Exercice 1. Rayon de convergence R et somme pour $x \in]-R, R[$ de la série entière $\sum_{n\geq 0} \frac{n^3+n+3}{n+1} x^n$.

Solution : Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}$. Posons $a_n = \frac{n^3 + n + 3}{n + 1}$ et $u_n(x) = a_n x^n$

- 1. Calcul du rayon de convergence R. On peut procéder de l'une des deux manières suivantes :
- i) En utilisant la définition du rayon de convergence (et une propriété de croissances comparées).

Soit $I_a = \{r \in \mathbb{R}^+ / \text{ la suite } (|a_n|r^n)_{n \in \mathbb{N}} \text{ est majorée} \}$. Soit $r \in \mathbb{R}^+$. Comme $a_n > 0$ et $a_n \sim n^2$,

$$r \in I_a \Leftrightarrow (n^2 r^n)_{n \in \mathbb{N}}$$
 est majorée $\Leftrightarrow r \in [0, 1[$

car si $r \ge 1$, $\lim_{n \to +\infty} n^2 r^n = +\infty$, donc la suite $(n^2 r^n)_{n \in \mathbb{N}}$ n'est pas majorée, et si $r \in [0,1[$, $\lim_{n \to +\infty} n^2 r^n = 0$ par croissances comparées donc la suite $(n^2r^n)_{n\in\mathbb{N}}$ est majorée car convergente. Donc $I_a=[0,1[$ et $R=\sup I_a=1.$

ii) En utilisant une caractérisation du rayon de convergence (et la règle de D'Alembert).

On a $a_n > 0$, $a_n \underset{n \to +\infty}{\sim} n^2$, $a_{n+1} \underset{n \to +\infty}{\sim} (n+1)^2 \underset{n \to +\infty}{\sim} n^2$. On en déduit que pour tout $x \in \mathbb{R}^*$, $u_n(x) \neq 0$ et

$$\lim_{n\to +\infty}\frac{|u_{n+1}(x)|}{|u_n(x)|}=\lim_{n\to +\infty}\frac{a_{n+1}}{a_n}|x|=|x|.$$

Donc d'après la règle de D'Alembert, si |x| < 1, la série $\sum a_n x^n$ converge absolument et si |x| > 1, la série $\sum a_n x^n$ diverge grossièrement $\operatorname{car} \lim_{n \to +\infty} |a_n x^n| = +\infty$ ce qui implique que $u_n(x) \neq 0$.

Par conséquent R=1.

2. Calcul de la somme $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ pour $x \in]-1,1[$.

En effectuant par exemple la division euclidienne de $X^3 + X + 3$ par X + 1, on obtient l'égalité :

$$X^3 + X + 3 = (X+1)(X^2 - X + 2) + 1.$$

D'où la décomposition de a_n en « éléments simples » : $a_n = n^2 - n + 2 + \frac{1}{n+1}$ On en déduit que pour tout $x \in]-1,1[\setminus \{0\} :$

$$f(x) = \sum_{n=0}^{+\infty} \frac{(n^2 - n + 2)}{=n(n-1)+2} x^n + \sum_{n=0}^{+\infty} \frac{x^n}{n+1}$$

$$= \sum_{n=0/2}^{+\infty} n(n-1)x^n + 2\sum_{n=0}^{+\infty} x^n + \sum_{n=0}^{+\infty} \frac{x^n}{n+1}$$

$$= x^2 \sum_{n=2}^{+\infty} n(n-1)x^{n-2} + 2\sum_{n=0}^{+\infty} x^n + \frac{1}{x} \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}$$

$$= x^2 \sum_{n=2}^{+\infty} n(n-1)x^{n-2} + 2\sum_{n=0}^{+\infty} x^n + \frac{1}{x} \sum_{n=1}^{+\infty} \frac{x^n}{n}$$

$$= x^2 (\sum_{n=0}^{+\infty} x^n)'' + \frac{2}{1-x} - \frac{\ln(1-x)}{x}$$

$$= x^2 \cdot \frac{2}{(1-x)^3} + \frac{2}{1-x} - \frac{\ln(1-x)}{x} = \frac{4x^2 - 4x + 2}{(1-x)^3} - \frac{\ln(1-x)}{x}$$

et $f(0) = a_0 = 3$.

