Séries entières.

Dans tout le chapitre, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et suivant le contexte, |.| est la valeur absolue ou le module. On convient que pour tout $z \in \mathbb{C}$, $z^0 = 1$. En particulier, $0^0 = 1$. On rappelle qu'une suite de complexes est bornée si la suite des modules est majorée.

1 Définition. Convergence.

Définition 1. Une série entière de la variable réelle x (resp. complexe z) est une série du type $\sum_{n\geq 0} a_n x^n$ (resp. $\sum_{n\geq 0} a_n z^n$) où $(a_n)_{n\in\mathbb{N}}$ est une suite réelle (resp. complexe), appelée suite des coefficients de la série entière.

On commence en général par déterminer les complexes z (ou les réels x) pour lesquels la série (entière) $\sum_{n\geq 0} a_n z^n$ (resp. $\sum_{n\geq 0} a_n x^n$) converge.

Remarquons déjà qu'une série entière $\sum_{n>0}a_nz^n$ converge pour z=0 (avec a_0 pour somme) :

$$\sum_{n=0}^{+\infty} a_n 0^n = \lim_{N \to +\infty} \sum_{n=0}^{N} a_n 0^n = \lim_{N \to +\infty} a_0 = a_0.$$

Avant de passer à l'étude générale de la convergence, étudions la convergence de trois séries entières complexes particulières :

Exemples. 1. Pour tout $n \in \mathbb{N}$, $a_n = n!$. Posons $u_n(z) = a_n z^n$. Si $z \neq 0$, pour tout $n \in \mathbb{N}$, $u_n(z) \neq 0$ et $\frac{|u_{n+1}(z)|}{|u_n(z)|} = (n+1)|z|$. Donc $\lim_{n \to +\infty} \frac{|u_{n+1}(z)|}{|u_n(z)|} = +\infty$. On en déduit que $\lim_{n \to +\infty} |u_n(z)| = +\infty$ par le critère de D'Alembert. D'où la divergence grossière de la série (entière) $\sum_{n \geq 0} a_n z^n$. Cette série entière ne converge donc que pour z = 0.

- 2. Pour tout $n \in \mathbb{N}$, $a_n = 1$. On retrouve la série (géométrique) $\sum_{n \geq 0} z^n$. On sait que si |z| < 1, $\sum_{n \geq 0} z^n$ converge (absolument) et que si $|z| \geq 1$, $\sum_{n \geq 0} z^n$ diverge grossièrement.
- 3. Pour tout $n \in \mathbb{N}$, $a_n = \frac{1}{n!}$. La série (entière) $\sum_{n \geq 0} \frac{1}{n!} z^n$ converge (absolument) pour tout $z \in \mathbb{C}$ (en utilisant le critère de D'Alembert). De plus, pour tout $z \in \mathbb{C}$, $\sum_{n=0}^{+\infty} \frac{1}{n!} z^n = e^z$.

Lemme 1. [Lemme d'Abel] Soit $z_0 \in \mathbb{C}^*$. Si la suite $(a_n z_0^n)_{n \in \mathbb{N}}$ est bornée, alors pour tout $z \in \mathbb{C}$ tel que $|z| < |z_0|$, la série $\sum_{n \geq 0} a_n z^n$ converge absolument.

Démonstration. Soit $M \in \mathbb{R}^+$ tel que pour tout $n \in \mathbb{N}$, $|a_n z_0^n| \leq M$. Soit $z \in \mathbb{C}$ tel que $|z| < |z_0|$. Pour tout $n \in \mathbb{N}$, $a_n z^n = a_n z_0^n (\frac{z}{z_0})^n$ et, par propriétés du module, $|a_n z^n| = |a_n z_0^n| (\frac{|z|}{|z_0|})^n \leq M |\frac{z}{z_0}|^n$. D'où la convergence de la série $\sum_{n \geq 0} |a_n z^n|$ par comparaison de termes positifs car la série géométrique $\sum_{n \geq 0} (\frac{|z|}{|z_0|})^n$ (de raison $\frac{|z|}{|z_0|} |\in [0,1[)$ converge.

