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Questions de cours
• Sources lumineuses : notion de temps de cohérence, lien avec la largeur spectrale et odg de

la longueur de cohérence temporelle pour les trois types de sources usuelles (lampe blanche,
lampe spectrale, laser).

• Récepteurs lumineux : odg des temps de réponse des détecteurs, comparaison aux temps
caractéristiques des vibrations lumineuses. Conséquence sur le calcul de la puissance reçue.

• Onde plane, onde sphérique. Action d’une lentille mince convergente sur les surfaces d’onde.
• Retard de phase pour une onde monochromatique : expression en fonction du chemin

optique et en fonction de la durée de propagation.
• Stigmatisme rigoureux : définition, démonstration de la conséquence en terme de chemins

optiques.
• Sur un exemple au choix du colleur, avec ou sans lentille convergente, calculer une différence

de chemins optiques et la simplifier en utilisant les conditions de Gauss.
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‹

Prise de notes : On a déjà décrit les ondes électromagnétiques, et donc la propagation
de la lumière dans un milieu. Donc quelle différence avec ce qu’on va faire en optique
ondulatoire ?
Notre description des OEM est très puissante, mais aussi très lourde : quand on veut
calculer l’intensité lumineuse, on doit calculer E, puis B en réels, puis Poynting, puis
moyenner. C’est faisable dans des cas simples (une onde), mais devient hyper lourd
si on commence à étudier le cas de plusieurs ondes, se propageant dans des directions
différentes...
L’optique ondulatoire consiste à SIMPLIFIER le modèle des OEM dans le cas de 4
hypothèses :

• on se limite aux ondes dans le domaine du visible ou proche du visible (-> on
parlera désormais de lumière)

• sources optiques générant des ondes non polarisées
• aucun milieu avec atténuation (pas de plasma à BF et pas de conducteur ohmique)

-> que des milieux transparents
• étude de l’onde dans les conditions de Gauss (ce qui reviendra bien souvent à

considérer une étude à grande distance de la source)
Donc, on perd en généralité, mais la mise en équations sera bien plus simple dans des
situations plus complexes (changement de milieu de propagation, lentilles, superposition
d’ondes).

Ce chapitre a deux objectifs principaux :

1. En partant des ondes électromagnétiques, construire le modèle scalaire de l’optique, et en
particulier calculer simplement l’intensité lumineuse dans le cadre de ce modèle.

2. Déterminer le déphasage accumulé par une onde au cours de sa propagation en utilisant les
outils de...
l’optique géométrique !

Sauf indication contraire explicite, toutes les longueurs d’onde évoquées dans ce chapitre sont les
longueurs d’onde qu’aurait la lumière si elle se propageait dans le vide.

I Modèle des émetteurs et des récepteurs d’ondes lumineuses

I.1 Émetteurs

a Spectre du visible

b Différents types de sources lumineuses

Plusieurs types de sources de lumière sont disponibles dans la vie courante ou dans les salles
de travaux pratiques. Nous allons brièvement en décrire trois types. Toutes ces sources sont
caractérisées par leur spectre d’émission.

On définit la densité spectrale d’intensité lumineuse, Iλ, telle que la contribution à l’intensité
lumineuse I des composantes dont la longueur d’onde appartient à l’intervalle rλ, λ ` dλs est :
dI “ Iλpλqdλ.

‹ Tracer un profil de densité spectrale d’intensité lumineuse pour une raie centrée sur λ0

et de largeur ∆λ.

L’intensité lumineuse totale est alors I “
ş`8

0
Iλpλqdλ.
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i) Les corps noirs (ampoule à filament, Soleil...)

Définition :
Un corps noir à la température T est un système matériel thermostaté (température T uniforme
et stationnaire) en équilibre thermodynamique avec le rayonnement électromagnétique.

La loi d’émission d’un corps noir est donnée par la loi de Planck (1900) :

Par exemple, le filament d’une ampoule à filament est chauffé par effet Joule à 2500K environ.
Le maximum d’émission est donné par la loi de Wien :

λm “
α

T
avec α “ 2.9 ˆ 10´3 mK ñ λm “ 1.2 µm

ce qui se situe dans l’infrarouge proche. Néanmoins, comme le spectre d’émission est très large,
l’ampoule émet aussi dans le visible.