 $Remarque: \text{La fonction } f \text{ est la fonction somme d'une série entière de rayon 1. Donc } f \text{ est continue sur }]-1,1[\text{ et en particulier continue en 0. On peut vérifier que c'est bien le cas}: \\ \lim_{x\to 0, x\neq 0} f(x) = \lim_{x\to 0, x\neq 0} (\frac{4x^2-4x+2}{(1-x)^3} - \frac{\ln(1-x)}{x}) = 2-(-1) = 3 = f(0).$

Exercice 2. Soit $p_n = \prod_{k=1}^n 2^{\frac{k}{2^k}}$, $n \in \mathbb{N}^*$. Calculer $\lim_{n \to +\infty} p_n$.

Indications : Rappel : $\forall x \in]-1,1[,\frac{1}{1-x}=\sum_{n=0}^{+\infty}x^n]$. En dérivant terme à terme cette somme de série entière (de rayon de convergence 1),

on obtient que $\forall x \in]-1,1[,\frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1} (= \sum_{k=1}^{+\infty} kx^{k-1} = \lim_{n \to +\infty} \sum_{k=1}^{n} kx^{k-1})$ (*). Considérer alors $\ln(p_n)$ et déduire de (*) avec $x = \frac{1}{2} \in]-1,1[$ que $\lim_{n \to +\infty} p_n = 4$.

Exercice 3. Rayon de convergence R et somme pour $x \in]-R, R[$ de la série entière $\sum_{n \geq 0} \frac{n}{(2n+1)!} x^n$.

Indications: 1. Calcul du rayon de convergence R.

En utilisant par exemple la règle de D'Alembert, on obtient $R=+\infty$.

2. Calcul de la somme $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ pour $x \in \mathbb{R}$.

Comme $n = \frac{1}{2}(2n+1) - \frac{1}{2}$, $a_n = \frac{1}{2}\frac{1}{(2n)!} - \frac{1}{2}\frac{1}{(2n+1)!}$. En déduire que :

$$\forall x > 0, \ f(x) = \frac{1}{2}\operatorname{ch}(\sqrt{x}) - \frac{1}{2\sqrt{x}}\operatorname{sh}(\sqrt{x}), \ \forall x < 0, \ f(x) = \frac{1}{2}\cos(\sqrt{-x}) - \frac{1}{2\sqrt{-x}}\sin(\sqrt{-x})$$

et (directement) $f(0) = a_0 = 0$

Exercice 4. Rayon de convergence R et somme pour $x \in]-R, R[$ de la série entière $\sum_{n\geq 1} \frac{x^n}{1+\cdots+n}$

Indications: Rappelons que $\forall n \in \mathbb{N}^*, 1 + \cdots + n = \frac{n(n+1)}{2}$

1. Calcul du rayon de convergence

On a donc : $a_n := \frac{1}{1+\cdots+n} \underset{n \to +\infty}{\sim} \frac{2}{n^2}$. On obtient R=1 en utilisant la règle de D'Alembert.

2. Calcul de la somme $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ pour $x \in \mathbb{R}$.

Comme $a_n = \frac{2}{n(n+1)} = \frac{2}{n} - \frac{2}{n+1}$, on a, pour tout $x \in]-1,1[\setminus \{0\}:$

$$f(x) = 2\sum_{n=1}^{+\infty} \frac{x^n}{n} - 2\sum_{n=1}^{+\infty} \frac{x^n}{n+1}$$

$$= -2\ln(1-x) - \frac{2}{x}\sum_{n=1}^{+\infty} \frac{x^{n+1}}{n+1} = -2\ln(1-x) - \frac{2}{x}\sum_{n=2}^{+\infty} \frac{x^n}{n}$$

$$= -2\ln(1-x) - \frac{2}{x}(-\ln(1-x) - x) = \frac{2(1-x)\ln(1-x)}{x} + 2$$

et $f(0) = a_0 = 0$. Remarque. Cette fonction f est bien continue en 0 conformément au cours car $\lim_{x \to 0} f(x) = f(0) = 0$.

En effet, $\lim_{x \to 0} \frac{2(1-x)\ln(1-x)}{x} = -2.$

Exercice 5. Préciser le DSE(0) des fonctions suivantes :
1.
$$f(x) = \sin^3 x$$
, 2. $f(x) = \frac{2x-1}{x^2-3x+2}$, 3. $f(x) = \frac{1}{1+x+x^2}$, 4. $f(x) = \ln(x^2-7x+12)$, 5. $F(x) = \int_0^x \frac{dt}{1+t^2+t^4}$, 6. $F(x) = \int_0^x f(t) dt$ où $f(t) = \frac{\arctan t}{t}$ si $t \neq 0$ et $f(0) = 1$.

