Mécanique des fluides

MF3 Dynamique des fluides
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Questions de cours

* Etablir I’équation de Navier-Stokes dans un fluide newtonien en écoulement incompress-
ible. Expliciter les deux modes de transport de quantité de mouvement dans un fluide et
construire le nombre de Reynolds. Régime laminaire/turbulent.

* Sur un exemple au choix du colleur (Couette plan, Couette cylindrique, Poiseuille plan,
Poiseuille cylindrique), déterminer le champ de vitesse.

» Décrire le modeéle de ’écoulement parfait et discuter de sa validité pour modéliser un écoule-
ment réel, en s’appuyant sur la notion de couche limite.
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Prise de notes : On a déterminé les forces s’exercant sur une particule de fluide (chapitre

* MF2), on a déterminé l’accélération d’une particle de fluide (chapitre MF1). On est
donc préts a exprimer le PFD dans un référentiel galiléen et & en déduire le champ de
vitesse et de pression dans un fluide en mouvement.

Ce chapitre a trois objectifs principaux :

1. Démontrer ’équation de Navier-Stokes régissant la dynamique des fluides visqueux.

2. Définir le nombre de Reynolds et I’évaluer sur des exemples concrets.

3. Appliquer une méthode-type pour déterminer le champ de vitesses dans un écoulement
visqueux, laminaire, stationnaire et incompressible.

Dans ce chapitre, on se contentera d’étudier des fluides en mouvement dans des référentiels
galiléens.

Hypothése : Tous les écoulements de ce chapitre sont supposés étre incompressibles.

I Equation de Navier-Stokes et nombre de Reynolds

Considérons une particule de fluide de volume élémentaire dr soumise aux forces de pression, aux
forces de viscosité (on suppose que le fluide est newto_n)ien en écoulement incompressible) et a
une résultante des autres forces de densité volumique f,. On note p la masse volumique de la
particule de fluide et 7 la viscosité dynamique du fluide.

L’application du PFD dans un référentiel galiléen donne :

smd = pdr (%Zf + (7 gradﬁ) = — grad(P)dr + nATdr + [ odr

D’ou I’équation universelle suivante :
p E+(v~grad)v = —grad(P) + nAv7 + f,

appelée équation de Navier-Stokes (1845).
Cette équation aux dérivées partielles est une équation locale, non linéaire (& cause du
terme en (U - grad)?).
La non-linéarité de I’équation aux dérivées partielles rend sa résolution exacte dans le cas général
impossible (ou en tout cas, non déterminée a ce jour).

Vocabulaire :
a? 5> — N —
Par + p(7 - grad)v = —grad(P) + nAY + [,
* Entourer "terme convectif", "terme diffusif".

Autre écriture de 1’équation de Navier-Stokes :

En utilisant la seconde écriture de la dérivée particulaire de la vitesse, on peut ré-écrire ’équation
de Navier-Stokes sous la forme :

— —> 2
p ((98: + grad (HT;H> +10t(T) A T)’) = —grad(P) + nA7 + fo

Cas fréquent du seul champ extérieur de pesanteur :
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Dans le cas courant ou les seules forces s’exercant sur la particule de fluide sont les forces de
pression, de viscosité et de pesanteur, I’équation de Navier-Stokes s’écrit :

a—> - T —_— — —
p(a:: + (v 'grad)v> = —grad(P) + nA7 + pyg

En 1883, Osborne Reynolds a mené une célébre expérience illustrant les différents régimes d’écoulement,
représentée ci-dessous. Un mince filet de permanganate de potassium, de couleur violette, est
injecté & entrée d’un tube en verre dans lequel s’écoule de I'eau. Le débit volumique est réglé

via une vanne, et le colorant permet d’observer I’écoulement dans le tube.

| permanganate de potassium

N
S
laminaire

|

turbulent
vanne %
p—memmeeee

turbulent (pose tres courte)

Reynolds constata alors deux régimes d’écoulements :

* pour de faibles débits volumiques, le filet de permanganate reste rectiligne, paralléle aux
parois du tuyau horizontal, traduisant le fait que les couches de fluide glissent les unes sur
les autres sans se mélanger. On qualifie I’écoulement de laminaire ;

» pour de grands débits volumiques, le filet coloré se mélange trés vite a I’eau qui 1’entoure,
en suivant une trajectoire désordonnée et semblant aléatoire. Les particules de fluide tour-
billonnent de fagon non réguliére et chaotique, se coupent, voire fusionnent : on qualifie
I’écoulement de turbulent. 1l est alors impossible de donner I’équation des lignes de courant
et de prédire la vitesse du fluide en un point donné & partir de sa connaissance a un instant
donné antérieur.

