Applications linéaires : révisions et compléments.

Dans ce chapitre, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Généralités.

Définition 1 a. Soient E et F deux Kev. Soit f une application de E dans F. On dit que f est linéaire ssi :

$$\forall (u, v) \in E^2, \, \forall \alpha \in \mathbb{K}, \, f(\alpha u + v) = \alpha f(u) + f(v) \tag{1}$$

b. Soit E un \mathbb{K} ev. Une application linéaire f de E dans E est appelée endomorphisme de E. c. Soit E un \mathbb{K} ev. Une application linéaire f de E dans \mathbb{K} est appelée forme linéaire sur E.

On note $\mathcal{L}(E,F)$ (resp. $\mathcal{L}(E)$) l'ensemble des applications linéaires de E dans F (resp. des endomorphismes de E).

Remarque 1 On vérifie que $(1) \Leftrightarrow \forall (u,v) \in E^2, f(u+v) = f(u) + f(v)$ et $\forall \alpha \in \mathbb{K}, \forall u \in E, f(\alpha u) = \alpha f(u)$.

Définition 2 a. Soient E et F deux $\mathbb{K}ev$. Soit f une application linéaire de E dans F. On dit que f est un isomorphisme de E dans (sur) F si f est une bijection de E dans (sur) F. b. Soit E un $\mathbb{K}ev$. Un endomorphisme bijectif de E est appelé automorphisme de E.

On note $\mathcal{GL}(E)$ l'ensemble des automorphismes de E.

Définition 3 Soient E et F deux $\mathbb{K}ev$. Soit $f \in \mathcal{L}(E,F)$. Le noyau de f, noté $\operatorname{Ker} f$, est le sous-ensemble de E:

$$\text{Ker } f = \{ u \in E / f(u) = 0_F \}.$$

L'image de f, noté $\operatorname{Im} f$, est le sous-ensemble de F :

$$\operatorname{Im} f = \{ v \in E / \exists u \in E, v = f(u) \}.$$

On rappelle que :

Proposition 1 Soient E et F deux $\mathbb{K}ev$. Soit $f \in \mathcal{L}(E, F)$.

- a. Ker f est un sous-espace vectoriel de E.
- b. f est injective si et seulement si Ker $f = \{0_E\}$.
- c. Im f est un sous-espace vectoriel de F.
- d. f est surjective si et seulement si Im f = F.

2 Exemples fondamentaux.

2.1 Homothéties vectorielles.

2.1.1 Définition.

 $\textbf{D\'efinition 4} \ \ \textit{Soit E un } \mathbb{K}\textit{ev. Soit } k \in \mathbb{K}. \ \textit{L'homoth\'etie vectorielle de rapport } k \ \textit{est l'application } h_k : \ \ \overset{E \rightarrow E}{u \mapsto ku}$

Remarquons que h_0 est l'application nulle, notée $0_{\mathcal{L}(E)}$ ou θ et h_1 est l'application identique, notée Id_E ou e. On vérifie facilement que $\forall k \in \mathbb{K}, \ h_k \in \mathcal{L}(E)$ et que si $k \neq 0, \ h_k$ est un automorphisme de E, de bijection réciproque $h_k^{-1} = h_{\frac{1}{k}}$.

2.1.2 Complément : caractérisation d'une homothétie.

Proposition 2 Soit $f \in \mathcal{L}(E)$ tel que, pour tout $u \in E$, il existe $k_u \in \mathbb{K}$ (dépendant a priori de u) tel que $f(u) = k_u u$. Alors f est une homothétie vectorielle. Autrement dit : il existe une constante $k \in \mathbb{K}$ tel que $\forall u \in E$, f(u) = ku.

Preuve. Soient u et v deux vecteurs non nuls de E. Montrons que $k_u = k_v$. Distinguons deux cas :

 1^{er} cas : u et v sont colinéaires. Soit $\alpha \in \mathbb{K}^*$ tel que $v = \alpha u$. On a $f(v) = f(\alpha u) = \alpha f(u) = \alpha k_u u$ et aussi $f(v) = k_v v = k_v \alpha u$. Comme $\alpha \neq 0$ et $u \neq 0_E$, on a donc $k_u = k_v$.

 $2^{\mathbf{e}}$ cas : u et v ne sont pas colinéaires. Soit w=u+v. On a $f(w)=k_ww=k_wu+k_wv$ et aussi $f(w)=f(u)+f(v)=k_uu+k_vv$. D'où $(k_w-k_u)u+(k_w-k_v)v=0_E$.