Caractéristiques de l’émetteur :

• Spectre continu
• Largeur spectrale : tout le visible (∆λ „ 350 nm)
• Onde non polarisée

ii) Les lampes à décharge = lampes spectrales

Ces lampes contiennent, en régime permanent de fonctionnement, une vapeur atomique, par
exemple de la vapeur de mercure ou de sodium. Des électrodes permettent d’appliquer une
décharge électrique dans la vapeur, c’est-à-dire émettre un flux d’électrons traversant la vapeur.
Les électrons entrent en collision avec les atomes de la vapeur, qui se retrouvent ainsi dans un
état excité. La désexcitation de ces atomes entraîne l’émission de photons. On parle d’émission
spontanée.
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‹
On peut relier la perte d’énergie de l’atome de vapeur à la longueur d’onde médiane λ0

du photon émis à l’aide de la relation de Planck-Einstein : E2 ´ E1 “ hν0 “
hc

λ0
.

Néanmoins, le spectre d’émission d’une lampe spectrale ne présente pas une raie infini-
ment fine : SPECTRE

Origines de l’élargissement spectral de la raie : Il existe de nombreux processus entraînant
un élargissement spectral. Citons en quelques-uns :

• Les atomes de la vapeur ne sont pas immobiles dans le référentiel du laboratoire. La lumière
reçue par l’opérateur subit donc de l’effet Doppler : plus l’agitation des atomes est élevée,
plus l’élargissement spectral est important.

• Fondamentalement, la mécanique quantique interdit l’existence de raies d’émission spon-
tanée infiniment fines. En effet, d’après la relation d’incertitude de Heisenberg, comme la
durée de vie τ de l’atome dans son niveau excité est finie, il est impossible de quantifier
exactement l’énergie de l’atome dans le niveau excité : ∆E ˆ τ ą h ðñ ∆ν ˆ τ ą 1.

Caractéristiques de l’émetteur :

• Spectre de raies
• Largeur spectrale : ∆λ „ 0.1 à 1 nm
• Onde non polarisée

iii) Les lasers

Nous étudierons la physique du laser dans un chapitre dédié. Sachez pour l’instant que le pro-
cessus d’émission des photons est différent (émission stimulée) et que chaque photon est émis
rigoureusement à la même longueur d’onde que le précédent.

Origine de l’élargissement spectral de la raie : Néanmoins, à nouveau, la raie d’émission
n’est pas infiniment fine, car les photons doivent être amplifiés dans une cavité contenant des
miroirs, par interférences constructives. Les vibrations mécaniques extérieures induisent un léger
changement de la taille de la cavité, suffisant à élargir la raie.

Caractéristiques de l’émetteur :

• Une raie
• Largeur spectrale : ∆λ „ 10´4 nm
• Onde non polarisée

La largeur spectrale est donc très petite devant la longueur d’onde médiane d’émission : on
considèrera souvent l’émission laser comme monochromatique.
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c Lien entre la largeur spectrale en longueur d’onde et en fréquence

La relation de dispersion de la lumière dans le vide implique un lien entre longueur d’onde et
fréquence : ν “

c

λ
. On peut ainsi traduire les largeurs spectrales en longueurs d’onde ∆λ en

largeurs spectrales en fréquences ∆ν.

‹

Prenons la différentielle de la relation de dispersion :

dν “ ´
c

λ2
dλ

En supposant que ∆λ ! λ0, on en déduit :

∆ν “
c

λ2
0

∆λ

d Modèle des trains d’onde

Du fait de la largeur spectrale d’émission des sources, les sources réelles émettent donc toutes des
paquets d’onde. La théorie de Fourier impose alors un lien entre la largeur spectrale en fréquences
∆ν de l’onde émise et la durée τc pendant laquelle l’onde est émise :

∆ν ˆ τc „ 1

‹

Spectre et représentation temporelle du champ électrique (mettre en évidence la période
T0 et τc).
Ainsi, une source lumineuse émet une succession de portions de sinusoïdes, chacune de
ces portions étant émise pendant une durée finie valant en moyenne τc. On appelle les
portions de sinusoïdes des trains d’onde et τc le temps de cohérence de la source. Deux
trains d’onde successifs sont émis avec une variation brutale et aléatoire de la phase à
l’origine.
Plus une source a une grande largeur spectrale, plus son temps de cohérence est faible.