Lemme 2. Soit $a=(a_n)_{n\in\mathbb{N}}$ une suite complexe. L'ensemble I(a) des réels $r\in\mathbb{R}^+$ tels que la suite $(|a_n|r^n)_{n\in\mathbb{N}}$ est majorée est un intervalle contenant 0.

 $D\acute{e}monstration.$ i) $0 \in I(a)$: la suite $(|a_n|0^n)_{n \in \mathbb{N}}$ est majorée par $|a_0|$ car le terme d'indice n=0 est $|a_0|$ et les autres termes sont nuls. ii) Montrons que I(a) est un intervalle en vérifiant que si $r \in I(a)$, $[0,r] \subset I(a)$: soient $C \in \mathbb{R}^+$ tel que $\forall n \in \mathbb{N}$, $|a_n|r^n \leq C$ et $s \in [0,r]$ On a bien $s \in I(a)$ car pour tout $n \in \mathbb{N}$, $|a_n|s^n \leq |a_n|r^n \leq C$.

Définition 2. [Rayon de convergence] Soit $a=(a_n)_{n\in\mathbb{N}}$ une suite complexe. Le rayon de convergence $R\in[0,+\infty]$ de la série entière $\sum_{n\geq 0}a_nz^n$ est la borne supérieure de l'intervalle I(a), c'est-à-dire «l'extrémité» de l'intervalle I(a) (égal à $+\infty$ si $I(a)=[0,+\infty[$).

Remarque 1. Il y a quatre types d'intervalle inclus dans \mathbb{R}^+ et contenant $0:\{0\}$, $[0,R[,[0,R],(avec\ R>0),\ et\ [0,+\infty[.\ Si\ I(a)=\{0\},\sum_{n\geq 0}a_nz^n\ a\ pour\ rayon\ de\ convergence\ 0,\ si\ I(a)=[0,R[\ ou\ [0,R],\ R\ est\ le\ rayon\ de\ convergence\ de\ \sum_{n\geq 0}a_nz^n\ et\ enfin\ si\ I(a)=\mathbb{R}^+,\ on\ dit\ que\ la\ série\ entière\ a\ pour\ rayon\ de\ convergence\ +\infty.$

Exercice 1. On considère la série entière $\sum_{n>1} a_n z^n$ avec $a_n = \sum_{k=1}^n \frac{1}{k}, n \in \mathbb{N}^*$.

Déterminer I(a) et le rayon de convergence R de cette série entière.

Proposition 1. Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence $R\in [0,+\infty]$. On distingue trois cas :

- i) R=0: La série $\sum_{n\geq 0} a_n z^n$ ne converge que pour z=0. ii) R>0: Soit $z\in \mathbb{C}$. Si |z|< R, $\sum_{n\geq 0} a_n z^n$ converge absolument et si |z|> R, $\sum_{n\geq 0} a_n z^n$ diverge grossièrement. iii) $R=+\infty$: La série $\sum_{n\geq 0} a_n z^n$ converge absolument pour tout $z\in \mathbb{C}$.

 $D\acute{e}monstration. \ i) \ {\rm Soit} \ z \neq 0. \ {\rm Alors} \ |z| > 0 \ {\rm et \ comme} \ I(a) = \{0\}, \ |z| \not\in I(a). \ {\rm Par \ d\acute{e}finition \ de} \ I(a), \ {\rm la \ suite} \ (|a_n||z|^n) \ n'est \ {\rm pas \ major\acute{e}e.}$

Donc la suite $(a_n z^n)$ ne peut pas converger vers 0 (car toute suite convergente est bornée) et la série $\sum_{n\geq 0} a_n z^n$ diverge grossièrement. ii) Soit $z\in\mathbb{C}$ tel que |z|< R. Considérons $r\in]|z|,R[$. Comme I(a)=[0,R[ou [0,R], $r\in I(a)$, autrement dit la suite $(a_n r^n)$ est bornée. En utilisant le lemme d'Abel avec $z_0=r$, on obtient la convergence absolue de la série $\sum_{n\geq 0} a_n z^n$ car $|z|< r=|z_0|$.