Comme la famille (u, v) est libre, on déduit de l'égalité précédente que $k_u = k_v (= k_w)$.

2.2 Projecteurs et projections vectorielles.

2.2.1 Définition d'un projecteur.

Définition 5 Soit $f \in \mathcal{L}(E)$. On dit que f est un projecteur de E ssi $f^2(=f \circ f) = f$.

2.2.2 Définition d'une projection vectorielle.

Définition 6 Soit E un $\mathbb{K}ev$. Soient F et G deux sev supplémentaires dans E, i.e. $E = F \oplus G$.

Soit $u \in E$, $\exists ! (u', u'') \in F \times G$ tel que u = u' + u''. L'application $p : E \to E \\ u \mapsto u'$ est un endomorphisme de E, appelé projection sur F, de direction G (ou parallèlement à G).

Vérifions que p est bien linéaire: soient u et $v \in E$. Soit $\alpha \in \mathbb{K}$. Posons: u = u' + u'' et v = v' + v'', avec $u', v' \in F$ et $u'', v'' \in G$. On a: $\alpha u + v = (\alpha u' + v') + (\alpha u'' + v'')$, avec $\alpha u' + v' \in F$ et $\alpha u'' + v'' \in G$ car F et G sont deux sev de E. Donc, par définition de p, $p(\alpha u + v) = \alpha u' + v' = \alpha p(u) + p(v)$.

Exercice 1. Soit $E = \mathbb{R}[X]$. Soit $A \in \mathbb{R}[X] \setminus \{0\}$. Pour tout $P \in E$, on note f(P) le reste de la division de P par A. Prouver que $f \in \mathcal{L}(E)$ et que f est un projecteur de E.

Remarque 2 Eléments caractéristiques d'une projection vectorielle : noyau et image.

Reprenons les notations de la définition 6: Soit $u \in E.$ Posons : u = u' + u'', avec $u' \in F$ et $u'' \in G.$ $u \in \operatorname{Ker} p \Leftrightarrow u' = 0_E \Leftrightarrow u \in G.$ Donc $\operatorname{Ker} p = G.$ De plus, par définition de p, $\operatorname{Im} p \subset F$ et plus précisement, $\operatorname{Im} p = F: \forall u \in F, \ u = p(u),$ car $u = u + 0_E$ et $0_E \in G!$ De fait, on a $\forall u \in E, \ p(u) = u \Leftrightarrow u'' = 0_E \Leftrightarrow u \in F.$ Donc $\operatorname{Im} p = F = \operatorname{Ker}(p - e) = \{u \in E/p(u) = u\}.$

Remarque 3 Soient p une projection vectorielle et $u \in E$. On a $p^2(u) = p(p(u)) = p(u') = u' = p(u)$. Donc $p^2 = p$. Autrement dit, une projection vectorielle de E est un projecteur.

Remarque 4 Soit p une projection vectorielle. On vérifie facilement que e-p est la projection vectorielle sur G, de direction F (ou parallèlement à F).

2.2.3 Un projecteur est une projection vectorielle.

Enonçons maintenant le résultat principal de cette section.

Théorème 1 Soit $f \in \mathcal{L}(E)$ tel que $f^2 = f$. Alors $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont deux sev supplémentaires de E et f est la projection vectorielle sur $\operatorname{Im} f$, de direction $\operatorname{Ker} f$.

Preuve. Soit u un vecteur quelconque de E. On a u=(u-f(u))+f(u). Comme $f(u-f(u))=f(u)-f^2(u)=0_E, u-f(u)\in \mathrm{Ker}\, f$. De plus, $f(u)\in \mathrm{Im}\, f$. Le vecteur u est donc la somme d'un vecteur de $\mathrm{Ker}\, f$ et d'un vecteur de $\mathrm{Im}\, f$. Par conséquent, $E=\mathrm{Ker}\, f+\mathrm{Im}\, f$. Considérons maintenant $v\in \mathrm{Ker}\, f\cap \mathrm{Im}\, f$. On a $f(v)=0_E$ et $\exists w\in E$ tel que v=f(w). Donc $v=f(w)=f^2(w)=f(v)=0_E$. Ainsi, $\mathrm{Ker}\, f\cap \mathrm{Im}\, f=\{0_E\}$. On vient donc de prouver que $E=\mathrm{Ker}\, f\oplus \mathrm{Im}\, f:u$ s'écrit donc d'une seule façon comme la somme d'un vecteur de $\mathrm{Im}\, f$ (le vecteur f(u)) et d'un vecteur de $\mathrm{Ker}\, f$ (le vecteur u-f(u)). En d'autres termes (cf. Définition 6), le vecteur f(u) est l'image de u par la projection vectorielle p sur $\mathrm{Im}\, f$, de direction $\mathrm{Ker}\, f$. Donc f=p.