Temps de cohérence et longueur de cohérence temporelle d’une source

Le temps de cohérence τc d’une source est reliée à la largeur spectrale de la source :

τc „
1

∆ν
“

λ2
0

c∆λ

Dans le modèle des trains d’onde, τc est la durée d’un train d’onde.

On définit également la longueur de cohérence temporelle ℓc comme la distance parcourue
par un train d’onde dans le vide pendant τc :

ℓc “ cτc

Ordres de grandeur :

Source λ0 (nm) ∆λ (nm) ∆ν (Hz) τc (s) ℓc (m)
Lampe blanche 575 350 3 ˆ 1014 3 ˆ 10´15 1 µm

Lampe spectrale au mercure 546 0.1 1011 10´11 1mm
Laser utilisé en TP 632.8 10´4 108 10´8 1m

I.2 Récepteurs

a Différents types de détecteurs lumineux

Nous allons détailler trois types de détecteurs lumineux fréquemment utilisés en TP.

i) L’œil

L’œil est constitué de deux types de cellules sensibles à la lumière visible : les cônes (sensibles à
la couleur) et les bâtonnets (très sensibles aux faibles intensités lumineuses). Détaillons (un peu)
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le fonctionnement d’un bâtonnet. Il contient un pigment, la rhodopsine, qui change de forme
sous l’effet de l’énergie apportée par la lumière. Ce changement de forme induit l’apparition d’un
message nerveux, transmis au cerveau. Le message nerveux fourni par l’oeil au cerveau ne se
renouvelle que toutes les 0,1 secondes environ.

Caractéristiques du récepteur : :

• Sensible à la puissance lumineuse
• Temps de réponse : τdétect „ 0.1 s

ii) La photodiode

Lorsqu’une photodiode est polarisée en inverse,
l’arrivée de la lumière sur le composant génère,
grâce à l’énergie lumineuse, une excitation élec-
tronique. Cette excitation électronique se traduit
par un courant inverse dans la photodiode. Le
courant est proportionnel à l’intensité lumineuse
reçue. L’utilisation d’une résistance permet alors
par exemple la détection d’une tension propor-
tionnelle au courant inverse, et donc proportion-
nelle à l’intensité lumineuse.
La photodiode est sensible au spectre visible et
à l’infrarouge proche.

Caractéristiques du récepteur : :

• Sensible à la puissance lumineuse
• Temps de réponse : τdétect „ 10´5 s

iii) Le capteur CCD (charge coupled device)

Le capteur CCD est composé d’une suite de petites photodiodes
placées les unes contre les autres, et se présente souvent sous la forme
d’une barrette ou d’une zone rectangulaire. Les électrons excités par
l’arrivée d’énergie sur une photodiode sont ensuite détectés photo-
diode après photodiode pour reconstruire une image. On trouve des
capteurs CCD dans les caméras ou les appareils photos numériques.

Caractéristiques du récepteur : :

• Sensible à la puissance lumineuse
• Temps de réponse : τdétect „ 10´2 s

On remarque que quelque soit le type de récepteur, celui-ci est sensible à une puissance lumineuse
reçue.

b Comparaison des ordres de grandeurs temporels associés aux émetteurs et aux
récepteurs

Les longueurs d’onde dans le visible varient entre 400 nm (violet) et 750 nm (rouge), ce qui cor-
respond à une fréquence de l’ordre de 1014 à 1015 Hz.

‹

On distingue donc trois échelles de temps différentes :
• la période de l’onde T „ 10´15 s
• le temps de cohérence, i.e. la durée d’un train d’onde 10´8 s ă τc ă 10´15 s
• le temps de réponse d’un détecteur τdetect ą 10´5 s

Ainsi, on a toujours τdétect " T, τc : les détecteurs optiques ne sont sensibles qu’à
une puissance moyenne reçue durant τdetect.