6.
$$F(x) = \int_0^x f(t) dt$$
 où $f(t) = \frac{\arctan t}{t}$ si $t \neq 0$ et $f(0) = 1$.

 $Solutions\ et/ou\ indications$:

1. On «linéarise» $\sin^3 x$

$$\sin^3 x = (\frac{e^{ix} - e^{-ix}}{2i})^3 = -\frac{1}{8i}(e^{i3x} - 3e^{ix} + 3e^{-ix} - e^{-i3x}) = -\frac{1}{8i}(2i\sin(3x) - 6i\sin(x)) = \frac{1}{4}(3\sin x - \sin(3x)),$$

puis en utilisant le DSE(0) de $\sin(t)$ avec t=x et t=3x, on obtient, pour t

$$\sin^3(x) = \frac{1}{4} \left(3 \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} - \sum_{n=0}^{+\infty} (-1)^n \frac{(3x)^{2n+1}}{(2n+1)!}\right) = \sum_{n=0}^{+\infty} \frac{(-1)^n (3-3^{2n+1})}{4(2n+1)!} x^{2n+1}.$$

Remarque: Comme ce DSE(0) est la série de Taylor de la fonction \sin^3 en 0, on obtient directement :

$$\forall n \in \mathbb{N}, (\sin^3)^{(2n+1)}(0) = \frac{(-1)^n (3 - 3^{2n+1})}{4}.$$

2. On décompose la fraction f(x) en éléments simples et on utilise le DSE(0) de $\frac{1}{1-x}$. Pour tout $x \in \mathbb{R} \setminus \{1,2\}, f(x) = -\frac{1}{x-1} + \frac{3}{x-2} = \frac{1}{1-x} + \frac{3}{x-2} = \frac{1}{1-x} - \frac{3}{2} \cdot \frac{1}{1-\frac{x}{2}}$. D'où

$$\forall x \in]-1,1[, f(x) = \sum_{n=0}^{+\infty} x^n - \frac{3}{2} \sum_{n=0}^{+\infty} (\frac{x}{2})^n = \sum_{n=0}^{+\infty} (1 - \frac{3}{2^{n+1}}) x^n.$$

3. Un peu astucieux! Pour tout $x \neq 1$, $1+x+x^2=\frac{1-x^3}{1-x}$, donc $f(x)=(1-x)\cdot\frac{1}{1-x^3}$. On remplace ensuite $\frac{1}{1-x^3}$ par son DSE(0) ce qui nous oblige à supposer désormais $x^3 \in]-1,1[$, c'est-à-dire $x \in]-1,1[$. Alors, pour tout $x \in]-1,1[$,

$$f(x) = (1-x)\sum_{n=0}^{+\infty} (x^3)^n = \sum_{n=0}^{+\infty} x^{3n} - \sum_{n=0}^{+\infty} x^{3n+1} (= \sum_{p=0}^{+\infty} x^{3p} - \sum_{p=0}^{+\infty} x^{3p+1}) = \sum_{n=0}^{+\infty} a_n x^n$$

avec : $\forall p \in \mathbb{N}, a_{3p} = 1, a_{3p+1} = -1 \text{ et } a_{3p+2} = 0.$

4. Soit $x \in \mathbb{R}$. On a : $x^2 - 7x + 12 = (x - 3)(x - 4) = (3 - x)(4 - x)$. Donc $D_f =] - \infty, 3[\cup]4, +\infty[$ et le rayon de convergence du DSE(0) cherché est nécessairement inférieur ou égal à 3. Or, pour tout $t \in]-1,1[,-\ln(1-t)=\sum_{n=0}^{+\infty}\frac{t^n}{n}(*),$ donc, en utilisant deux fois (*) avec $t=\frac{x}{3}$ et $t=\frac{x}{4}$, on obtient que pour tout $x\in]-3,3[$,

$$f(x) = \ln(\underbrace{3-x}_{>0}) + \ln(\underbrace{4-x}_{>0}) = \ln(12) + \ln(1 - \underbrace{\frac{x}{3}}_{\in]-1,1[}) + \ln(1 - \underbrace{\frac{x}{4}}_{\in]-1,1[}) = \ln(12) - \sum_{n=1}^{+\infty} \frac{1}{n} ((\frac{1}{3})^n + (\frac{1}{4})^n) x^n.$$