2.3 Endomorphismes involutifs et symétries vectorielles.

2.3.1 Définition d'un endomorphisme involutif.

Rappelons que l'on note plus simplement e l'application Id_E .

Définition 7 Soit $f \in \mathcal{L}(E)$. On dit que f est un endomorphisme involutif (ou une involution) de E ssi $f^2(=f \circ f)=e$.

2.3.2 Définition d'une symétrie vectorielle.

Définition 8 Soit E un $\mathbb{K}ev$. Soient F et G deux sev supplémentaires dans E, i.e. $E = F \oplus G$.

 $Soit \ u \in E, \ \exists ! (u',u'') \in F \times G \ tel \ que \ u = u' + u''. \ L'application \ s : \ \begin{array}{c} E \to E \\ u \mapsto u' - u'' \end{array} \ est \ un \ endomorphisme \ de \ E, \ appelé \ symétrie$ (vectorielle) par rapport à F, de direction G (ou parallèlement à G)

Vérifions que s est bien linéaire: soient u et $v \in E$. Soit $\alpha \in \mathbb{K}$. Posons: u = u' + u'' et v = v' + v'', avec $u', v' \in F$ et $u'', v'' \in G$. On $\mathrm{a}: \alpha u + v = (\alpha u' + v') + (\alpha u'' + v''), \ \mathrm{avec} \ \alpha u' + v' \in F \ \mathrm{et} \ \alpha u'' + v'' \in G \ \mathrm{car} \ F \ \mathrm{et} \ G \ \mathrm{sont} \ \mathrm{deux} \ \mathrm{sev} \ \mathrm{de} \ E. \ \mathrm{Donc}, \ \mathrm{par} \ \mathrm{definition} \ \mathrm{de} \ s,$ $s(\alpha u + v) = \alpha u' + v' - \alpha u'' + v'' = \alpha(u' - u'') + v' - v'' = \alpha s(u) + s(v).$

Remarque 5 Soient s la symétrie par rapport à F, de direction G et p la projection vectorielle sur F, de direction G. On vérifie que s = 2p - e. Comme $p \in \mathcal{L}(E)$, on retrouve que $s \in \mathcal{L}(E)$.

Remarque 6 Eléments caractéristiques d'une symétrie : vecteurs invariants et vecteurs transformés en leurs opposés.

```
Reprenons les notations de la définition 6: Soit u \in E. Posons : u = u' + u'', avec u' \in F et u'' \in G.
On a: s(u) = u \Leftrightarrow u' - u'' = u' + u'' \Leftrightarrow u'' = 0_E \Leftrightarrow u \in F. Donc F = \operatorname{Ker}(s - e). De même, s(u) = -u \Leftrightarrow u' - u'' = -u' - u'' \Leftrightarrow u' = 0_E \Leftrightarrow u \in G. Donc G = \operatorname{Ker}(s + e).
```

Remarque 7 Soient s une symétrie vectorielle et $u \in E$.

Reprenons les notations de la définition 8. Comme $u' \in F$ et $u'' \in G$, on a, d'après la remarque 6 : $s^{2}(u) = s(s(u)) = s(u' - u'') = s(u') - s(u'') = u' - (-u'') = u$. Donc $s^{2} = e$. Autrement dit, une symétrie vectorielle de E est un endomorphisme involutif.

Remarque 8 Soit s la symétrie par rapport à F, de direction G. On vérifie que -s est la symétrie vectorielle par rapport à G, de direction

Un endomorphisme involutif est une symétrie vectorielle.

Enonçons maintenant le résultat principal de cette section.