Reynolds a pu également constater que le diamétre de la conduite influengait 1’écoulement et
Papparition du régime turbulent, tout comme la nature du fluide (sa viscosité). Conclusion :
I'apparition de la turbulence dépend de maniére couplée d'un certain nombre de paramétres.
Nous allons chercher a créer une grandeur comparant ces différents paramétres, afin de prédire
I’apparition du régime turbulent.

Deux phénoménes physiques distincts permettent de transférer de la quantité de mouvement dans
un fluide. Pour les distinguer, considérons un fluide dans une conduite cylindrique de diamétre L.
On suppose qu’une seule particule de fluide posséde une quantité de mouvement non nulle & un
instant t. Comment est-ce que cette quantité de mouvement est transférée aux autres particules
de fluide ?
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* Transport de quantité de mouvement par convection : la particule
de fluide met en mouvement les particules de fluide devant elle, vu
que sa masse volumique ne peut pas changer (écoulement incompress-
ible et homogeéne). Ce transport de quantité de mouvement se fait
dans la direction de ’écoulement : on parle de transport longitudinal.

* Transport de quantité de mouvement par diffusion : la particule de fluide
L la_, met en mouvement les particules de fluide situées au-dessus et en-dessous
— d’elle, du fait de la viscosité du fluide. Ce transport de quantité de
mouvement se fait dans la direction transverse & ’écoulement : on parle
de transport transversal. Notez que, bien que la quantité de mouvement,
grandeur vectorielle, soit orientée selon e,, le phénomeéne de diffusion se

produit selon la direction transverse e,.

Ces deux modes d’écoulement qui viennent d’étre mis en évidence ont des effets contraires :

* la diffusion, c’est-a-dire la viscosité, tend & homogénéiser le champ de vitesse dans
un écoulement et sera donc le phénoméne majoritaire d’un écoulement laminaire.
Elle est caractérisée par le terme diffusif nA7 dans I’équation de Navier-Stokes ;
* * la convection, c’est-a-dire 'inertie, tend a rendre au contraire ’écoulement plus
agité (les particules se "poussent") et sera donc le phénomeéne majoritaire d’un
écoulement turbulent. Elle est caractérisée par le terme convectif p(U - @)Tf
dans ’équation de Navier-Stokes.

Pour savoir si ’écoulement est laminaire ou turbulent, nous allons donc comparer le terme diffusif
et le terme convectif de I’équation de Navier-Stokes, en ordre de grandeur.

Notons L I’échelle caractéristique spatiale du probléme et U ’ordre de grandeur de la vitesse dans
le fluide.

En ordre de grandeur :

* terme convectif pH(T)’-grad)UH pU?/L  pUL

terme diffusif n||AT| T ULz T Ty

On appelle ce rapport le nombre de Reynolds. Cette définition du nombre de Reynolds est
générale, et ne s’applique pas qu’aux écoulements dans une conduite.

— Nombre de Reynolds

terme convectif  pUL
Re = =

terme diffusif 7

Ce nombre sans dimension caractérise le régime d’écoulement :
* si Re « 1, I’écoulement est laminaire le transport de quantité de mouvement
* par diffusion domine ;
* si Re » 1, I’écoulement est turbulent, le transport de quantité de mouvement
par convection domine.

En pratique, l’expérience montre que 1’écoulement reste laminaire pour Re ~ 1. Dans une
conduite cylindrique, la transition entre régime laminaire et turbulent s’effectue méme pour
Reyim ~ 2000.

Le point délicat dans le nombre de Reynolds est bien souvent de savoir quelle longueur carac-
téristique L on doit prendre en compte pour calculer Re. Citons quelques exemples :

» écoulement dans une conduite cylindrique :
*x L=D=2R
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* écoulement autour d’une voiture :

* L= Ltotale

Exercice : A partir de quelle vitesse U I’écoulement de ’eau dans un tube de rayon R = 5cm
devient-il turbulent ?

R
* Ui = % = pl(%;g) ~ 0.02ms™! pour l'eau en prenant Re ~ 2000. Ainsi

I’écoulement d’eau dans une conduite est rarement laminaire.

