
1

r2
B2vx
Bθ2

`
B2vx
Bx2

En projection :

BP

Br
“ 0

1

r

BP

Bθ
“ 0

´
BP

Bx
`

η

r

B

Br

ˆ

r
Bv

Br

˙

“ 0

D’où :
dP
dx

“
η

r

d
dr

ˆ

r
dv
dr

˙

@r,@x

Digression : On se propose de retrouver l’expression de l’équivalent volumique des forces de

viscosité
#»

f v,viscosite “ η∆ #»v “
η

r

B

Br

ˆ

r
Bv

Br

˙

#»ex sans utiliser de formulaire.
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‹

On considère une particule de fluide (donc infinitésimale) en coordonnées cylindriques,
de volume dτ “ drrdθdx.
Schéma de la PF avec indication des surfaces où s’appliquent les forces de viscosité
Du fait que #»v ne dépend que de r, seules les particules de fluide repérées en pr`dr, θ,xq

et pr,θ,xq influent sur la force de viscosité :

#  »

δF “
#     »

δF` `
#     »

δF´ “ `η pr ` drqdθdx
looooooomooooooon

“dSpr`drq

Bv

Br

ˇ

ˇ

ˇ

r`dr
#»ex ´ η rdθdx

loomoon

“dSprq

Bv

Br

ˇ

ˇ

ˇ

r

#»ex

D’où :
#  »

δF “ ηdθdx
B

Br

ˆ

r
Bv

Br

˙

dr #»ex “
#»

f v, viscositedτ

On identifie :
#»

f v, viscosite “
η

r

B

Br

ˆ

r
Bv

Br

˙

#»ex.

Nous devons désormais résoudre l’équation

dP
dx

“
η

r

d
dr

ˆ

r
dv
dr

˙

@r,@x

On reconnaît une équation de la forme fpxq “ gprq, valable pour tout x et tout r. Cela signifie
que les deux membres sont indépendants de r et de x et constituent une constante K.

‹

On a alors :
dP
dx

“ K ùñ P pxq “ Kx ` cste

Avec les conditions aux limites sur la pression :

P pxq “
Ps ´ Pe

L
x ` Pe “ Pe ´

∆P

L
loomoon

“K

x

Donc :

η

r

d
dr

ˆ

r
dv
dr

˙

“ K “ ´
∆P

L
ùñ r

dv
dr

“ ´
∆Pr2

2ηL
` A ùñ vprq “ ´

∆P

4ηL
r2 ` A lnprq ` B

6. Conditions aux limites :
• vprq ne diverge pas en r “ 0 : A “ 0

• Adhérence à la paroi solide : vpRq “ 0 : vprq “
∆P

4ηL

`

R2 ´ r2
˘

Application : expression du débit volumique

À partir de l’expression du champ de vitesse, on peut en déduire l’expression du débit volumique
:

‹ Dv “

ĳ

pSq

#»v ¨ d
#»

S “

ż R

0

ż 2π

0

vprqrdrdθ “
∆P

4ηL
2π

ż R

0

pR2r ´ r3qdr “
πR4

8ηL
∆P “ Dv

Cette formule constitue la loi de Hagen-Poiseuille, donnant le débit volumique d’un fluide visqueux
en régime laminaire.

‹

En prise de notes : Interprétation :
• Si ∆P

L augmente, Dv augmente : c’est le gradient de pression qui compte
• Si R augmente, Dv augemente fortement : ok
• Si η augmente, Dv diminue : la dissipation d’énergie et donc la chute de pression

est due aux effets visqueux

Application : Profil de la pression
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On a déjà calculé le profil de pressions : P pxq “

P p0q ´
∆P

L
x. On peut le visualiser simple-

ment en connectant à la conduite cylindrique des
tuyaux verticaux dans lesquels aucun écoulement
n’a lieu et qui servent à visualiser la pression dans
la conduite.

x

Pair
h(x)

x

Exercice : Justifier l’observation expérimentale, en reliant hpxq à la pression dans la conduite
cylindrique.

‹

Au sein de chaque tube vertical, le fluide est à l’équilibre mécanique et doit vérifier
l’équation fondamentale de la statique des fluides. On a ainsi Ptpzq “ Ptphq´ρgpz´hq.
Or, au niveau de la surface libre, la pression est égale à la pression atmosphérique
Pair, donc Ptphq “ Pair. Donc : Ptpzq “ Pair ´ ρgpz ´ hpxqq. Or en z “ 0, la
continuité de la pression implique Ptp0q “ P pxq, avec P pxq la pression au sein d’une

section droite de la conduite. D’où ρgh “ P pxq ´ Pair “ P px “ 0q ´
∆P

L
x ´ Pair,

c’est-à-dire que hpxq se met sous la forme hpxq “
P px“0q´Pair

ρg ´
∆P

ρgL
x, conforme à

l’observation expérimentale.