Théorème 2 Soit $f \in \mathcal{L}(E)$ tel que $f^2 = e$. Alors $\operatorname{Ker}(f - e)$ et $\operatorname{Ker}(f + e)$ sont deux sev supplémentaires de E et f est la symétrie vectorielle par rapport à Ker(f - e), de direction Ker(f + e).

```
\begin{aligned} & \textit{Preuve. Soit } u \in \textit{E. Posons } u' = \frac{1}{2}(u + f(u)) \text{ et } u'' = \frac{1}{2}(u - f(u)). \text{ On a } u = u' + u''. \text{ Comme } f(u') = \frac{1}{2}(f(u) + f^2(u)) = \frac{1}{2}(u + f(u)) = u', \\ & u' \in \text{Ker}(f - e). \text{ On montre de même que } f(u'') = -u'', \text{ i.e. } u'' \in \text{Ker}(f + e). \text{ Le vecteur } u \text{ est donc la somme d'un vecteur de Ker}(f - e) \end{aligned}
et d'un vecteur de Ker(f + e). Par conséquent, E = Ker(f - e) + Ker(f + e).
Considérons maintenant v \in \text{Ker}(f-e) \cap \text{Ker}(f+e). On a f(v) = v et f(v) = -v donc v = 0_E.
```

Ainsi, $Ker(f-e) \cap Ker(f+e) = \{0_E\}$. On vient donc de prouver que $E = Ker(f-e) \oplus Ker(f+e)$.

Le vecteur u s'écrit donc d'une seule façon comme la somme d'un vecteur de Ker(f-e) (le vecteur u') et d'un vecteur de Ker(f+e) (le vecteur u''). Comme f(u) = u' - u'', le vecteur f(u) est (cf. Définition 8) l'image s(u) du vecteur u par la symétrie vectorielle s par rapport à Ker(f - e), de direction Ker(f + e). Donc f = s.

```
Exercice 2. Soit E = \mathbb{R}_n[X]. On pose, pour tout P \in E, f(P) = P(1 - X).
```

- a. Vérifier que $f \in \mathcal{L}(E)$ et que f est une symétrie vectorielle de E.
- b. Soit $k \in \{0, \dots, n\}$. Calculer $f((\frac{1}{2} X)^k)$.
- c. Préciser les éléments caractéristiques de f.

Exercice 3. Soit $E = \mathcal{M}_n(\mathbb{R})$. On pose, pour tout $M \in E$, $f(M) = {}^tM$.

- a. Vérifier que $f \in \mathcal{L}(E)$ et que f est une symétrie vectorielle de E.
- b. Préciser les éléments caractéristiques de f.

3 Endomorphismes nilpotents. Matrices nilpotentes.

Définitions. 3.1

Définition 9 Soit $f \in \mathcal{L}(E)$. On dit que f est nilpotent s'il existe un entier $k \in \mathbb{N}^*$ tel que $f^k = \theta$ où θ est l'endomorphisme nul de E.

Définition 10 Soit $A \in M_n(\mathbb{K})$. On dit que A est nilpotente s'il existe un entier $k \in \mathbb{N}^*$ tel que $A^k = 0$, où 0 désigne ici la matrice nulle $de\ M_n(\mathbb{K}).$

Définition 11 Soit $f \in \mathcal{L}(E)$, nilpotent. Le plus petit entier du sous ensemble (non vide) $\{k \in \mathbb{N}^*, f^k = \theta\}$ de \mathbb{N}^* est appelé indice de nilpotence de f. L'indice de nilpotence de f est l'unique entier $p \in \mathbb{N}^*$ tel que $f^{p-1} \neq \theta$ et $f^p = \theta$. **Définition 12** Soit $A \in M_n(\mathbb{K})$, nilpotente. Le plus petit entier du sous ensemble (non vide) $\{k \in \mathbb{N}^*, A^k = 0\}$ de \mathbb{N}^* est appelé indice de nilpotence de A. L'indice de nilpotence de A est l'unique entier $p \in \mathbb{N}^*$ tel que $A^{p-1} \neq 0$ et $A^p = 0$.

Exercice 4. Soit $E = \mathbb{R}_3[X]$. Posons, pour tout $P \in E$, f(P) = P'.

Montrer que f est un endomorphisme nilpotent de E et préciser son indice de nilpotence.

3.2 Compléments.

Dans ce paragraphe, E est un \mathbb{K} ev de dimension finie n. La propriété suivante, que vous devez savoir redémontrer, compare en particulier l'indice de nilpotence d'un endomorphisme nilpotent de E et la dimension de E.