6 cbna Lycée Rabelais - PC - 2025-2026 - C. Logé



Un détecteur optique n’est donc sensible qu’à l’intensité lumineuse de l’onde électromagnétique
I “

A
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#»

Π
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

. Pour cette raison, dans tout le thème d’optique, l’objectif sera de calculer l’intensité
lumineuse.

II La vibration lumineuse : le champ scalaire de l’optique

II.1 Passer du champ électromagnétique dans le vide au champ scalaire
de l’optique

Nous avons vu, au chapitre O2, que, pour une OPPH polarisée rectilignement et se propageant
dans le vide selon ` #»ez, on peut exprimer le vecteur de Poynting simplement :

$

’

&

’

%

#»

E “ E0 cospωt ´ kzq #»ex

#»

B “

#»

k ^
#»

E

ω
“

E0

c
cospωt ´ kzq #»ey

ñ
#»

Π “

#»

E ^
#»

B

µ0
“

E2
0

µ0c
cos2pωt ´ kzq #»ez

On en déduit que l’intensité lumineuse est proportionnelle à la moyenne temporelle de la norme
du champ électrique au carré :

I9

B

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#»

E
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
F

On admet que ce résultat se généralise à tous les types d’ondes (seul le facteur de proportionnalité
change).

‹

On peut simplifier encore davantage le calcul de l’intensité lumineuse sous certaines
hypothèses.
Hypothèse : les systèmes optiques seront utilisés dans les conditions de Gauss, i.e. les
rayons lumineux seront peu inclinés et proches de l’axe optique.
Schéma avec une propagation selon un vecteur

#»

k légèrement incliné par rapport à l’axe
optique, mis selon z.
Dans le vide, l’onde est transverse : la composante du champ électrique selon z est donc
négligeable devant celles selon x et y. On en déduit l’intensité lumineuse :

I9
@

E2
x ` E2

y

D

“
@

E2
x

D

`
@

E2
y

D

Hypothèse : les sources optiques ne sont pas polarisées.
Dans ce cas, le champ électrique a une direction variant aléatoirement dans le plan
pMxyq : les directions x et y sont équivalentes. Donc

@

E2
x

D

“
@

E2
y

D

et

I9
@

E2
x

D

Vibration lumineuse

En optique ondulatoire, contrairement aux ondes électromagnétiques, on raisonnera sur
un champ scalaire spM,tq correspondant à l’une des composantes transverses du champ
électrique. On appelle le champ spM,tq la vibration lumineuse.

Calcul de l’intensité lumineuse

L’intensité lumineuse est proportionnelle à la moyenne temporelle de la vibration lumineuse
au carré :

I9
@

spM,tq2
D

Comme ce qui nous intéressera sera la variation spatiale de l’intensité lumineuse, et non sa
valeur numérique, on se contentera donc de calculer

@

spM,tq2
D

.

Il est courant, de ce fait, d’employer un abus de langage en optique ondulatoire et d’appeler
intensité lumineuse la valeur

@

spM,tq2
D

. (Attention aux unités...)
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Électromagnétisme Optique ondulatoire
Champs électrique

#»

E et magnétique
#»

B Vibration lumineuse s

Calcul de l’intensité lumineuse I “

A
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#»

Π
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

Calcul de l’intensité lumineuse I9
@

s2
D

" On ne peut pas interpréter d’expériences de polarisation avec la vibration lumineuse.
En passant à un champ scalaire, on a fait disparaître la notion même de polarisation de
l’onde.

II.2 Principe de superposition
Les équations de Maxwell étant linéaires, le principe de superposition s’applique toujours. Si
plusieurs sources ponctuelles émettent une vibration lumineuse sipM,tq, la vibration lumineuse
totale sera

ř

i sipM,tq.

III Formes d’ondes considérées

III.1 Lumière monochromatique (= harmonique)
Dans toute la suite, on considèrera une lumière monochromatique.

Remarque : En pratique, du fait de la largeur spectrale des sources, il faut sommer plusieurs vibrations
monochromatiques pour décrire complètement la source.