Soit $z \in \mathbb{C}$ tel que |z| > R. Alors $|z| \notin I(a)$ car I(a) = [0, R[ou [0, R]. Par définition de I(a), la suite $(|a_n||z|^n)$ n'est pas majorée. Par conséquent, la suite $(a_n z^n)$ ne converge pas vers 0 (car toute suite convergente est bornée) et la série $\sum_{n>0} a_n z^n$ diverge donc grossièrement.

iii) Soit $z \in \mathbb{C}$ (quelconque). Soit $z_0 \in \mathbb{C}$ tel que $|z_0| > |z|$. Comme $I(a) = \mathbb{R}^+$, $|z_0| \in I(a)$ et la suite $(|a_n||z_0|^n)$ est majorée, autrement dit la suite $(a_n z_0^n)$ est bornée. D'où la convergence absolue de $\sum_{n \geq 0} a_n z^n$ par le lemme d'Abel.

Remarque 2. Dans le cas ii) R > 0, on dit que $D(0,R) = \{z \in \mathbb{C}/|z| < R\}$ est le disque (ouvert) de convergence (absolue) de la série entière $\sum_{n \geq 0} a_n z^n$. Il n'a pas de résultat général concernant la convergence de la série $\sum_{n \geq 0} a_n z^n$ si |z| = R. On dit parfois que $C = \{z \in \mathbb{C}/|z| = R\}$ est le cercle d'incertitude de la série entière.

La proposition précédente permet donc de déterminer le rayon d'une série entière en n'utilisant pas la définition $R = \sup I(a)$:

Proposition 2. [Caractérisation du rayon de convergence] Le rayon de convergence R d'une série entière $\sum_{n\geq 0} a_n z^n$ est l'unique élément de $[0, +\infty]$ tel que si |z| < R, $\sum_{n \ge 0} a_n z^n$ converge absolument et si |z| > R, la suite $(a_n z^n)$ ne tend pas vers 0.

Application 2. Déterminer le rayon de convergence des trois séries entières $\sum_{n>0} n! z^n$, $\sum_{n>0} z^n$, $\sum_{n>0} \frac{1}{n!} z^n$.

Le résultat suivant sert souvent en pratique :

Proposition 3. Soient $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R et $z_0 \in \mathbb{C}$. Alors :

- i) Si la série $\sum_{n\geq 0} a_n z_0^n$ converge, alors $R\geq |z_0|$, ii) Si la série $\sum_{n\geq 0} a_n z_0^n$ diverge, alors $R\leq |z_0|$.

 $D\acute{e}monstration.~i)$ Supposons que la série $\sum_{n\geq 0} a_n z_0^n$ converge. Raisonnons par l'absurde. Si $R<|z_0|$, par la proposition précédente, la suite

 $(a_n z_0^n)$ ne tend pas vers 0 et la série $\sum_{n\geq 0} a_n z_0^n$ diverge grossièrement, en contradiction avec l'hypothèse de départ.

ii) Supposons que la série $\sum_{n\geq 0} a_n z_0^n$ diverge. Raisonnons par l'absurde. Si $R>|z_0|$, par la proposition précédente, la série $\sum_{n\geq 0} a_n z_0^n$ converge (absolument), en contradiction avec l'hypothèse de départ.

Exercice 3. Déterminer le rayon de convergence de la série entière $\sum_{n=1}^{\infty} \frac{z^n}{n}$ en considérant $z_0 = -1$ et $z_0 = 1$.

Remarque 3. [Utilisation du critère de D'Alembert] L'étude de la convergence absolue de la série $\sum_{n=0}^{\infty} a_n z^n$ s'effectue dans certains cas en utilisant le critère de D'Alembert.

Exercice 4. Rayon de convergence R de la série entière $\sum_{n=0}^{\infty} \frac{n!}{n^n} z^n$.