Proposition 3 Soit f un endomorphisme nilpotent de E, d'indice p. Soit $u \in E$ tel que $f^{p-1}(u) \neq 0_E$. Alors :

- 1. La famille $(u, f(u), \ldots, f^{p-1}(u))$ est une famille libre de E.
- 2. L'indice de nilpotence p de f est inférieur ou égal à n et, en particulier, $f^n = \theta$.

Preuve. 1. Soient $a_0,\ldots,a_{p-1}\in\mathbb{K}$ tels que $\sum_{k=0}^{p-1}a_kf^k(u)=0_E$. Par linéarité de f^{p-1} , on a :

$$0_E = f^{p-1}(0_E) = f^{p-1}\left(\sum_{k=0}^{p-1} a_k f^k(u)\right) = \sum_{k=0}^{p-1} a_k f^{k+p-1}(u) = a_0 f^{p-1}(u)$$

car $\forall r \geq p, \ f^r(u) = \theta(u) = 0_E$. D'où $a_0 = 0$ car, par hypothèse, $f^{p-1}(u) \neq 0_E$.

De même, en considérant successivement pour $j \in \{1, \dots, p-1\}, f^{p-j-1}(\sum_{k=j}^{p-1} a_k f^k(u))$, on obtient que, pour tout $j \in \{1, \dots, p-1\}$, $a_i = 0$

2. D'après 1. la famille $(u, f(u), \dots, f^{p-1}(u))$ est une famille libre de E. Son cardinal p est donc inférieur ou égal la dimension n de E. Et comme $f^p = \theta$, $f^n = f^p \circ f^{n-p} = \theta \circ f^{n-p} = \theta$.

Considérons maintenant le cas particulier d'un endomorphisme nilpotent de E dont l'indice de nilpotence est égal à la dimension de E.

 $\textbf{Proposition 4} \ \textit{Soit f un endomorphisme nilpotent de E, d'indice de nilpotence } n = \dim E. \ \textit{Alors il existe une base B de E telle que}$

$$Mat_B(f) = \begin{pmatrix} 0 & 0 & & 0 & 0 \\ 1 & 0 & & 0 & \vdots \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$

Preuve. Reprenons les notations de la proposition précédente. Soit $u \in E$ tel que $f^{n-1}(u) \neq 0_E$. Alors $B = (u, f(u), \dots, f^{n-1}(u))$ est une famille libre de n vecteurs de E, donc une base de E. On vérifie enfin que la matrice de f dans cette base a bien la forme souhaitée.

Proposition 5 Soit $A \in M_n(\mathbb{K})$, nilpotente d'indice p. Alors $p \leq n$ et, par conséquent, $A^n = 0$.

Preuve. Notons B_c la base canonique de \mathbb{K}^n . Soit $f \in \mathcal{L}(\mathbb{K}^n)$, canoniquement associé à A. Comme $\forall k \in \mathbb{N}$, $Mat_{B_c}(f^k) = A^k$, on a $f^{p-1} \neq \theta$ car $A^{p-1} \neq 0$ et $f^p = \theta$ car $A^p = 0$. En d'autres termes, f est un endomorphisme nilpotent d'indice p du \mathbb{K} ev de dimension $n \mathbb{K}^n$. Donc $p \leq n$ d'après la proposition g et g et

4 Trace d'un endomorphisme.

4.1 Trace d'une matrice carrée.

Définition 13 Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$. La trace de A, notée $\operatorname{tr} A$, est la somme des termes diagonaux de A:

$$trA = \sum_{i=1}^{n} a_{ii}$$

Remarque 9 Une matrice carrée et sa transposée ont la même trace.

Proposition 6 L'application tr : $\mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$.

Preuve. Soient
$$A = (a_{ij})$$
 et $B = (b_{ij}) \in \mathcal{M}_n(\mathbb{K})$. Soit $\alpha \in \mathbb{K}$. Posons $C = \alpha A + B = (c_{ij}) = (\alpha a_{ij} + b_{ij})$.
Alors $\operatorname{tr}(\alpha A + B) = \sum_{i=1}^n c_{ii} = \sum_{i=1}^n (\alpha a_{ii} + b_{ii}) = \alpha \sum_{i=1}^n a_{ii} + \sum_{i=1}^n b_{ii} = \alpha \operatorname{tr} A + \operatorname{tr} B$.