Exercice : Une voiture sur I'autoroute avance a 130 km/h. L’écoulement de Pair autour de la
voiture est-il laminaire ou turbulent ? On donne 7(air) = 1.8 x 1075 P/.

* U =130km/h = 36 m/s Donc Re = 9.6 x 10° > 1 x 10? : écoulement turbulent

II Exemples d’écoulements laminaires, stationnaires et in-
compressibles de fluides visqueux

Fiche-méthode : Déterminer le champ de vitesse ¥ et le champ de pression P

1. Reéaliser un schéma et préciser le systéme de coordonnées et le référentiel d’étude.

2. Hypothése : Ecoulement laminaire (les lignes de courant sont bien définies). Déter-
miner la direction du champ de vitesse par symétries.

3. Hypothése : Ecoulement stationnaire. Déterminer par invariances les variables dont
dépendent U et P.

4. Hypothése : Ecoulement incompressible. Si possible, simplifier davantage les vari-
ables dont dépend la vitesse ¥ en utilisant div(7) = 0.

5. Ecrire 'équation de Navier-Stokes en simplifiant les termes nuls (ce sera quasi toujours le
cas de l'accélération locale et convective). Résoudre I’équation en faisant intervenir des
constantes d’intégration.

6. Déterminer les conditions aux limites. Les appliquer pour déterminer les constantes
d’intégration.

Définition (rappel) : Ecoulement de Couette
Ecoulement de fluide visqueux dans une conduite dont les parois se déplacent & des vitesses
constantes, mais différentes : le fluide est mis en mouvement par le mouvement des parois.

Nous étudions ici un écoulement de Couette plan, donc on considére un fluide s’écoulant entre
deux plans infinis paralléles, celui en z = 0 étant maintenu fixe dans le référentiel du laboratoire,
et celui en z = h se translatant horizontalement & la vitesse constante T = vgpe,.

Schéma.
1. Coordonnées cartésiennes. Référentiel du laboratoire galiléen.
2. On suppose I’écoulement laminaire. Par symétrie, ¥ = v(z,y,2,t)e,.
3. On suppose 'écoulement stationnaire et il y a invariance par translations selon e,
et €, : U =uv(z)e, et P(z).

Remarque : On parle d’écoulement paralléle (ou de cisaillement) car U est dirigé
% selon €, mais ne dépend pas de z.
ov
4. On suppose I’écoulement incompressible, donc div(7) = P 0 : n’apporte rien
T
de plus ici.

5. Equation de Navier-Stokes :

a —> T\ 1 —> —>
p(%—i— (v -grad)v> = —grad(P) + nA7 + pyg
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Annulation du terme convectif :

o (7 - grad)

|InAT]|
on peut donc négliger le terme convectif devant le terme diffusif. Mais ici, vu le champ

L’écoulement étant laminaire, on a en ordre de grandeur : Re = &1, et

- T 0 — =
de vitesse, on a méme exactement : (U - grad)v = (v(z)a—)v(z)ex = 0. Donc :
x

— dp_, d*v_, N
0= _Eez + n@ez — pge:

En projetant sur e, :

d2
* d—ZZ:O:MJ(z):A—FBz
En projetant sur e, :
dP
L = P9=P)=C—pgz

(méme évolution qu’en statique des fluides)
6. On détermine les constantes d’intégration a l’aide des conditiogs aux limites. Par
adhérence du fluide aux parois solides, en z = 0, ¥(z = 0) = 0, donc A =0 ; en
— — v PR
z=h, U = vge,, donc B = 2 Ainsi :

h

— V0 —
U = —zé,

h

(Représenter le profil de vitesse sur le schéma.)

Remarque : On sera souvent amené a négliger la pesanteur pour les écoulements dans une direction
horizontale, car la pesanteur n’influe alors que sur la pression et pas sur le champ de vitesse. Dans le cas
ou on néglige la pesanteur, on trouve alors que le champ de pression est uniforme.

Application : Force exercée par le fluide sur les plaques

On rappelle que la force de viscosité élémentaire s’exercant entre deux particules de fluide en

a x — —>
contact sur la surface dS est : dF = naLdS si U =v,(2)e,.
z

Déterminer la force (vectorielle) que le fluide exerce sur chacune des deux plaques de section
identique S.