Définition : Une vibration lumineuse sera monochromatique si elle peut s’écrire :

spM,tq “ ApMq cospωt ´ φpMqq

avec ω la pulsation de l’onde, ApMq l’amplitude de l’onde en M et φpMq la phase en M .

L’intérêt de considérer une lumière monochromatique est de pouvoir utiliser la notation complexe
:

spM,tq “ ApMq ejpωt´φpMqq avec spM,tq “ RepspM,tqq

On définit alors couramment l’amplitude complexe de l’onde apM,tq “ ApMq e´jφpMq. On
retrouve les propriétés de calcul usuelles : ApMq “ |apM,tq| “ |spM,tq| et ´φpMq “ argpapM,tqq.

‹

Pour calculer l’intensité lumineuse, on doit rester en réels :

I9
@

spM,tq2
D

“ ApMq2 ˆ
1

2

On remarque une propriété de calcul pratique : I9 |s|
2. Même si physiquement, il n’y a

aucun sens à calculer un produit avec des grandeurs complexes, on utilisera ce raccourci
de calcul pratique dans le cas de l’intensité lumineuse en optique.

III.2 Ondes planes et ondes sphériques

a Fonctions d’onde

On qualifie une onde de plane ou sphérique par rapport à la forme de ses surfaces d’onde.

Définition (rappel) : Surface d’onde
Ensemble des points de l’espace présentant le même état vibratoire, c’est-à-dire tels que la fonction
d’onde possède la même valeur à un instant t fixé

Une onde est plane si ses surfaces d’onde sont des plans parallèles entre eux. Une onde est
sphérique si ses surfaces d’onde sont des sphères de même centre.

i) Onde plane

On a déjà vu la forme de la fonction d’onde d’une onde plane progressive harmonique :

spM,tq “ A cospωt ´
#»

k ¨ #»r ´ φ0q
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avec
#»

k “ k #»u le vecteur d’onde de l’onde plane pour une onde se propageant dans la direction #»u .

‹ Représentation plans d’onde = même valeur de spM,tq à t fixé avec #»u

Dans un milieu diélectrique linéaire homogène isotrope (DLHI) transparent, la relation de dis-
persion est

k “ n
ω

c
“ n

2π

λ0

avec n l’indice optique (réel) du milieu.

En notation complexe, on a simplement :

spM,tq “ A ejpωt´
#»
k ¨ #»r ´φ0q

ii) Onde sphérique

‹

Représentation des surfaces d’onde à partir d’un point source S (appelé foyer de l’onde)
On se place en coordonnées sphériques pS, #»er,

#»eθ,
# »eφq.

Une onde sphérique divergente se propage selon ` #»er. La fonction d’onde s’écrit alors :

spM,tq “
B

r
cospωt ´ kr ´ φ0q avec k “

2πn

λ0

(Dire oralement que le terme B{r est lié à la conservation de la puissance de l’onde
au cours de sa propagation. Mais je ne vais pas jusqu’à calculer cette puissance, car
reviendrait à calculer un vecteur de Poynting, et ce n’est pas l’idée en optique : on le
fera lors des ondes acoustiques seulement.)
Pour une onde sphérique convergente, la fonction d’onde s’écrit :

spM,tq “
B

r
cospωt ` kr ´ φ0q avec k “

2πn

λ0

Or, l’une des hypothèses de l’approximation scalaire de l’optique est de se placer dans les condi-
tions de Gauss. On peut se placer dans ces conditions en observant la lumière à grande distance

de la source S. Dans ce cas, le terme
B

r
varie beaucoup plus lentement que le terme en cosinus :

on supposera donc que, dans les conditions d’observation de l’optique,
B

r
» cste “ A. Ainsi, les

fonctions d’onde simplifiées seront :

spM,tq “ A cospωt ¯ kr ´ φ0q

En notation complexe :
spM,tq “ A ejpωt¯kr´φ0q

b Théorème de Malus

L’objectif du théorème de Malus est de relier l’aspect ondulatoire de la lumière aux rayons lu-
mineux de l’optique géométrique. On supposera donc être, dans la suite, dans les conditions de
validité de l’optique géométrique.