5. On commence comme en 3. : pour tout $t \in \mathbb{R} \setminus \{-1,1\}$, $\frac{1}{1+t^2+t^4} = \frac{1}{1+t^2+(t^2)^2} = \frac{1}{\frac{1-t^6}{1-t^2}} = \frac{1-t^2}{1-t^6}$. Donc :

$$\forall t \in]-1,1[,\ \frac{1}{1+t^2+t^4}=(1-t^2)\sum_{p=0}^{+\infty}t^{6p}=\sum_{p=0}^{+\infty}t^{6p}-\sum_{p=0}^{+\infty}t^{6p+2}=\sum_{n=0}^{+\infty}a_nt^n$$

avec : $\forall p \in \mathbb{N}$, $a_{6p} = 1$, $a_{6p+2} = -1$, et $a_{6p+1} = a_{6p+3} = a_{6p+4} = a_{6p+5} = 0$. Et comme la somme d'une série entière de rayon de convergence $R \in]0, +\infty]$ s'intègre terme à terme sur tout segment inclus dans]-R, R[, on obtient finalement que :

$$\forall x \in]-1,1[, F(x) = \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1} = \sum_{p=0}^{+\infty} \frac{x^{6p+1}}{6p+1} - \sum_{p=0}^{+\infty} \frac{x^{6p+3}}{6p+3}.$$

6. On utilise le DSE(0) de la fonction $\arctan: \forall t \in]-1,1[\setminus \{0\},\ f(t)=\sum_{n=0}^{+\infty}(-1)^n\frac{t^{2n}}{2n+1}$ (égalité vraie aussi si t=0). Par intégration terme à terme de la somme de cette série entière (de rayon de convergence 1) sur tout segment inclus dans]-1,1[, on a donc immédiatement :

$$\forall x \in]-1, 1[, F(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)^2}$$

Exercice 6. Rayon de convergence R et somme pour $x \in]-R,R[$ de la série entière $\sum_{n>0} \frac{x^{4n}}{4n+1}$

Indications. On obtient R=1 avec la règle de D'Alembert. Soit $x\in]-1,1[$. Posons $f(x)=\sum_{n=0}^{+\infty}\frac{x^{4n}}{4n+1}$. On a : f(0)=1 et si $x\neq 0$,

 $f(x) = \frac{1}{x}g(x)$ avec $g(x) = \sum_{n=0}^{+\infty} \frac{x^{4n+1}}{4n+1}$. Comme g est la somme d'une série entière de rayon 1, g est dérivable terme à terme sur]-1,1[:

$$\forall x \in]-1,1[, g'(x) = \sum_{n=0}^{+\infty} x^{4n} = \sum_{n=0}^{+\infty} (x^4)^n = \frac{1}{1-x^4} = \frac{1}{2}(\frac{1}{1+x^2} + \frac{1}{1-x^2}) = \frac{1}{2}(\frac{1}{1+x^2} + \frac{1}{2} \cdot \frac{1}{1+x} + \frac{1}{2} \cdot \frac{1}{1-x}).$$

Donc il existe $c \in \mathbb{R}$ tel que $\forall x \in]-1, 1[, g(x) = \frac{1}{2}\arctan(x) + \frac{1}{4}\ln(\frac{1+x}{1-x}) + c$. Or g(0) = 0, donc $\forall x \in]-1, 1[, g(x) = \frac{1}{2}\arctan(x) + \frac{1}{4}\ln(\frac{1+x}{1-x})$ et enfin $\forall x \in]-1, 1[\setminus \{0\}, f(x) = \frac{1}{2}\arctan(x) + \frac{1}{4x}\ln(\frac{1+x}{1-x})$.

Exercice 7. 1. Rayon de convergence des séries entières : a) $\sum_{n>0} z^{n^2}$, b) $\sum_{n>0} \tan(\frac{n\pi}{7})z^n$.

Indications. Ces deux séries entières ont pour rayon de convergence 1 :

- a) divergence grossière pour z=1 et convergence absolue si |z|<1 car, par croissance comparée, $\lim_{n\to+\infty} n^2|z|^{n^2}=0$.
- b) Posons $a_n = \tan(\frac{n\pi}{7}), n \in \mathbb{N}$. Comme tan est π -périodique, $\forall n \in \mathbb{N}, a_{n+7} = a_n$ d'où $a_n \in \{a_0, \cdots a_6\}$. Vérifier que $\forall n \in \mathbb{N}, a_{7-n} = -a_n$ puis que $|a_n| \le \tan(\frac{3\pi}{n})$. En déduire $R \ge 1$ puis R = 1 en montrant (par l'absurde) que la série $\sum a_n$ diverge grossièrement.