Soit $z \neq 0$. Posons pour tout $n \in \mathbb{N}$, $u_n(z) = \frac{n!}{n^n} z^n$. On a : $u_n(z) \neq 0$ et $\lim_{n \to +\infty} \frac{|u_{n+1}(z)|}{|u_n(z)|} = \frac{|z|}{e}$ (à vérifier). D'après le critère de D'Alembert, si |z| < e, la série $\sum_{n \geq 0} \frac{n!}{n^n} z^n$ converge absolument et si |z| > e, $\lim_{n \to +\infty} |u_n(z)| = +\infty$ ce qui implique que

la suite $(u_n(z))$ ne tend pas vers 0 (car si elle tendait vers 0, la suite des modules convergerait aussi vers 0 ce qui n'est pas le cas!) et la série $\sum u_n(z)$ diverge donc grossièrement. D'où R=e (cf. Proposition 2).

La proposition suivante permet de comparer les rayons de convergence de deux séries entières et peut être utile :

Proposition 4. Soient $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ deux séries entières de rayon de convergence respectifs R_a et R_b . Alors :

- i) S'il existe $N \in \mathbb{N}$ tel que $\forall n \geq N$, $|a_n| \leq |b_n|$, alors $R_a \geq R_b$. ii) Si $a_n \underset{n \to +\infty}{\sim} b_n$, alors $R_a = R_b$.

 $D\acute{e}monstration.~i)$ Il suffit de prouver que pour tout $z\in\mathbb{C}$ tel que $|z|< R_b,$ la série $\sum_{n\geq 0}a_nz^n$ converge absolument.

Soit $z \in \mathbb{C}$ tel que $|z| < R_b$. Par caractérisation de R_b , la série $\sum_{n \geq 0} |b_n||z|^n$ converge. Or pour tout $n \geq N$, $|a_n z^n| = |a_n||z|^n \leq |b_n||z|^n$.

Donc la série $\sum_{n=0}^{\infty} |a_n z^n|$ converge bien par comparaison de termes positifs.

ii) Comme $|a_n| \underset{n \to +\infty}{\sim} |b_n|$, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, $\frac{1}{2}|b_n| \le |a_n| \le 2|b_n|$. En utilisant i), on obtient $R_a \ge R_b$ et $R_b \ge R_a$. D'où $R_a = R_b$.

Exercice 5. Soit $P(X) = \sum_{k=0}^{d} \alpha_k X^k \in \mathbb{R}[X]$, de degré $d \in \mathbb{N}$. Déterminer le rayon de convergence de la série entière $\sum_{n \geq 0} P(n) z^n$.

Opérations sur les séries entières. 2

Somme de deux séries entières 2.1

Soient $\sum_{n>0} a_n z^n$ et $\sum_{n>0} b_n z^n$ deux séries entières de rayon de convergence respectifs R_a et R_b

Définition 3. La série entière somme des deux séries entières $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ est la série entière $\sum_{n\geq 0} (a_n+b_n)z^n$.

Proposition 5. Notons R_{a+b} le rayon de convergence de $\sum_{n\geq 0} (a_n+b_n)z^n$. On a :

i)
$$R_{a+b} \ge \min(R_a, R_b)$$
 et $si |z| < \min(R_a, R_b)$, $\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n$.

ii) Si $R_a \neq R_b$, $R_{a+b} = \min(R_a, R_b)$

 $D\acute{e}monstration. \ i) \ \text{Soit} \ z \in \mathbb{C} \ \text{tel que} \ |z| < \min(R_a, R_b). \ \text{Comme} \ |z| < R_a \ (\text{resp.} \ |z| < R_b), \ \sum_{n \geq 0} |a_n||z|^n \ (\text{resp.} \ \sum_{n \geq 0} |b_n||z|^n) \ \text{converge}.$ $\text{Comme pour tout} \ n \in \mathbb{N}, \ |(a_n + b_n)z^n| = |a_nz^n + b_nz^n| \leq |a_n||z|^n + |b_n||z|^n, \ \text{la s\'erie} \ \sum_{n \geq 0} |(a_n + b_n)z^n| \ \text{converge par comparaison.} \ \text{D'o\`u}$