Ainsi, la pression décroit de manière affine avec la position : on parle de perte de charge régulière.

III Modèle simplifié d’écoulement parfait

Le modèle du fluide visqueux newtonien est un modèle assez complet pour décrire les écoulements
de fluides réels, mais il est long de déterminer le champ de vitesse. Nous allons étudier dans cette
partie un second modèle largement simplifié, mais qui s’appliquera de manière satisfaisante dans
de nombreux écoulements.

III.1 Présentation du modèle

Modèle de l’écoulement parfait

Un écoulement parfait est un écoulement pour lequel on néglige tous les phénomènes de
diffusion (diffusion de la quantité de mouvement par la viscosité ; diffusion thermique par
conduction) devant les phénomènes de convection.

‹
Donc, un écoulement parfait :

• est non visqueux : η “ 0
• évolue de façon adiabatique et réversible, c’est-à-dire isentropique.

Du point de vue de la mécanique des fluides, le fait d’étudier un écoulement sans viscosité implique
plusieurs conséquences :

• Les actions de contact se réduisent aux seules forces de pression.
• Les conditions aux limites sont changées, car il n’y a plus adhérence du fluide aux parois

(cf. chapitre MF2).

L’application du PFD à une particule de fluide dans le référentiel du laboratoire galiléen conduit
alors à l’équation :

ρ

ˆ

B #»v

Bt
` p #»v ¨

#      »

gradq #»v

˙

“ ´
#      »

gradpP q `
#»

f v

où
#»

f v est la résultante des forces volumiques extérieures hors forces de pression s’appliquant à la
particule de fluide. Cette équation porte le nom d’équation d’Euler (1757).

Les forces extérieures se réduisent bien souvent uniquement à la force de pesanteur. Ainsi,
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l’équation d’Euler se ré-écrit sous la forme :

ρ

ˆ

B #»v

Bt
` p #»v ¨

#      »

gradq #»v

˙

“ ´
#      »

gradpP q ` ρ #»g

III.2 Champ de vitesse dans une conduite horizontale pour un écoule-
ment parfait, stationnaire et incompressible

Considérons une conduite cylindrique horizontale dans lequel s’écoule un fluide en écoulement
parfait et stationnaire. Vu qu’il n’y a aucune force de viscosité (contrainte tangentielle), les
particules de fluide glissent sur les parois solides.

On montre alors, avec le sens physique, que la vitesse est uniforme sur une section droite de
l’écoulement.

‹

Schéma (indiquer #»v “ v #»ex). On appelle cela un "écoulement bouchon" ou "écoulement
piston" (lien avec les réacteurs pistons en chimie).
Si l’écoulement est de plus incompressible, alors le débit volumique se conserve le long
de la conduite :

Dv “

ĳ

pSq

#»v ¨
#  »

dS “ vS “ cste ñ v “ cste

III.3 Champ de pression dans un écoulement parfait avec un champ de
vitesse uniforme

Considérons un écoulement où la vitesse #»v pM,tq “ #»v 0 est uniforme dans le référentiel terrestre.
Plaçons-nous dans le référentiel en translation par rapport à celui de la Terre, à la vitesse constante
#»v 0 : le fluide est immobile dans ce référentiel, galiléen. On peut alors appliquer la relation
fondamentale de la statique des fluides dans ce référentiel. Cela conduit à un champ de pression
P pzq “ P0 ´ ρgz (pOzq vers le haut), si la seule force volumique est celle de pesanteur.

Remarque : Cela arrivera qu’on fasse l’approximation que P “ cste : cela signifie qu’on néglige la
pesanteur sur la hauteur de fluide considérée (rayon conduite faible).

IV Quel modèle choisir pour décrire un écoulement réel ?

Dans ce chapitre, nous avons étudié le champ de vitesse et de pression dans un fluide en mou-
vement avec deux modèles différents : le modèle du fluide newtonien visqueux et le modèle du
fluide parfait. Comment choisir en pratique le modèle le plus pertinent pour décrire l’écoulement
d’un fluide réel ?