Proposition 7 $\forall (U, V) \in \mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,n}(\mathbb{K}), \operatorname{tr}(UV) = \operatorname{tr}(VU).$

Preuve. Posons
$$U = (u_{ij})_{1 \le i \le n, \ 1 \le j \le p}$$
 et $V = (v_{ij})_{1 \le i \le p, \ 1 \le j \le n}$. Notons $C = UV = (c_{ij}) \in \mathcal{M}_n(\mathbb{K})$ et $D = VU = (d_{ij}) \in \mathcal{M}_p(\mathbb{K})$. Alors: $\operatorname{tr}(UV) = \operatorname{tr}C = \sum_{i=1}^n c_{ii} = \sum_{i=1}^n \left(\sum_{k=1}^p u_{ik} v_{ki}\right) = \sum_{k=1}^p \left(\sum_{i=1}^n u_{ik} v_{ki}\right) = \sum_{k=1}^p \left(\sum_{i=1}^n v_{ki} u_{ik}\right) = \sum_{k=1}^p d_{kk} = \operatorname{tr}D = \operatorname{tr}(VU)$.

Exercice 5. Soit $n \in \mathbb{N}^*$. Montrer qu'il n'existe pas de couple $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$ tel que $AB - BA = I_n$.

Exercice 6. Soit $n \in \mathbb{N}^*$ et $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$ tel que AB - BA = A. Montrer que A n'est pas inversible.

Proposition 8 Deux matrices semblables ont la même trace : $\forall A \in \mathcal{M}_n(\mathbb{K}), \forall P \in GL_n(\mathbb{K}), \operatorname{tr}(P^{-1}AP) = \operatorname{tr}(A).$

Preuve. Ce résultat s'obtient en utilisant l'associativité de la multiplication dans $\mathcal{M}_n(\mathbb{K})$ et la proposition 7 avec $U=P^{-1}$ et V=AP:

$$\operatorname{tr}(P^{-1}AP) = \operatorname{tr}(P^{-1}(AP)) = \operatorname{tr}((AP)P^{-1}) = \operatorname{tr}(A(PP^{-1})) = \operatorname{tr}(A).$$

Exercice 7. Soit $n \geq 2$. Déterminer deux matrices $A, B \in \mathcal{M}_n(\mathbb{K})$ non semblables telles que $\operatorname{tr} A = \operatorname{tr} B$.

4.2 Trace d'un endomorphisme d'un Kev de dimension finie.

Soit E un $\mathbb{K}\mathrm{ev}$ de dimension n. Soient $(e)=(e_1,\cdots,e_n)$ et $(e')=(e'_1,\cdots,e'_n)$ deux bases de E. Soit $P=P_{(e),(e')}$ la matrice de passage de la base (e) à la base (e'). Soit $f\in\mathcal{L}(E)$. Notons $A=Mat_{(e)}(f)$ et $A'=Mat_{(e')}(f)$. On a alors : $A'=P^{-1}AP$ et, d'après la proposition 8, $\mathrm{tr}A'=\mathrm{tr}A$. D'où la définition suivante :

Définition 14 Soit E un $\mathbb{K}ev$ de dimension finie. Soit $f \in \mathcal{L}(E)$. La trace de f est la trace de la matrice de f dans une base quelconque de E.

Exercice 8. Soit E un \mathbb{K} ev de dimension finie. Soit p un projecteur de E. On a : $\operatorname{tr}(p) = \dim \operatorname{Im} p$.

Autrement dit, la trace d'un projecteur est égale à son rang. Indication : considérer une base de E adaptée à la décomposition $E=\operatorname{Ker} p\oplus\operatorname{Im} p.$

Exercice 9. Soit E un \mathbb{K} ev de dimension n et s une symétrie vectorielle de E. Montrer que la trace de s est un entier de même parité que n.

 $En \ utilisant \ la \ définition \ précédente \ de \ la \ trace \ d'un \ endomorphisme \ et \ les \ propriétés \ de \ la \ trace \ d'une \ matrice \ carrée, \ on \ obtient \ que :$

Proposition 9 1. L'application tr : $\mathcal{L}(E) \to \mathbb{K}$ est une forme linéaire sur $\mathcal{L}(E)$. 2. $\forall (u,v) \in \mathcal{L}(E)^2$, $\operatorname{tr}(u \circ v) = \operatorname{tr}(v \circ u)$.