Sur la plaque du bas :

— V0 o—
dSe, = n—>Se,
e e n h e

- 0V,
F as —
e = H "
()
Sur la plaque du haut :

Fhaut = - ff’l
()

Exercice : On considére un fluide newtonien en écoulement laminaire, stationnaire et incom-
pressible. Ce fluide a une hauteur h et se trouve sur une plaque infinie située en z = 0. Le fluide
est mis en mouvement par la plaque, & laquelle on donne la vitesse T = vge,, dans le référentiel
du laboratoire. La surface en z = h est au contact avec lair a la pression atmosphérique Fp.

0vy
0z

— V0 51—
dSe, = —n—=Se,
. (& ’I7h e

z=

Déterminer le champ de vitesse et de pression dans le fluide, par analogie avec I’écoulement de
Couette plan.
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Les étapes 1, 2, 3, 4 et 5 sont identiques. Seules les conditions aux limites sont
modifiées :
>* e en z = 0, par adhérence & la paroi : ¥ = vge,. Donc : A = vy.

0
* en z = h, la surface est libre, donc P(z = h) = Py et n—v(z =h)=0=08
Donc : ¥ = vge, (écoulement uniforme) et P(z) = Py — pg(#% h).

Définition (rappel) : Ecoulement de Poiseuille
Ecoulement de fluide visqueux dans une conduite dont les parois sont immobiles : le fluide est
mis en mouvement par le gradient de pression entre I'entrée et la sortie de la conduite.

Nous étudions ici un écoulement de Poiseuille cylindrique, donc on considére un fluide s’écoulant
dans une conduite cylindrique d’axe (Ox), de longueur L et de rayon R. La conduite est fixe
dans le référentiel du laboratoire. Pour simplifier, comme la conduite est horizontale, on néglige
la pesanteur.

Schéma (indiquer : P,, P; et AP = P, — P, > 0)
1. Coordonnées cylindriques d’axe (Oz). Référentiel du labo galiléen.
2. On suppose I'écoulement laminaire. Par symétrie, ¥ = v(r,0,z,t)e,.
3. Ecoulement stationnaire + invariance par rotation d’angle 6 : ¥ = v(rz)e, et
P(rx).
4. Ecoulement incompressible : div(7) =0 = (?l Donc, U = v(r)e,.

ox
5. Equation de Navier-Stokes :

p (%;Z+ (U-gr_ad’)?) = —grad(P) + nAT

> > 0 s —
Terme convectif : (V- grad)v = (v(r)=—)v(r)e, = 0
Le formulaire d’analyse vectorielle donne I’expression du laplacien en cylindrique

(début du raisonnement & savoir avec Av,é€,, car méme principe qu’en cartésien
Y (vecteur e, fixe)) :

= _ 10 0V, 1 v, v,
AT = Avge, avec Avy, = T (r 3 ) R + =7

En projection :

D’ou :

Digression : On se propose de retrouver ’expression de 1’équivalent volumique des forces de

.= no [ ov 0 .
viscosité f v viscosite = nAV = - — 7") €, sans utiliser de formulaire.

T or or
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On considére une particule de fluide (donc infinitésimale) en coordonnées cylindriques,
de volume d7 = drrdfdzx.

Schéma de la PF avec indication des surfaces ot s’appliquent les forces de viscosité
Du fait que ¥ ne dépend que de r, seules les particules de fluide repérées en (r—+dr, §,z)
et (r,0,x) influent sur la force de viscosité :

— — ov - ov| _,
* 0F = 0F, +0F_ = +n(r+dr)dfdz e R nrdfdz 5] 6
=dS(r+dr) =dS(r)
D’ou 5 5
ﬁ = ndedxi Tl dre‘; = va viscositedT
or \_ or '

ror T@T"

On identifie : })V, viscosite = ni ( 81}) 8_;

Nous devons désormais résoudre 1’équation

dP nd dv
@ rar (a) vr, Ve

On reconnait une équation de la forme f(z) = g(r), valable pour tout z et tout r. Cela signifie
que les deux membres sont indépendants de r et de x et constituent une constante K.

On a alors :
dP
— = K = P(x) = Kx + cste
dz
Avec les conditions aux limites sur la pression :
P, — P, AP
P(z) = 7 erPe—Pefo
—
=K
*
Donc :

L

6. Conditions aux limites :
* v(r) ne diverge pasenr=0: A=0

+ Adhérence a la paroi solide : v(R) =0 : v(r) = — (R* — r?)