Exercice 8. Justifier que les séries $\sum_{n>0} a_n z^n$ et $\sum_{n>0} (-1)^n a_n z^n$ ont le même rayon de convergence.

Solution. Pas très compliqué! Notons $b_n = (-1)^n a_n$ et R_a (resp. R_b) le rayon de convergence de la série entière $\sum a_n z^n$ (resp. $\sum b_n z^n$). Comme pour tout $n \in \mathbb{N}$, $|b_n| = |a_n|$, on a immédiatement :

$$I(b) = \{r \in \mathbb{R}^+ / (|b_n|r^n) \text{ est majorée}\} = \{r \in \mathbb{R}^+ / (|a_n|r^n) \text{ est majorée}\} = I(a).$$

Et, par définition du rayon de convergence d'une série entière, $R_b = \sup I(b) = \sup I(a) = R_a$.

Exercice 9. Les questions 1 et 2 sont indépendantes.

- 1. Soit $a_n = (\frac{n}{n+1})^{n^2}$, $n \in \mathbb{N}^*$. 1. a. Montrer que $a_n \underset{n \to +\infty}{\sim} Ce^{-n}$ où C est une constante réelle à préciser.

- 1. b. Déterminer le rayon de convergence de la série entière $\sum_{n\geq 1}a_nx^n$.
- **2.** Soit $(b_n)_{n\in\mathbb{N}}$ une suite de réels telle que $\forall n\in\mathbb{N}, n+1\leq b_n\leq 3n^2+5$. Déterminer le rayon de convergence de $\sum_{n>0}b_nx^n$.

Solution: 1. a. Rappelons que $\ln(1+\frac{1}{n})=\frac{1}{n}-\frac{1}{2n^2}+\frac{1}{n^2}\varepsilon_n$ avec $\lim_{n\to+\infty}\varepsilon_n=0$. On a donc:

$$a_n = (\frac{n+1}{n})^{-n^2} = e^{-n^2\ln(1+\frac{1}{n})} = e^{-n^2(\frac{1}{n}-\frac{1}{2n^2}+\frac{1}{n^2}\varepsilon_n)} = e^{-n} \cdot e^{\frac{1}{2}} \cdot e^{\varepsilon_n} \underset{n \to +\infty}{\sim} e^{\frac{1}{2}}e^{-n}$$

car $\lim_{n \to +\infty} e^{\varepsilon_n} = 1$. La constante C cherchée est donc $e^{\frac{1}{2}}$.

1. b. Notons $u_n(x) = a_n x^n$, $x \in \mathbb{R}$. Comme $a_n \underset{n \to +\infty}{\sim} Ce^{-n}$, $a_{n+1} \underset{n \to +\infty}{\sim} Ce^{-(n+1)}$. Pour tout x non nul, $u_n(x) \neq 0$ et :

$$\frac{|u_{n+1}(x)|}{|u_n(x)|} \underset{n \to +\infty}{\sim} \frac{a_{n+1}}{a_n} |x| \underset{n \to +\infty}{\sim} e^{-1} |x|.$$

Donc

$$\lim_{n \to +\infty} \frac{|u_{n+1}(x)|}{|u_n(x)|} = e^{-1}|x|.$$

D'après la règle de D'Alembert, si $e^{-1}|x| < 1$, c'est-à-dire |x| < e, la série $\sum u_n(x)$ converge absolument et si |x| > e, la série $\sum a_n x^n$ diverge grossièrement car $\lim_{n \to +\infty} |u_n(x)| = +\infty$. Donc le rayon de convergence de la série entière $\sum_{n \ge 1} a_n x^n$ est égal à e.

Variante. D'après 1. a. et une propriété du cours, la série entière $\sum_{n\geq 1} a_n x^n$ a le même rayon de convergence que la série entière (géomé-

$$\mathit{trique}) \; \sum_{n \geq 1} C e^{-n} x^n = \sum_{n \geq 1} C (\frac{x}{e})^n \; (\mathit{\'egal} \; \mathit{\`a} \; e).$$

2. Posons pour tout $n \in \mathbb{N}$, $a_n = n+1$ et $c_n = 3n^2 + 5$. On vérifie classiquement (en utilisant le critère de D'Alembert) que le rayon de convergence R_a de la série entière $\sum_{n \geq 0} a_n x^n$ est égal 1. De même le rayon de convergence R_c de la série entière $\sum_{n \geq 0} c_n x^n$ est égal à 1.