IV.1 Profil de vitesse issu d’une expérience

Considérons à nouveau le cas d’un écoulement dans une conduite cylindrique horizontale. Il paraît
compliqué de caractériser le profil de vitesse pour n’importe quel écoulement, car celui-ci dépend
a priori de :

• la vitesse moyenne U (ou du débit volumique Dv)
• des caractéristiques du fluide : ρ, η
• du diamètre de la conduite D

Pourtant, quand on fait l’expérience, on se rend compte que le profil de vitesse a une allure
similaire si le nombre de Reynolds Re est identique.

10 cbna Lycée Rabelais - PC - 2025-2026 - C. Logé



Dans le cas d’un écoulement turbulent, on
ne peut définir le profil des vitesses dans
une section, du fait de la composante aléa-
toire à la fois dans le temps et l’espace de
la vitesse locale. On peut cependant ef-
fectuer une moyenne temporelle, ce qui per-
met d’obtenir un profil régulier à symétrie
de révolution, tel qu’illustré ci-contre. On
n’a cependant que des lois empiriques pour
exprimer xvpM,tqy. Ce qui est à retenir
est que globalement la vitesse est quasi-
constante dans un écoulement turbulent :
l’essentiel des variations se concentre sur les
parois.
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.

‹

Schémas du profil de vitesse dans la conduite pour Re ă 2000 et Re ą 2000. Indiquer
: "écoulement visqueux laminaire" / "proche d’un écoulement parfait, sauf près des
bords".
Dans le cas où Re ą 2000, le transport de la quantité de mouvement par convection
domine sur la diffusion (liée à la viscosité). Pourtant, la viscosité impose d’avoir une
vitesse nulle du fluide au niveau des parois de la conduite : la viscosité entraîne une
variation de vitesse uniquement à proximité des parois.

Définition : couche limite

‹ Zone de l’espace située proche d’un obstacle où la vitesse du fluide a des variations
spatiales rapides

Cette zone de l’espace est celle où il faut prendre en compte les effets visqueux. Au-delà de
cette couche limite, le fluide s’écoule de manière quasi-parfaite, c’est-à-dire que les effets de
viscosité sont négligeables.

Validité du modèle de l’écoulement parfait

‹ Le modèle de l’écoulement parfait décrit bien un écoulement à grande valeur de
Re, hors de la couche limite.

Dans le cas où on n’a pas Re " 1 ou que l’on souhaite décrire l’écoulement dans la couche
limite, alors le modèle pertinent est celui du fluide visqueux.

IV.2 Taille caractéristique δ de la couche limite
.

‹

Dans la couche limite, le transport de quan-
tité de mouvement se fait par diffusion
depuis la paroi solide. Donc, en odg, pen-
dant la durée L{U , la couche limite croît
d’une taille :

δ „

c

ν
L

U

Sachant que Re “
ρUL
η “ UL

ν , on en déduit
:

δ „

c

νL2

UL
“

L
?
Re

Ainsi on distingue deux cas :

• soit Re ! 1, dans ce cas l’épaisseur de la couche limite devient importante : la couche limite
peut alors s’étendre à l’intégralité du fluide ;

• soit Re " 1, dans ce cas la couche limite correspond à une petite région de l’écoulement
où les effets de la viscosité sont importants. En dehors de la couche limite, les effets de la
viscosité sont négligeables.

Exemple : Calculer l’épaisseur caractéristique de la couche limite associée à l’écoulement de
l’air autour d’une voiture roulant à 130 kmh´1. On donne, pour l’air : η “ 1.8 ˆ 10´5 Pℓ.

‹ Prenons : U “ 130 km{h, L “ 4m. On trouve : Re “ 1 ˆ 107 et donc : δ „ 1mm

‹ Les dissipations d’énergie ont lieu à l’intérieur de cette couche limite.
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h “ 15 cm concentriques d’axe pOzq de rayons R1 “ 4.8 cm et R2 “ 5.0 cm. Un moteur permet de faire tourner
le cylindre intérieur à une vitesse angulaire ω “ 3 tours par seconde. On mesure alors le couple nécessaire pour
maintenir le cylindre extérieur fixe : C “ 9.4 ˆ 10´2 Nm.

On rappelle l’expression de la force de viscosité élémentaire s’exerçant entre deux particules de fluide en contact sur

la surface dS : dF “ η
Bv

Br
dS si #»v “ vprq #»eθ.