Définition : Rayons lumineux
Lignes de champ du vecteur de Poynting moyen. Dans un DLHI transparent, cela correspond
aux lignes tangentes en tout point au vecteur

#»

k de l’onde.

Théorème de Malus (admis)

‹ Dans le cadre de validité de l’optique géométrique, les rayons lumineux sont or-
thogonaux aux surfaces d’onde.

‹
Ainsi, on pourra utiliser les outils de l’optique géométrique pour tracer les rayons lu-
mineux. En utilisant le théorème de Malus, on conclura alors sur la forme des surfaces
d’onde et donc sur le type d’onde existant dans le milieu. Théorème puissant !
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i) Onde plane

Représentons les rayons lumineux associés à une onde plane, en se plaçant dans un plan orthogonal
aux plans d’onde :

‹

Les rayons lumineux d’une onde plane sont parallèles entre eux. On peut ainsi former
une onde plane de deux manières :

• avec une source ponctuelle située à l’infini
• en plaçant une source ponctuelle dans le plan foyer objet d’une lentille mince

ii) Onde sphérique

Représentons, dans un plan, les rayons lumineux associés à une onde sphérique :

Les rayons lumineux d’une onde sphérique sont des droites concourantes en un point S, appelé le
foyer de l’onde. On peut ainsi former une onde sphérique en observant la lumière émise par une
source ponctuelle.

On remarque qu’une onde sphérique observée à grande distance de la source ponctuelle peut être
localement approximée comme une onde plane.

c Application du théorème de Malus : effet d’une lentille mince

Prenons l’exemple d’une lentille mince convergente, étudiée dans les conditions de Gauss. On est
dans le cadre de validité de l’optique géométrique, le théorème de Malus s’applique donc bien.
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• Cas (a) : A est à distance finie et n’est pas sur le foyer objet : l’onde sphérique issue de A
après traversée de la lentille devient une onde sphérique de centre A’.

• Cas (b) et(c) : la source est placée au foyer objet ou dans le plan focal objet de la lentille :
l’onde sphérique est transformée en onde plane après traversée de la lentille.

• Cas (d) et (e) : la lentille est éclairée par une onde plane (cas (d) : source à l’infini sur
l’axe optique, cas (e) : source à l’infini en dehors de l’axe optique ) : après traversée de la
lentille l’onde devient une onde sphérique de centre F’ (cas (d)) ou de centre Φ1 foyer image
secondaire (cas (e)).

IV Déphasage accumulé lors de la propagation de l’onde

IV.1 Expression du déphasage

Reprenons la forme générale d’une vibration lumineuse harmonique : spM,tq “ ApMq cospωt ´

φpMqq. Dans la suite des chapitres d’optique ondulatoire, on s’intéressera à l’intensité lumineuse
résultant d’un système optique où plusieurs vibrations lumineuses se somment. Un des points
cruciaux sera alors d’exprimer la phase φpMq de chacune des vibrations lumineuses. Comment
relier φpMq au trajet suivi par le rayon lumineux ?

a Exemples simples pour une onde plane et une onde sphérique

i) Onde plane

Considérons une onde plane se propageant selon ` #»ex dans un milieu DLHI transparent d’indice
optique n. Le fonction d’onde s’écrit donc :

spM,tq “ A0 cospωt ´
#»

k ¨ #»r ´ φ0q “ A0 cospωt ´
2π

λ0
nx ´ φ0q

avec
#»

k “
2π

λ0
n #»ex.

cbna Lycée Rabelais - PC - 2025-2026 - C. Logé 11



‹

La vibration lumineuse aux points A et B
s’écrit :

spA,tq “ A0 cospωt ´ p
2π

λ0
nxA ` φ0q

loooooooomoooooooon

“φpAq

q

et

spB,tq “ A0 cospωt ´ p
2π

λ0
nxB ` φ0q

loooooooomoooooooon

“φpBq

q

‹

Le retard de phase en B par rapport à A est donc :

φpBq ´ φpAq “
2π

λ0
npxB ´ xAq

Si les points A et B appartiennent au même rayon lumineux, alors

φpBq ´ φpAq “
2π

λ0
nĚAB

Ce retard est lié à la propagation de l’onde. Il est positif si le rayon lumineux passe par
A avant de passer par B.