Notant R_b le rayon de convergence de la série entière $\sum_{n>0} b_n x^n$, on a, par une propriété du cours, $R_b \le R_a$ et $R_b \ge R_c$. D'où $R_b = 1$.

Exercice 10. Vrai ou faux?

Soient (a_n) une suite réelle et R le rayon de convergence de la série entière $\sum a_n x^n$.

- **1.** Si la série $\sum a_n$ converge, alors $R \geq 1$.
- **2.** Si la série $\sum a_n$ converge absolument, alors R=1.
- 3. Si la série $\sum a_n$ converge, mais ne converge pas absolument, alors R=1.
- **4.** Si pour tout n, $a_n \neq 0$ et $\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = 2$ alors $R = \frac{1}{2}$.

Exercice 11. Cocher la bonne réponse :

1. Soit $\sum a_n z^n$ une série entière de rayon de convergence R>0. Le rayon de convergence de la série entière $\sum 2^n a_n z^n$ est égal à :

$$\Box 2R$$
 $\Box \frac{R}{2}$.

2. Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Soit $u \in \mathbb{C}^*$ tel que la série $\sum a_n u^n$ converge. Alors :

$$\square R \ge |u| \qquad \qquad \square R \le |u|.$$

3. Soit (a_n) une suite réelle bornée. Soit R le rayon de convergence de la série entière $\sum a_n x^n$. Alors :

$$\square R \ge 1$$
 $\square R \le 1$.

Exercice 12. Déterminer tous les réels x tels que la série $\sum_{n\geq 1} \ln(1+\frac{1}{n}) x^n$ converge.

$$\textit{R\'eponse}: \sum_{n\geq 1} \ln(1+\frac{1}{n})x^n \ \textit{converge si et seulement si } x \in [-1,1[.$$

Exercice 13. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels positifs. Soit $R\in]0,+\infty[$ le rayon de convergence de la série entière $\sum a_n z^n$. Déterminer le rayon de convergence de la série entière $\sum \sqrt{a_n} x^n$.

Une solution. Commençons par un bref rappel de cours sur le rayon de convergence. Soit $\sum b_n z^n$ une série entière de la variable $z \in \mathbb{C}$:

- $I(t) = \{r \in \mathbb{R}^+ | \text{la suite}(b_n r^n) \text{ est bornée}\} = \{r \in \mathbb{R}^+ | \text{la suite}(|b_n| r^n) \text{ est majorée}\} \text{ est un } intervalle \text{ de } \mathbb{R}^+ \text{ contenant } 0.$
- ii) Le rayon de convergence R_b de $\sum b_n z^n$ est, par définition, la borne supérieure de I(b) si l'intervalle I(b) est majoré ou est égal à $+\infty$ si l'intervalle I(b) n'est pas majoré, c'est-à-dire si $I(b) = [0, +\infty[$ (R_b est « l'extrémité » de l'intervalle I(b)).

Suivant la valeur de b_n , il y a donc quatre types d'intervalle I(b) possibles :

 $I(b) = \{0\}$ et $R_b = 0$, $I(b) = [0, \rho]$ ou $I(b) = [0, \rho]$ avec $\rho > 0$ et dans ces deux cas $R_b = \rho$, $I(b) = [0, +\infty[$ et $R_b = +\infty$.

Enfin nous utiliserons ci-dessous le résultat suivant facile à prouver en exercice :

Soit (u_n) une suite réelle. La suite (u_n) est bornée si et seulement si la suite (u_n^2) est bornée.

Revenons maintenant à la question posée. Soit $b_n = \sqrt{a_n}$. Soit $r \in \mathbb{R}^+$. On a :

$$r \in I(b)$$
 \Leftrightarrow la suite $(b_n r^n)$ est bornée \Leftrightarrow la suite $((b_n r^n)^2)$ est bornée \Leftrightarrow la suite $(a_n (r^2)^n)$ est bornée \Leftrightarrow $r^2 \in I(a)$

Donc si $I(a) = [0, R[, I(b) = [0, \sqrt{R}[$ et si $I(a) = [0, R], I(b) = [0, \sqrt{R}].$

En conclusion, le rayon de convergence de la série entière $\sum \sqrt{a_n} x^n$ est égal à \sqrt{R} .