1. On donne la forme de la norme du champ de vitesse dans cet écoulement (coordonnées cylindriques d’axe
pOzq) :

|| #»v || “ Ar `
B

r

avec A et B des constantes. Déterminer les constantes A et B et en déduire l’expression de la vitesse dans
tout le fluide.

2. En déduire le moment scalaire sur l’axe de rotation, exercé par le fluide sur le cylindre extérieur, en fonction
de la viscosité dynamique η, de la vitesse de rotation ω et des dimensions du dispositif.

3. Calculer la viscosité η du fluide.

Correction de l’exercice 3

1. CL en r “ R1 : AR1 ` B
R1

“ R1ω

CL en r “ R2 : AR2 ` B
R2

“ 0
On trouve, après calcul :

A “ ´
R2

1ω

R2
2 ´ R2

1

ă 0 et B “
R2

1R
2
2ω

R2
2 ´ R2

1

ą 0

2. Etablissons la force élémentaire exercée par le fluide sur une surface dS “ R2dθdz du cylindre extérieur.

Supposons un instant que
dv
dr

ą 0 : le cylindre tournerait plus vite que la fluide. Donc, le fluide freine le
cylindre :

#    »

δFv “ ´η
dv
dr

R2dθdz #»eθ

Donc, le moment élémentaire de la force de viscosité le long de l’axe p0, #»ezq exercée sur le cylindre extérieur
est :

δM∆ “ pR2
#»er ^

#    »

δFvq ¨ #»ez “ ´ηR2
2

dv
dr

ˇ

ˇ

ˇ

r“R2

dθdz

On intègre alors les moments élémentaires sur toute la surface du cylindre extérieur : M∆ “ ´2πηhR2
2

dv
dr

ˇ

ˇ

ˇ

r“R2

“

`4πηh
R2

1R
2
2ω

R2
2´R2

1

3. TMC au cylindre extérieur autour de l’axe fixe pO, #»ezq dans le référentiel du labo galiléen : 0 “ ´C ` M∆

Donc :

η “
CpR2

2 ´ R2
1q

4πhR2
1R

2
2ω

A.N. : η “ 9.0 ˆ 10´2 Pℓ

Validation :

• La viscosité trouvée est supérieure à celle de l’eau, ce qui est cohérent avec le fait qu’on étudie de l’huile
d’olive.

• Plus C est grand, plus η est grand : logique, les forces de viscosité sont plus importantes.

Ex. 4 Oscillation d’une plaque dans un fluide visqueux

On se place en coordonnées cartésiennes. Une plaque horizontale, située dans le plan z “ 0, est animée d’un
mouvement sinusoïdal de vitesse #»v “ v0 cospωtq #»ex. Elle est surmontée d’un fluide visqueux (viscosité dynamique
η) supposé incompressible (masse volumique ρ). Le fluide est situé entre z “ 0 et z “ `8. On considère le
référentiel du laboratoire galiléen.

En négligeant les effets de bord et en supposant l’écoulement laminaire, le champ des vitesses dans le fluide peut
s’écrire #»v pM,tq “ vxpz,tq #»ex et le champ de pression P pM,tq “ P pz,tq.

1. On commence par déterminer et analyser l’équation vérifiée par le champ de vitesse.
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(a) Montrer que l’accélération d’une particule de fluide s’écrit ici #»a “
B #»v

Bt
.

(b) Montrer alors que vxpz,tq doit vérifier l’équation
Bvx
Bt

“ ν
B2vx
Bz2

où ν “ η{ρ est appelée la viscosité
cinématique.

(c) Quel est le mode de transfert de quantité de mouvement étudié ici ? Déterminer alors la distance
caractéristique de transport de la quantité de mouvement pendant une période d’oscillation de la plaque.

2. On cherche en régime sinusoïdal forcé une solution complexe de la forme vxpz,tq “ fpzq ejωt. On posera

δ “

b

2η
ωρ .

(a) Montrer que la fonction fpzq s’écrit :

fpzq “ A e
1`j
δ z ` B e´

1`j
δ z

avec A et B des constantes d’intégration.
(b) Montrer qu’il est nécessaire que l’une des constantes d’intégration soit nulle.
(c) Déterminer complètement la fonction fpzq et donner l’expression du champ des vitesses en notation

réelle. Commenter.
3. A.N. : Calculer δ pour une fréquence de 500 Hz pour l’eau (viscosité à connaître) et pour la glycérine

(η “ 2.33Pl et ρ “ 1.26 ˆ 103 kgm´3).
4. On rappelle l’expression de la force de viscosité élémentaire s’exerçant entre deux particules de fluide en

contact sur la surface dS : dF “ η
Bvx
Bz

dS si #»v “ vxpzq #»ex. En déduire la puissance moyenne par unité de
surface que doit fournir un opérateur pour entretenir le mouvement de la plaque.