2
nd r@ :K:—E:r%:—APr +A:>v(r):—£7"2+Aln(r)+B
rdr \  dr dr

Application : expression du débit volumique

A partir de I’expression du champ de vitesse, on peut en déduire 'expression du débit volumique

dnL 8nL

R R 27 R 4
* D, = HU .dS = J j o(r)rdrdd = E%J (R2r — ¥)dr —| ™ AP — D,
0 0 0
(9)

Cette formule constitue la loi de Hagen-Poiseuille, donnant le débit volumique d’un fluide visqueux
en régime laminaire.

En prise de notes : Interprétation :
* Si % augmente, D, augmente : c’est le gradient de pression qui compte
* * Si R augmente, D, augemente fortement : ok
* Si n augmente, D, diminue : la dissipation d’énergie et donc la chute de pression
est due aux effets visqueux

Application : Profil de la pression
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On a déja calculé le profil de pressions : P(z) = p

AP air 1 BRI N
P(0) — - On peut le visualiser simple- h(z)if =t
ment en connectant & la conduite cylindrique des
tuyaux verticaux dans lesquels aucun écoulement x
n’alieu et qui servent a visualiser la pression dans =~ 7o oo T e >

la conduite.

Exercice : Justifier 'observation expérimentale, en reliant h(x) a la pression dans la conduite
cylindrique.

Au sein de chaque tube vertical, le fluide est & 1’équilibre mécanique et doit vérifier
I’équation fondamentale de la statique des fluides. On a ainsi P;(z) = P;(h)—pg(z—h).
Or, au niveau de la surface libre, la pression est égale a la pression atmosphérique
P,ir, donc Pi(h) = P Donc : Pi(z) = Pay — pg(z — h(z)). Or en z = 0, la

* continuité de la pression implique P;(0) = P(x), avec P(x) la pression au sein d’une
AP
section droite de la conduite. D’ou pgh = P(x) — Py = P(x = 0) — <%~ Py,

P(z=0)-P, _ AP

c’est-a-dire que h(z) se met sous la forme h(z) = d — % conforme a
g

I’observation expérimentale.

Ainsi, la pression décroit de maniére affine avec la position : on parle de perte de charge réguliére.

IITI Modéle simplifié d’écoulement parfait

Le modeéle du fluide visqueux newtonien est un modéle assez complet pour décrire les écoulements
de fluides réels, mais il est long de déterminer le champ de vitesse. Nous allons étudier dans cette
partie un second modéle largement simplifié, mais qui s’appliquera de maniére satisfaisante dans
de nombreux écoulements.

— Modéle de 1’écoulement parfait

Un écoulement parfait est un écoulement pour lequel on néglige tous les phénoménes de
diffusion (diffusion de la quantité de mouvement par la viscosité ; diffusion thermique par
conduction) devant les phénoménes de convection.

Donc, un écoulement parfait :
* * est non visqueux : 7 =0
* évolue de fagon adiabatique et réversible, c’est-a-dire isentropique.

Du point de vue de la mécanique des fluides, le fait d’étudier un écoulement sans viscosité implique
plusieurs conséquences :

* Les actions de contact se réduisent aux seules forces de pression.
* Les conditions aux limites sont changées, car il n’y a plus adhérence du fluide aux parois
(cf. chapitre MF2).

L’application du PFD & une particule de fluide dans le référentiel du laboratoire galiléen conduit
alors a ’équation :

p(aa:+(?f~gr71’)ﬁ> = —grad(P) + f,

ol jf:J est la résultante des forces volumiques extérieures hors forces de pression s’appliquant a la
particule de fluide. Cette équation porte le nom d’équation d’Euler (1757).

Les forces extérieures se réduisent bien souvent uniquement & la force de pesanteur. Ainsi,
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I’équation d’Euler se ré-écrit sous la forme :

a_> - TN _— —
p(aitjﬁ—(U ~grad)v> = —grad(P) + pgq

Considérons une conduite cylindrique horizontale dans lequel s’écoule un fluide en écoulement
parfait et stationnaire. Vu qu’il n’y a aucune force de viscosité (contrainte tangentielle), les
particules de fluide glissent sur les parois solides.

On montre alors, avec le sens physique, que la vitesse est uniforme sur une section droite de
I’écoulement.