Le raisonnement effectué peut se généraliser :

Exercice. Soit $R \in [0, +\infty]$ le rayon de convergence de la série entière $\sum a_n z^n$ et $\alpha > 0$. Déterminer le rayon de convergence de la série entière $\sum |a_n|^{\alpha} z^n$.

Exercice 14. Soit C > 0. Soit $(a_n)_{n \in \mathbb{N}}$ une suite réelle telle que $|a_{n+1}| \leq C|a_n|$ pour tout n supérieur à un certain indice $N \in \mathbb{N}$. Montrer que le rayon de convergence R de la série entière $\sum a_n x^n$ est au moins égal à $\frac{1}{C}$.

Réponse : On montre par récurrence que $\forall n \geq N, |a_n| \leq C^{n-N} |a_N|$. Soit $x \in \mathbb{R}$. On a donc :

$$\forall n \ge N, |a_n x^n| = |a_n| |x|^n \le |a_N| C^{-N} (C|x|)^n.$$

Par conséquent, si $|x| < \frac{1}{C}$, la convergence de la série géométrique $\sum (C|x|)^n$ implique par comparaison (de termes positifs) la convergence (absolue) de la série $\sum a_n x^n$. Donc $R \ge \frac{1}{C}$.

Exercice 15. Soit $\theta \in \mathbb{R}$.

1. Montrer que le rayon de convergence de la série entière $\sum_{n\geq 1} \frac{\cos(n\theta)}{n} x^n$ est égal à 1.

Indication : On rappelle qu'une série entière et sa série entière dérivée ont le même rayon de convergence.

On pose pour tout $x \in]-1,1[, f(x) = \sum_{n=1}^{+\infty} \frac{\cos(n\theta)}{n} x^n.$

- **2.** Justifier que f est de classe \mathcal{C}^1 sur]-1,1[et que, pour tout $x\in]-1,1[$, $f'(x)=\frac{\cos\theta-x}{1-2x\cos\theta+x^2}$
- 3. Soit $x \in]-1,1[$. Calculer f(x).
- **4.** Soit $x \in]-1, 1[$. Calculer $\int_0^{\pi} \ln(1 2x \cos \theta + x^2) d\theta$.

 $Une \ solution: \textbf{1.} \ \text{D'après le cours sur les séries entières}, \sum_{n\geq 1} \frac{\cos(n\theta)}{n} x^n \ \text{et} \ \sum_{n\geq 1} n a_n x^n = \sum_{n\geq 1} \cos(n\theta) \, x^n \ \text{ont même rayon de convergence } R.$

i) Soit $x \in]-1,1[$. La série $\sum \cos(n\theta)x^n$ converge absolument par comparaison car

$$\forall n \in \mathbb{N}^*, |\cos(n\theta) x^n| = |\cos(n\theta)||x|^n \le |x|^n$$

et la série géométrique $\sum |x|^n$ converge car $|x| \in [0,1[.$ D'où $R \geq 1.$

ii) La suite $(\cos(n\theta))_{n\in\mathbb{N}^*}$ ne tend pas vers 0 quand n tend vers $+\infty$. En effet, si c'était le cas, on aurait aussi $\lim_{n\to+\infty}\cos((n+1)\theta)=0$ et l'égalité : $\cos((n+1)\theta)=\cos(n\theta+\theta)=\cos(n\theta)\cos(\theta)-\sin(n\theta)\sin(\theta)$ impliquerait $\lim_{n\to+\infty}\sin(n\theta)=0$ (car $\sin(\theta)\neq0$) et on aurait donc :

 $\lim_{n \to +\infty} \underbrace{(\cos^2(n\theta) + \sin^2(n\theta))}_{=1} = 0 \text{ ce qui est absurde. D'où } R \leq 1 \text{ par divergence grossière de la série entière } \sum_{n \geq 1} \cos(n\theta) \, x^n \text{ en } x = 1.$