ii) Onde sphérique

Considérons désormais une onde sphérique divergente dans un milieu DLHI transparent d’indice
optique n. La fonction d’onde s’écrit donc :

spM,tq “ A0 cospωt ´ kr ´ φ0q “ A0 cospωt ´
2π

λ0
nr ´ φ0q

Le retard de phase en B par rapport à A est :

φpBq ´ φpAq “
2π

λ0
nprB ´ rAq

Si les points A et B appartiennent au même
rayon lumineux :

φpBq ´ φpAq “
2π

λ0
nĚAB

b Cas général de la propagation dans un milieu diélectrique linéaire isotrope et
transparent

Dans les deux exemples précédents, la direction de propagation de l’onde n’est pas la même. Mais,
dans les deux cas, si les points A et B appartiennent au même rayon lumineux, le déphasage
accumulé au cours de la propagation est proportionnel à la distance parcourue par le rayon
lumineux ĚAB. On définit alors le chemin optique pABq :

Expression du déphasage dû à la propagation avec le chemin optique

Le retard de phase au point B par rapport à A du fait de la propagation de l’onde s’exprime
:

φpBq ´ φpAq “
2π

λ0
pABq

avec λ0 la longueur d’onde de la lumière dans le vide et pABq le chemin optique pour aller
de A à B.

Le retard de phase dû à la propagation est proportionnel au chemin optique parcouru.
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Propriété ("relation de Chasles") : Pour 3 points quelconques A, B et H, pABq “ pAHq `

pHBq.

i) Cas d’un seul milieu DLHI transparent

Dans le cas où les points A et B sont sur le même rayon lumineux, l’optique géométrique nous
permet de calculer le chemin optique.

Définition : chemin optique

Dans un milieu diélectrique linéaire homogène isotrope et transparent d’indice optique n,
on considère deux points A et B situés sur le même rayon lumineux. Le chemin optique
pour aller du point A au point B est défini comme :

pABq “ nĚAB

‹ Unité

ii) Cas de plusieurs milieux DLHI transparents

‹
A, I, J et B appartiennent au même rayon
lumineux :

pABq “ pAIq`pIJq`pJBq “ n1
ĎAI`n2

ĎIJ`n3
ĚJB

Le retard de phase en B par rapport à A est

toujours : φpBq ´ φpAq “
2π

λ0
pABq

iii) Cas d’un milieu inhomogène

On considère enfin le cas le plus général d’un milieu diélectrique linéaire isotrope transparent,
mais inhomogène. La trajectoire du rayon lumineux n’est alors plus rectiligne.

On généralise la définition de l’indice optique
en introduisant l’abscisse curviligne ℓpMq : elle
donne la distance entre le point M et une origine
A en suivant la trajectoire du rayon lumineux.

Sur chaque portion de longueur infinitésimale dℓ, on peut considérer que l’indice optique varie
peu : le milieu peut être approximé comme homogène sur une longueur dℓ. Ainsi, le chemin
optique entre deux points M et N infiniment proches est pMNq “ npMqdℓ.

En intégrant sur toute la trajectoire entre A et B, situés sur le même rayon lumineux :

pABq “

ż

AÑB

npMqdℓ

Le retard de phase en B par rapport à A est toujours : φpBq ´ φpAq “
2π

λ0
pABq

c Lien avec la durée de propagation dans le milieu

En négligeant toute atténuation de la vibration lumineuse au cours de la propagation, l’onde est
alors progressive. On peut de ce fait ré-exprimer le déphasage dû à la propagation au point B
par rapport au point A en faisant intervenir la durée de propagation tAB de A vers B :

@t,spB,tq “ spA,t ´ tABq ñ @t, cospωt ´ φpBqq “ cospωt ´ ωtAB ´ φpAqq

Ainsi, le retard de phase en B par rapport à A est :

φpBq ´ φpAq “ ωtAB
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Expression du déphasage dû à la propagation avec la durée de propagation

Le retard de phase au point B par rapport à A du fait de la propagation de l’onde s’exprime
:

φpBq ´ φpAq “ ωtAB

avec ω la pulsation de l’onde et tAB la durée de propagation pour aller de A à B.