Schéma (indiquer ¥ = ve, ). On appelle cela un "écoulement bouchon" ou "écoulement

piston" (lien avec les réacteurs pistons en chimie).

Si ’écoulement est de plus incompressible, alors le débit volumique se conserve le long
* de la conduite :

DU=JJU-(§§=US=cste:v=cste
(S)

Considérons un écoulement ou la vitesse U(M,t) = Uy est uniforme dans le référentiel terrestre.
Plagons-nous dans le référentiel en translation par rapport a celui de la Terre, a la vitesse constante
Vo : le fluide est immobile dans ce référentiel, galiléen. On peut alors appliquer la relation
fondamentale de la statique des fluides dans ce référentiel. Cela conduit & un champ de pression
P(z) = Py — pgz ((Oz) vers le haut), si la seule force volumique est celle de pesanteur.

Remarque : Cela arrivera qu’on fasse 'approximation que P = cste : cela signifie qu’on néglige la
pesanteur sur la hauteur de fluide considérée (rayon conduite faible).

IV Quel modéle choisir pour décrire un écoulement réel ?

Dans ce chapitre, nous avons étudié le champ de vitesse et de pression dans un fluide en mou-
vement avec deux modéles différents : le modéle du fluide newtonien visqueux et le modéle du
fluide parfait. Comment choisir en pratique le modéle le plus pertinent pour décrire I’écoulement
d’un fluide réel ?

Considérons a nouveau le cas d’un écoulement dans une conduite cylindrique horizontale. Il parait
compliqué de caractériser le profil de vitesse pour n’importe quel écoulement, car celui-ci dépend
a priori de :

* la vitesse moyenne U (ou du débit volumique D,,)
* des caractéristiques du fluide : p, n
* du diamétre de la conduite D

Pourtant, quand on fait ’expérience, on se rend compte que le profil de vitesse a une allure
similaire si le nombre de Reynolds Re est identique.
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Dans le cas d’un écoulement turbulent, on
ne peut définir le profil des vitesses dans
une section, du fait de la composante aléa-
toire a la fois dans le temps et I'espace de
la vitesse locale. On peut cependant ef-
fectuer une moyenne temporelle, ce qui per-
met d’obtenir un profil régulier a4 symétrie
de révolution, tel qu’illustré ci-contre. On
n’a cependant que des lois empiriques pour
exprimer (v(M,t)). Ce qui est a retenir
est que globalement la vitesse est quasi-
constante dans un écoulement turbulent :
I’essentiel des variations se concentre sur les
parois.
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Schémas du profil de vitesse dans la conduite pour Re < 2000 et Re > 2000. Indiquer
"écoulement visqueux laminaire" / "proche d’un écoulement parfait, sauf prés des
bords".

* Dans le cas o Re > 2000, le transport de la quantité de mouvement par convection
domine sur la diffusion (liée a la viscosité). Pourtant, la viscosité impose d’avoir une
vitesse nulle du fluide au niveau des parois de la conduite : la viscosité entraine une
variation de vitesse uniquement & proximité des parois.

= Définition : couche limite

Zone de ’espace située proche d’un obstacle ou la vitesse du fluide a des variations

*

spatiales rapides

Cette zone de 'espace est celle ou il faut prendre en compte les effets visqueux. Au-dela de
cette couche limite, le fluide s’écoule de maniére quasi-parfaite, c’est-a-dire que les effets de

viscosité sont négligeables.

™ Validité du modéle de 1’écoulement parfait

Le modéle de ’écoulement parfait décrit bien un écoulement & grande valeur de
Re, hors de la couche limite.

*

Dans le cas ot on n’a pas Re » 1 ou que l'on souhaite décrire I’écoulement dans la couche
limite, alors le modéle pertinent est celui du fluide visqueux.

Dans la couche limite, le transport de quan-
tité de mouvement se fait par diffusion
depuis la paroi solide. Donc, en odg, pen-
dant la durée L/U, la couche limite croit y
d’une taille : U U

* 0 ~Alv . _, 5

54
iy
i

v )

Sachant que Re = pUL _ UL 41 en déduit | r

vL? L

U v Re

Ainsi on distingue deux cas :

5~

=8

* soit Re « 1, dans ce cas ’épaisseur de la couche limite devient importante : la couche limite

peut alors s’étendre a l'intégralité du fluide ;
* soit Re » 1, dans ce cas la couche limite correspond & une petite région de 1’écoulement
ou les effets de la viscosité sont importants. En dehors de la couche limite, les effets de la

viscosité sont négligeables.