En conclusion R=1

2. Comme f est la somme d'une série entière de rayon de convergence R=1, f est, par théorème, indéfiniment dérivable terme à terme sur]-1,1[. En particulier, pour tout $x\in]-1,1[$:

$$f'(x) = \sum_{n=1}^{+\infty} \cos(n\theta) x^{n-1} = \sum_{n=1}^{+\infty} \operatorname{Re} \ (x^{n-1}e^{in\theta}) = \operatorname{Re} \ (\sum_{n=1}^{+\infty} x^{n-1}e^{in\theta}) = \operatorname{Re} \ (e^{i\theta} \sum_{n=1}^{+\infty} (xe^{i\theta})^{n-1}) = \operatorname{Re} \ (e^{i\theta} \sum_{n=0}^{+\infty} (xe^{i\theta})^n).$$

Comme $|xe^{i\theta}| = |x||e^{i\theta}| = |x| < 1$, on a : $\sum_{n=0}^{+\infty} (xe^{i\theta})^n = \frac{1}{1 - xe^{i\theta}}$ et finalement :

$$f'(x) = \text{Re } \frac{e^{i\theta}}{1 - xe^{i\theta}} = \text{Re } \frac{e^{i\theta}(1 - xe^{-i\theta})}{(1 - xe^{i\theta})(1 - xe^{-i\theta})} = \text{Re } \frac{e^{i\theta} - x}{(1 - xe^{i\theta})(1 - xe^{-i\theta})} = \frac{\text{Re } (e^{i\theta} - x)}{1 - 2x\cos\theta + x^2} = \frac{\cos\theta - x}{1 - 2x\cos\theta + x^2}$$

3. Considérons la fonction g, définie pour tout $x \in]-1,1[$, par : $g(x)=-\frac{1}{2}\ln(1-2x\cos\theta+x^2)$.

 $Remarque: si \ x \in]-1,1[\ et \ \theta \in \mathbb{R}, \ on \ a: 1-2x \cos \theta + x^2 = |1-xe^{i\theta}|^2 > 0 \ car \ xe^{i\theta} \neq 1 \ puisque \ |xe^{i\theta}| = |x| < 1.$

Cette fonction g est dérivable sur] -1,1[, de dérivée : $g'(x)=\frac{\cos\theta-x}{1-2x\cos\theta+x^2}$. D'après la question précédente, il existe $C\in\mathbb{R}$ tel que $\forall x\in]-1,1[$, f(x)=g(x)+C car f et g ont même dérivée sur l'intervalle] -1,1[. Comme f(0)=g(0)=0, on conclut que :

$$\forall x \in]-1, 1[, f(x) = g(x) = -\frac{1}{2}\ln(1 - 2x\cos\theta + x^2).$$

4. Fixons $x \in]-1,1[$ et posons pour tous $n \in \mathbb{N}^*$ et tout $\theta \in \mathbb{R}, v_n(\theta) = \frac{\cos(n\theta)}{n}x^n$.

Les hypothèses du théorème d'intégration terme à terme de la somme d'une série de fonctions continues sur un segment sont satisfaites pour la série de fonctions $\sum v_n$, de la variable θ . En effet :

- i) Chaque fonction $v_n:\theta\mapsto v_n(\theta)$ est continue sur \mathbb{R} , donc sur $[0,\pi]$, par composition car $\theta\mapsto n\theta$ et cos sont continues sur \mathbb{R} ,
- ii) La série de fonctions $\sum v_n$ (de la variable θ) converge normalement donc uniformément sur \mathbb{R} , et a fortiori sur $[0,\pi]$, car

$$\forall n \in \mathbb{N}^*, \ \|v_n\|_{\infty,\mathbb{R}} = \sup_{\theta \in \mathbb{R}} |v_n(\theta)| = \max_{\theta \in \mathbb{R}} |v_n(\theta)| = |v_n(0)| = \frac{|x|^n}{n}$$

et la série $\sum_{n\geq 1}\frac{|x|^n}{n}$ converge (de somme $-\ln(1-|x|)).$

Par conséquent d'après 3. :

$$\int_0^{\pi} \ln(1 - 2x\cos\theta + x^2) d\theta = -2 \int_0^{\pi} \sum_{n=1}^{+\infty} v_n(\theta) d\theta = -2 \sum_{n=1}^{+\infty} \int_0^{\pi} v_n(\theta) d\theta = -2 \sum_{n=1}^{+\infty} \frac{x^n}{n} \underbrace{\int_0^{\pi} \cos(n\theta) d\theta}_{=0} = 0$$

car pour tout $n \in \mathbb{N}^*$, $\int_0^{\pi} \cos(n\theta) d\theta = \frac{1}{n} (\sin(n\pi) - \sin(0)) = 0$.