5 Hyperplans et formes linéaires.

5.1 Généralités.

Définition 15 1. Soit E un $\mathbb{K}ev$ (de dimension finie ou non). Un sev H de E est un hyperplan de E si H admet un supplémentaire dans E de dimension 1.

2. Si E est de dimension finie n > 2, un hyperplan H est donc un sev de E de dimension n - 1.

Exercice 10. Justifier que $H = \{(x, y, z, t) \in \mathbb{R}^4 | x + 2y + 3z + 4t = 0\}$ est un hyperplan de \mathbb{R}^4 .

Proposition 10 Un sev H de E est un hyperplan de E ssi pour tout $a \notin H$, $E = H \oplus Vect(a)$.

Preuve. a. La condition est suffisante, par définition d'un hyperplan. b. Soit H un hyperplan de E. Il existe donc $b \not\in H$ tel que $E = H \oplus Vect(b)$. Soit $a \not\in H$. On a : $a = h + \alpha b$, avec $h \in H$ et $\alpha \in \mathbb{K}$. α est non nul car $a \not\in H$. Soit $x \in E$. Il existe $y \in H$ et $k \in \mathbb{K}$ tel que x = y + kb. Alors $x = (y - \frac{1}{\alpha}h) + \frac{1}{\alpha}a$. Donc E = H + Vect(a) et plus précisement, $E = H \oplus Vect(a)$ car $H \cap Vect(a) = \{0_E\}$.

 ${\bf Proposition} \ {\bf 11} \ \ {\it Toute forme linéaire f non nulle sur E est surjective}.$

Preuve. Comme f est non nulle, il existe donc $u \in E$ tel que $f(u) = \alpha$, avec $\alpha \neq 0$. Soit $k \in \mathbb{K}$ quelconque. On a $k = f(\frac{k}{\alpha}u)$. Donc $\mathrm{Im}\, f = K$ et f est bien une surjection de E dans \mathbb{K} .

Le lien entre hyperplan de E et forme linéaire (non nulle) sur E est donné par le théorème suivant :

Théorème 3 Un sev H de E est un hyperplan de E ssi H est le noyau d'une forme linéaire non nulle sur E.

Preuve. a. Supposons que H soit un hyperplan de E. Soit $b \not\in H.$ On a $E = H \oplus Vect(b).$

Soit $u \in E$. Alors $\exists ! (h, \lambda(u)) \in H \times \mathbb{K}$ tel que $u = h + \lambda(u) b$. Soit $\lambda : \begin{cases} E \to \mathbb{K} \\ u \mapsto \lambda(u) \end{cases}$

L'application λ est une forme linéaire non nulle sur E.

En effet, soit $(\alpha, \alpha') \in \mathbb{K}^2$ et $x' \in E$. Posons $x' = h' + \lambda(x')b$, avec $h' \in H$. Par définition de λ , on a :

$$\lambda(\alpha x + \alpha' x') = \lambda \big(\underbrace{\alpha h + \alpha' h'}_{\in H} + (\alpha \lambda(x) + \alpha' \lambda(x')) \, b \big) = \alpha \lambda(x) + \alpha' \lambda(x')$$

donc λ est bien linéaire et λ n'est pas la forme linéaire nulle car $\lambda(b)=1$.

b. Soit f une forme linéaire non nulle sur E. Posons $H=\operatorname{Ker} f$. Soit $b\in E$ tel que $f(b)\neq 0$.

Soit $x \in E$. Remarquons que $f(x - \frac{f(x)}{f(b)}b) = f(x) - f(x) = 0$. Donc $x - \frac{f(x)}{f(b)}b \in H$. Comme $x = x - \frac{f(x)}{f(b)}b + \frac{f(x)}{f(b)}b$, on a donc E = H + Vect(b). Comme $b \notin H$, $H \cap Vect(b) = \{0_E\}$.

D'où $E=H\oplus Vect(b)$ et H est bien un hyperplan de E.

Exemples. 1. Soit $\mathcal{E} = \{M \in M_n(\mathbb{R}) / \operatorname{tr} M = 0\}$: \mathcal{E} est le noyau de la forme linéaire non nulle tr sur $M_n(\mathbb{R})$. On déduit directement du théorème précédent que \mathcal{E} est un hyperplan de $M_n(\mathbb{R})$. Donc dim $\mathcal{E}=n^2-1$.