 $R_{a+b} \ge \min(R_a, R_b)$ par la proposition 2. Et l'égalité demandée est immédiate (somme d'une somme de deux séries convergentes). ii) Supposons $R_a < R_b$. Soit $r \in]R_a, R_b[$. Alors $\sum_{n \ge 0} a_n r^n$ diverge (grossièrement), $\sum_{n \ge 0} b_n r^n$ converge (absolument) donc la série somme

 $\sum_{n\geq 0} (a_n+b_n)r^n \text{ diverge. On en déduit que } R_{a+b} \leq r. \text{ En faisant tendre } r \text{ vers } R_a^-, \text{ on obtient } R_{a+b} \leq R_a = \min(R_a,R_b) \text{ d'où l'égalité}$ $R_{a+b} = R_a = \min(R_a, R_b)$ d'après i).

Exercice 6. Soient $a_n = 1$ et $b_n = -1$. Calculer R_a , R_b et R_{a+b} .

2.2 Produit de deux séries entières

Soient $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ deux séries entières de rayon de convergence respectifs R_a et R_b

Définition 4. La série entière produit des deux séries entières $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ est la série entière $\sum_{n\geq 0} c_n z^n$ avec :

$$\forall n \in \mathbb{N}, c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{k=0}^n a_{n-k} b_k.$$

Exercice 7. Vérifier que le carré de la série entière $\sum_{n>0} z^n$ est la série entière $\sum_{n>0} (n+1)z^n$.

Proposition 6. Notons R_c le rayon de convergence du produit $\sum_{n\geq 0} c_n z^n$ des deux séries entières $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$. Alors :

$$R_c \ge \min(R_a, R_b) \ et \ si \ |z| < \min(R_a, R_b), \ \sum_{n=0}^{+\infty} c_n z^n = (\sum_{n=0}^{+\infty} a_n z^n) \cdot (\sum_{n=0}^{+\infty} b_n z^n).$$

Démonstration. On applique le théorème du chapitre séries numériques sur le produit de deux séries absolument convergentes.

Exercice 8. Soit $z \in \mathbb{C}$ tel que |z| < 1. Calculer $\sum_{n=0}^{+\infty} (n+1)z^n$.

3 Propriétés de la fonction somme d'une série entière

Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence $R\in]0,+\infty]$. Pour tout $x\in]-R,R[$, on note f(x) la somme de la série (absolument)

convergente $\sum_{n\geq 0} a_n x^n$. On montre dans cette section que la fonction $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est de classe \mathcal{C}^{∞} sur]-R, R[. Pour tout $n \in \mathbb{N}$ et pour tout $x \in]-R, R[$, on pose $: u_n(x) = a_n x^n$.

Lemme 3. La série de fonctions $\sum_{n>0} u_n$ converge normalement sur tout segment inclus dans]-R,R[.

$$\forall n \in \mathbb{N}, \ \forall x \in [c, d], \ |u_n(x)| = |a_n||x|^n \le |a_n|r^n = |a_nr^n|.$$

D'où la CVN de $\sum u_n$ sur [c,d] car la série $\sum a_n r^n$ est absolument convergente puisque $r \in]-R,R[$.

Remarque 4. Attention! Ne pas affirmer que la série $\sum u_n$ converge normalement sur]-R,R[. C'est faux en général. Pour s'en convaincre, considérons la série entière $\sum_{n\geq 1}\frac{z^n}{n}$: on a R=1, $\|u_n\|_{\infty,]-1,1[}=\frac{1}{n}$ et $\sum u_n$ ne converge pas normalement sur]-1,1[care la série de Riemann $\sum_{n\geq 1}\frac{1}{n}$ diverge.

la série de Riemann $\sum_{n\geq 1} \frac{1}{n}$ diverge.

Lemme 4. Les séries entières $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} n a_n z^n$ ont le même rayon de convergence.