Exemple : Calculer I’épaisseur caractéristique de la couche limite associée a ’écoulement de
I'air autour d’une voiture roulant & 130kmh~1. On donne, pour I'air : n = 1.8 x 10> P/.

* Prenons : U = 130km/h, L = 4m. On trouve : Re =1 x 107 et donc : § ~ 1 mm

* Les dissipations d’énergie ont lieu & I'intérieur de cette couche limite.
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h = 15cm concentriques d’axe (Oz) de rayons R; = 4.8cm et Ry = 5.0cm. Un moteur permet de faire tourner
le cylindre intérieur a une vitesse angulaire w = 3 tours par seconde. On mesure alors le couple nécessaire pour
maintenir le cylindre extérieur fixe : C = 9.4 x 1072 Nm.

On rappelle 'expression de la force de viscosité élémentaire s’exergant entre deux particules de fluide en contact sur

la surface dS : dF = n?dS si U = v(r)eg.
r

1. On donne la forme de la norme du champ de vitesse dans cet écoulement (coordonnées cylindriques d’axe
(02)) :

_, B
1Bl = Ar+ =
=

avec A et B des constantes. Déterminer les constantes A et B et en déduire I'expression de la vitesse dans
tout le fluide.

2. En déduire le moment scalaire sur I'axe de rotation, exercé par le fluide sur le cylindre extérieur, en fonction
de la viscosité dynamique 7, de la vitesse de rotation w et des dimensions du dispositif.

3. Calculer la viscosité n du fluide.

Correction de ’exercice 3

L CLenr=Ry: AR + £ = Riw
CLenr:RQ:AR2+R%=O
On trouve, aprés calcul :
R3w R?R3w
A=— - R2<0 et B_R2 R2>0
2. Etablissons la force élémentaire exercée par le fluide sur une surface dS = Rpdfdz du cylindre extérieur.

dv
Supposons un instant que e > 0 : le cylindre tournerait plus vite que la fluide. Donc, le fluide freine le
r
cylindre :

oF, = —nj—:Rgdeze_g

Donc, le moment élémentaire de la force de viscosité le long de 'axe (0, e,) exercée sur le cylindre extérieur

est :
dv
SMa = (Raéy A OF,) - &, = —nR2— " T=R2d0dz
d
On intégre alors les moments élémentaires sur toute la surface du cylindre extérieur : Ma = —2mnhR3 d—v =
Tlr=R>
+4mnhg it R%}’
3. TMC au cylindre extérieur autour de l'axe fixe (O,e;) dans le référentiel du labo galiléen : 0 = —C + Ma

Donc :

_C(R3—RY)

 AThR?Rjw

AN.:n=90x10"2P/
Validation :

» La viscosité trouvée est supérieure a celle de I'eau, ce qui est cohérent avec le fait qu'on étudie de 1'huile
d’olive.
* Plus C est grand, plus 7 est grand : logique, les forces de viscosité sont plus importantes.

Ex. 4 Oscillation d’une plaque dans un fluide visqueux

On se place en coordonnées cartésiennes. Une plaque horizontale, située dans le plan z = 0, est animée d’un
mouvement sinusoidal de vitesse U = vy cos(wt) €,. Elle est surmontée d'un fluide visqueux (viscosité dynamique
7)) supposé incompressible (masse volumique p). Le fluide est situé entre z = 0 et z = +00. On considére le
référentiel du laboratoire galiléen.

En négligeant les effets de bord et en supposant I’écoulement laminaire, le champ des vitesses dans le fluide peut
s’écrire U (M,t) = v, (2,t) & et le champ de pression P(M,t) = P(z,t).