2. Soit $\mathcal{E} = \{P \in \mathbb{R}_n[X], P(1) = 0\} : \mathcal{E}$ est le noyau de la forme linéaire non nulle f définie, pour tout $P \in \mathbb{R}_n[X]$ par : f(P) = P(1). On déduit directement du théorème précédent que \mathcal{E} est un hyperplan de $\mathbb{R}_n[X]$. Donc dim $\mathcal{E}=n$. On pouvait aussi remarquer que $P \in \mathcal{E} \Leftarrow \exists Q \in \mathbb{R}_{n-1}[X]$ tel que P = (X-1)Q. Une base de \mathcal{E} est donc la famille $((X-1)X^k, k \in \{0, \dots, n-1\})$.

Proposition 12 Deux formes linéaires non nulles sur E sont proportionnelles ssi elles ont le même noyau.

Preuve. a. Soient f et g deux formes linéaires non nulles proportionnelles. Soit $k \in \mathbb{K}^*$ tel que $\forall u \in E, g(u) = kf(u)$. On a donc $g(u) = 0_E$ ssi $f(u) = 0_E$. Donc Ker g = Ker f.

b. Notons H l'hyperplan Ker f. Soit $b \in E$ tel que $f(b) \neq 0$. Rappelons que $E = H \oplus Vect(b)$ (cf. proposition 10). Considérons la forme linéaire h définie par : $h = g - \frac{g(b)}{f(b)}f$. On a $\forall x \in H$, h(x) = 0 car f(x) = g(x) = 0, et h(b) = 0. Soit $u \in E$. $\exists !(x,k) \in H \times \mathbb{K}$ tel que u = x + kb. Par linéarité de h, h(u) = h(x) + kh(b) = 0.

La forme linéaire h est donc la forme linéaire nulle sur E et f et g sont donc proportionnelles car $g = \frac{g(b)}{f(b)}f$.

Cas où E est de dimension finie $n \geq 2$. 5.2

 $\textbf{Remarque 10} \ \ \textit{Soit f une forme linéaire non nulle sur E. D'après la proposition 11, Im} f = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \dim Kerf = \mathbb{K} \ \text{et d'après le th\'eorème du rang, } \ \text{et d'après le th\'eorème du$ $n-\dim Im f=n-1$. On retrouve donc d'une autre manière que Ker f est un hyperplan de E.

Proposition 13 Soit $(e) = (e_1, \dots, e_n)$ une base de E. Soit H un hyperplan de E. Alors: 1.Il existe $(a_1, \dots, a_n) \in \mathbb{K}^n \setminus \{0\}$ tel que

$$x = x_1 e_1 + \dots + x_n e_n \in H \Leftrightarrow a_1 x_1 + \dots + a_n x_n = 0.$$

On dit que $a_1x_1 + \cdots + a_nx_n = 0$ est une équation cartésienne de H relativement à la base (e).

 $2. \ Soit \ (b_1, \cdots, b_n) \in \mathbb{K}^n \setminus \{0\}. \ Si \ b_1x_1 + \cdots + b_nx_n = 0 \ est \ une \ \'equation \ cart\'esienne \ de \ H \ relativement \ \grave{a} \ la \ base \ (e), \ alors \ les \ deux$ n-uplets (a_1, \dots, a_n) et (b_1, \dots, b_n) sont colinéaires : $\exists k \in \mathbb{K}^*$ tel que $\forall i \in \{1, \dots, n\}, b_i = ka_i$.

Preuve. Soit f une forme linéaire non nulle telle que $H = \operatorname{Ker} f$.

1. Soit $x = x_1e_1 + \cdots + x_ne_n \in E$. On a : $x \in H \Leftrightarrow f(x) = 0 \Leftrightarrow x_1f(e_1) + \cdots + x_nf(e_n) = 0 \Leftrightarrow a_1x_1 + \cdots + a_nx_n = 0$, en notant, pour tout $i = 1, \dots, n, a_i = f(e_i)$.

2. Posons, pour tout $x \in E$, $g(x) = b_1x_1 + \cdots + b_nx_n$. Comme g est une forme linéaire non nulle sur E, de noyau H, d'après la proposition 12, il existe $k \in \mathbb{K}^*$ tel que g = kf. Par conséquent, $\forall i \in \{1, \dots, n\}, \ b_i = g(e_i) = kf(e_i) = ka_i$.