Correction de l’exercice 4

1. (a) Avec le champ de vitesse proposé :

#»a “
d #»v

dt
“

B #»v

Bt
` p #»v ¨

#      »

gradq #»v “
B #»v

Bt
` pvxpz,tq

B

Bx
qvxpz,tq #»ex “

B #»v

Bt

car vx ne dépend pas de x.
(b) • Référentiel du laboratoire galiléen

L’équation de Navier-Stokes s’écrit :

ρ
B #»v

Bt
“ ´

#      »

gradpP q ` η∆ #»v ` ρ #»g ñ ρ
B #»v

Bt
“ ´

BP

Bz
#»ez ` η

B2vx
Bz2

#»ex ´ ρg #»ez

En projetant sur #»ex, on aboutit à

ρ
Bvx
Bt

“ η
B2vx
Bz2

ñ
Bvx
Bt

“
η

ρ

B2vx
Bz2

(c) On reconnaît une équation de diffusion : le mode de transfert de quantité de mouvement étudié ici est un
transfert par diffusion. (On pouvait s’en douter dès la question a, car on a montré que le terme convectif
de l’accélération était nul !)
De même que dans le chapitre T2 sur la diffusion, on peut conduire une résolution en odg de cette
équation. La longueur caractéristique sur laquelle s’effectue la diffusion de quantité de mouvement
pendant une période T “ 2π

ω vaut : Lc “
?
νT “

b

η2π
ρω “

?
πδ.

2. (a) Injectons cette forme de solution dans l’équation précédente :

fpzqjω ejωt “ ν
d2f

dz2
ejωt ðñ

d2f

dz2
“ j

ω

ν
fpzq “ j

2

δ2
fpzq (Ex.1)

On résout en résolvant le polynôme caractéristique associé r2 “
2j

δ2
“ 2

δ2 ej
π
2 c’est-à-dire r “ ˘

?
2
δ

`

ej
π
2

˘1{2
“

˘
?
2
δ ej

π
4 “ ˘

1 ` j

δ
Donc :

fpzq “ A e
1 ` j

δ
z

` B e
´
1 ` j

δ
z

(Ex.2)

(b) Comme
ˇ

ˇvx
ˇ

ˇ ne peut diverger pour z Ñ `8, A “ 0 nécessairement.
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(c) On peut alors réécrire le champ des vitesses :

vxpz,tq “ B e
´
z

δ e
j

ˆ

ωt´
z

δ

˙

ùñ
loomoon

R

vxpz,tq “ v0 e
´
z

δ cos
´

ωt ´
z

δ

¯

(Ex.3)

en se servant de la CL d’adhérence du fluide à la plaque en z “ 0. On a donc une onde pseudo-progressive
se propageant dans le sens des z croissants, mais dont l’amplitude décroît avec une distance caractéristique
δ. On assimile cette situation à un effet de peau !

3. AN : δeau “ 2.6 ˆ 10´5 m et δgly “ 1.1mm. La propagation est d’autant plus atténuée que la viscosité est
faible. C’est logique : si la viscosité est faible, le transfert de quantité de mouvement par diffusion est peu
efficace.

4. La plaque subit la force de frottements visqueux du fait du fluide
#»

F “ η
Bv

Bz

ˇ

ˇ

ˇ

z“0
S #»ex. Donc la puissance que le

fluide exerce sur la plaque est :

P “
#»

F ¨ #»v pz “ 0q “ ηv0

ˆ

´
1

δ
cospωtq `

1

δ
sinpωtq

˙

Sv0 cospωtq (Ex.4)

soit pris en moyenne, avec x cospωtq sinpωtqy “ 0 et
@

cos2pωtq
D

“ 1{2 :

xPy “ ´ηv20
1

2δ
S (Ex.5)

On peut alors en déduire la puissance moyenne à fournir par l’opérateur xPopy. En appliquant le TPC à la
plaque, dans le référentiel du laboratoire galiléen :

dEc

dt
“ P ` Pop ñ

B

dEc

dt

F

“ 0 “ xPy ` xPopy

Remarque : On peut simplement affirmer que la puissance de l’opérateur doit compenser exactement la puissance
dissipée par frottements.
Donc :

xPopy

S
“ `

ηv20
2δ
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