1. On commence par déterminer et analyser ’équation vérifiée par le champ de vitesse.
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o
ot

ol v = 1n/p est appelée la viscosité

(a) Montrer que 'accélération d’une particule de fluide s’écrit ici @ =
v

(b) Montrer alors que v,(z,t) doit vérifier I’équation a—; = l/a—;
z

cinématique.
(¢) Quel est le mode de transfert de quantité de mouvement étudié ici ? Déterminer alors la distance
caractéristique de transport de la quantité de mouvement pendant une période d’oscillation de la plaque.
2. On cherche en régime sinusoidal forcé une solution complexe de la forme v,(z,t) = f(z) e/“*. On posera
§=4/2L.
wp
(a) Montrer que la fonction f(z) s’écrit :

fz)=A e+ Be 5"
avec A et B des constantes d’intégration.
(b) Montrer qu'’il est nécessaire que l'une des constantes d’intégration soit nulle.
(c) Déterminer complétement la fonction f(z) et donner lexpression du champ des vitesses en notation
réelle. Commenter. N
3. ANN. : Calculer § pour une fréquence de 500 Hz pour leau (viscosité a connaitre) et pour la glycérine
(n=2.33Plet p=1.26 x 103kgm™3).
4. On rappelle 'expression de la force de viscosité élémentaire s’exercant entre deux particules de fluide en

0V

—dS si U = vy(2)é,. En déduire la puissance moyenne par unité de
0z

surface que doit fournir un opérateur pour entretenir le mouvement de la plaque.

contact sur la surface dS : dF = n

Correction de ’exercice 4

1. (a) Avec le champ de vitesse proposé :

L dv ov ., — . 0V 0 ., 0U
W - a T (U - grad)v = T (vm(z,t)%)vm(zx)eQE =5

car v, ne dépend pas de x.
(b)  + Référentiel du laboratoire galiléen
L’équation de Navier-Stokes s’écrit :

D — Y L 0T 0P, Pv._,
po = —8rad(P) + AT + pg = p—p = — 7€ + 1155 € — pge:

En projetant sur e,, on aboutit &

OVy v, vy v,

ot =02 T e T p o2

(¢) On reconnait une équation de diffusion : le mode de transfert de quantité de mouvement étudié ici est un
transfert par diffusion. (On pouvait s’en douter dés la question a, car on a montré que le terme convectif
de laccélération était nul !)

De méme que dans le chapitre T2 sur la diffusion, on peut conduire une résolution en odg de cette
équation. La longueur caractéristique sur laquelle s’effectue la diffusion de quantité de mouvement

pendant une période T = %’r vaut : L. = VT = 4 /12 = A/ T0.

pw

2. (a) Injectons cette forme de solution dans ’équation précédente :

‘ a2y f w 2
- wt __ L wt g 4
J@jw " =v g I = 5 = () = 5 /() (Ex.1)
2 ] i ;T
On résout en résolvant le polynéme caractéristique associé r2 = 5—‘; = 5% e’z c’est-a-dire r = i? ( el ?)1/2 =
o 144
i? e/t = i—;] Donc :
1+ 1+
fz)=Ae 6 +Be 0 (Ex.2)

(b) Comme ’vi ‘ ne peut diverger pour z — +00, A = 0 nécessairement.
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(¢) On peut alors réécrire le champ des vitesses :

z z z
vg(2,t) = B e e (wt75> = v.(z,t) = vy e 0 cos (wt — g) (Ex.3)
R

en se servant de la CL d’adhérence du fluide a la plaque en z = 0. On a donc une onde pseudo-progressive
se propageant dans le sens des z croissants, mais dont I’amplitude décroit avec une distance caractéristique
0. On assimile cette situation & un effet de peau !
3. AN : Jeqy = 2.6 x 107°m et dy, = 1.1mm. La propagation est d’autant plus atténuée que la viscosité est
faible. C’est logique : si la viscosité est faible, le transfert de quantité de mouvement par diffusion est peu

efficace. 5
4. La plaque subit la force de frottements visqueux du fait du fluide F= na—v
z

Se,. Donc la puissance que le
z=0
fluide exerce sur la plaque est :

P=F. T(z=0) = nug (—(15 cos(wt) + % sin(wt)) Svg cos(wt) (Ex.4)

soit pris en moyenne, avec { cos(wt) sin(wt)) = 0 et { cos?(wt)) = 1/2

1
2
- _ Ex.
(P> o5 55 (Ex.5)
On peut alors en déduire la puissance moyenne & fournir par 'opérateur (P,,). En appliquant le TPC & la

plaque, dans le référentiel du laboratoire galiléen :

dB. dBE.\ _ o _
(1t’P+’Pop:><dt >0<P>+<Pop>

Remarque : On peut simplement affirmer que la puissance de 1’opérateur doit compenser exactement la puissance
dissipée par frottements.
Donc :
Po _ mi
S 2
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