Démonstration. On suppose R > 0. Notons R' le rayon de convergence de la série entière $\sum_{n \geq 0} n a_n z^n$.

a) Soit $z \in \mathbb{C}$ tel que |z| < R'. Comme la série $\sum na_nz^n$ converge absolument (propriété de R'), la série $\sum a_nz^n$ converge aussi absolument par comparaison car

$$\forall n \in \mathbb{N}^*, |a_n z^n| = |a_n||z|^n \le n|a_n||z|^n (= |na_n z^n|).$$

D'où $R \ge R'$ par propriété de R.

b) Soit $z \in \mathbb{C}$ tel que |z| < R. Considérons $s \in]|z|, R[$. Par définition de R, la suite $(|a_n|s^n)$ est majorée : il existe $C \in \mathbb{R}^+$ tel que $\forall n \in \mathbb{N}, |a_n|s^n \leq C$. Et on vérifie que la série $\sum n(\frac{|z|}{s})^n$ converge avec le critère de D'Alembert car $0 \leq \frac{|z|}{s} < 1$.

Donc la série $\sum na_nz^n$ converge absolument par comparaison car

$$\forall n \in \mathbb{N}^*, |na_n z^n| = |a_n| s^n \cdot n(\frac{|z|}{s})^n \le Cn(\frac{|z|}{s})^n$$

D'où $R' \geq R$ par propriété de R'. Finalement, R' = R. Le cas $R = +\infty$ est analogue.

Remarque 5. Ces deux lemmes impliquent que la série entière $\sum_{n\geq 1} u_n'$ converge normalement sur tout segment inclus dans]-R,R[.

Exercice 9. Soit $p \in \mathbb{N}^*$. Justifier que la rayon de convergence de la série entière $\sum_{n \geq p} n(n-1) \cdots (n-(p-1)) a_n z^{n-p}$ est égal à R.

3.1 Continuité

Proposition 7. f est continue sur | -R, R[.

Démonstration. Chaque fonction monôme u_n est continue sur \mathbb{R} , donc sur]-R,R[, et la série de fonctions $\sum u_n$ converge normalement donc uniformément sur tout segment inclus dans]-R,R[(cf. lemme 3). Donc f est continue sur]-R,R[par le théorème de continuité de la somme d'une série de fonctions (CVU et continuité).

3.2 Dérivabilité terme à terme

Proposition 8.
$$f$$
 est de classe C^1 sur $] - R$, $R[$ et $\forall x \in] - R$, $R[$, $f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_n x^n$.

Démonstration. Chaque fonction monôme u_n est de classe \mathcal{C}^1 sur \mathbb{R} , donc sur]-R,R[; la série de fonctions $\sum u_n$ converge simplement sur]-R,R[car, par propriété de $R, \ \forall x \in]-R,R[$, $\sum u_n(x)$ converge absolument; et d'après la remarque 5 la série de fonctions $\sum u'_n$ converge normalement donc uniformément sur tout segment inclus dans]-R,R[. Donc f est de classe \mathcal{C}^1 sur]-R,R[par le théorème de dérivabilité de la somme d'une série de fonctions (CVU et continuité) et, u'_0 étant la fonction nulle, on a : $\forall x \in]-R,R[$,

$$f'(x) = \sum_{n=0}^{+\infty} u'_n(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1}.$$

Ce résultat permet de calculer certaines sommes de séries convergentes :

Exemple. [Dérivée de la série géométrique.] Pour tout $x \in]-1,1[,\sum_{n=1}^{+\infty}nx^{n-1}=\frac{1}{(1-x)^2}.$

Le rayon de convergence de la série entière (géométrique) $\sum x^n$ est égal à 1. Posons $f(x) = \sum_{n=0}^{+\infty} x^n$, $x \in]-1,1[$. D'après la proposition

précédente, f est dérivable sur] -1,1[et $\forall x \in]-1,1[$, $f'(x)=\sum_{n=1}^{+\infty}nx^{n-1}.$ Or $\forall x \in]-1,1[$, $f(x)=\frac{1}{1-x}$ d'où $f'(x)=\frac{1}{(1-x)^2}$ et

finalement l'égalité : $\forall x \in]-1,1[,\frac{1}{(1-x)^2}=\sum_{n=1}^{+\infty}nx^{n-1}.$

Exercice 10. Soit $x \in]-1,1[$. Calculer $\sum_{n=0}^{+\infty} n^2 x^n$ et $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$.

Application. Démontrer que : $\forall x \in \mathbb{R}, \sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x, \ \forall x \in]-1, 1[, \sum_{n=1}^{+\infty} \frac{x^n}{n} = -\ln(1-x), \ \forall x \in]-1, 1[, \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = \arctan(x).$

Plus généralement :

Proposition 9. f est de classe C^{∞} sur]-R,R[avec, pour tout $p \in \mathbb{N}$ et pour $x \in]-R,R[$:

$$f^{(p)}(x) = \sum_{n=p}^{+\infty} n(n-1)\cdots(n-(p-1))a_nx^{n-p} = \sum_{n=p}^{+\infty} \frac{n!}{(n-p)!}a_nx^{n-p} = \sum_{n=0}^{+\infty} \frac{(n+p)!}{n!}a_{n+p}x^n.$$

 $D\acute{e}monstration$. Soit $p \in \mathbb{N}^*$. Il suffit d'utiliser p fois la proposition 8 sachant que le rayon de convergence des séries entières obtenues par dérivation terme à terme reste égal à R.

Exercice 11. Soit $p \in \mathbb{N}^*$. Justifier que $\forall x \in]-1,1[,\sum_{n=0}^{+\infty} {n+p \choose p} x^n = \frac{1}{(1-x)^{p+1}}$.

La somme f d'une série entière de rayon de convergence $R \in]0, +\infty]$ est donc, sur]-R, R[, la somme de sa « série de Taylor en 0 » :

Corollaire 1. [Série de Taylor en 0] Pour tout $n \in \mathbb{N}$, $a_n = \frac{f^{(n)}(0)}{n!}$ et $donc: \forall x \in]-R, R[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$.

3.3 Intégration terme à terme. Primitive

 $\textbf{Proposition 10.} \ \ \textit{Soit} \ [\alpha,\beta] \subset]-R, R[. \ \textit{La série} \ \sum_{n\geq 0} \int_{\alpha}^{\beta} a_n t^n \ dt \ \ \textit{converge et on a} : \int_{\alpha}^{\beta} f(t) \ dt = \sum_{n=0}^{+\infty} \int_{\alpha}^{\beta} a_n t^n \ dt.$

En particulier, $F: x \mapsto \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$ est une primitive de f sur]-R,R[.

Démonstration. Comme la série de fonctions continues $\sum u_n$ CVU sur $[\alpha, \beta]$ d'après le lemme 3, il suffit d'utiliser le théorème CVU et intégration du chapitre série de fonctions. En particulier, pour $\alpha = 0$ et $\beta = x \in]0, R[, [0, x] \subset]-R, R[$, on a donc :

$$\int_0^x f(t) dt = \sum_{n=0}^{+\infty} \int_0^x a_n t^n dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}.$$

Idem si $x\in]-R,0],\,[x,0]\subset]-R,R[$ et on a :

$$\int_0^x f(t) dt = -\int_x^0 f(t) dt = -\sum_{n=0}^{+\infty} \int_x^0 a_n t^n dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}.$$

Exercice 12. 1. Déterminer le rayon de convergence R et la somme pour $x \in]-R, R[$ de la série entière $\sum_{n\geq 0} (-1)^n x^{3n}$.

2. Justifier la convergence de la série $\sum_{n\geq 0} \frac{(-1)^n}{(3n+1)2^{3n+1}} \text{ et prouver que } \sum_{n=0}^{+\infty} \frac{(-1)^n}{(3n+1)2^{3n+1}} = \int_0^{\frac{1}{2}} \frac{dt}{1+t^3}.$