Le retard de phase dû à la propagation est proportionnel à la durée de propagation.

En égalisant les deux expressions trouvées pour le retard de phase, on aboutit à

ωtAB “
ω

c
pABq ñ tAB “

ĚAB

c{n
“

ĚAB

vφ

si A et B appartiennent au même rayon lumineux, dans le même milieu DLHI transparent. Cela
est bien cohérent avec la définition de l’indice optique d’un milieu !

d Différences de phase supplémentaires

En plus du déphasage dû à la propagation, la lumière subit un déphasage supplémentaire de π
dans les cas suivants :

• lorsque le rayon subit une réflexion sur un milieu DLHI plus réfringent que son milieu
incident, i.e. que les indices optiques vérifient n2 ą n1.

• lorsque le rayon subit une réflexion sur une surface métallique.
• au passage d’un point de convergence (foyer)

Dans ces cas, le retard de phase en B par rapport à A s’écrit :

φpBq ´ φpAq “
2π

λ0
pABq ` π “

2π

λ0

ˆ

pABq `
λ0

2

˙

IV.2 Nouvelle définition des surfaces d’onde

Considérons toujours une vibration lumineuse harmonique :

spM,tq “ ApMq cospωt ´ φpMqq

Une surface d’onde est l’ensemble des points de l’espace tels que, à t fixé, spM,tq “ cste. En
négligeant toute atténuation spatiale de l’onde, cela est équivalent à φpMq “ cste.

Considérons un faisceau de rayons lumineux issus d’un même point source S. Pour un point M ,

du fait de la propagation, φpMq “ φpSq `
2π

λ0
pSMq. Ainsi, les points M d’une surface d’onde

sont les points tels que pSMq “ cste.

Définition équivalente d’une surface d’onde

Soit S le point source de l’onde. Une surface d’onde est l’ensemble des points M vérifiant
pSMq “ cste.

IV.3 Condition de stigmatisme rigoureux

Définition (rappel) : Stigmatisme rigoureux
Un système optique est rigoureusement stigmatique pour un couple de points pA,A1q si tout rayon
incident passant par A passe par A1 après avoir traversé le système. Autrement dit, l’image d’un
point est un point.

Cherchons à traduire cette propriété de stigmatisme rigoureux en terme de chemins optiques.
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Remarque : On suppose que l’optique géométrique est partout valide dans le système optique (pas
de diffraction).

Avant le système optique, les rayons sont des droites passant par A. D’après le théorème de Malus,
les surfaces d’onde sont des sphères de centre A.
De même, après le système optique les surfaces d’onde sont des sphères de centre A’.

On considère deux rayons issus de A et convergeant en A’. Soient M1 et M2 deux points situés
sur ces rayons et situés sur la même surface d’onde (relative à A).

‹

Par définition des surfaces d’onde, comme les deux rayons sont issus de la même source
A : pAM1q “ pAM2q.
De plus, M1 et M2 étant situés sur la même sphère de centre A1 : ĞM1A1 “ ĞM2A1 ñ

pM1A
1q “ pM2A

1q.
Ainsi,

pAA1q1 “ pAM1q ` pM1A
1q “ pAM2q ` pM2A

1q “ pAA1q2

Condition de stigmatisme rigoureux

Un système optique est rigoureusement stigmatique pour un couple de points pA,A1q si le
chemin optique pAA1q est indépendant du rayon lumineux suivi pour aller de A à A’, i.e.
pAA1q “ cste.

"

.

‹
Schématiser à nouveau LCV + A + A’. Mettre en évidence deux RL (sur l’AO
et un hors AO). Géométriquement, les longueurs AA1 sont différentes entre les
rayons 1 et 2. MAIS, les chemins optiques sont identiques.

En effet, une lentille convergente est taillée dans du verre, d’indice optique supérieur à
celui de l’air. La différence d’épaisseur du verre entre le centre et le bord de la lentille
suffit alors à permettre cette égalité des chemins optiques.

‹ On retiendra qu’en présence d’une lentille mince, il ne faut JAMAIS calculer un chemin
optique via les longueurs des rayons lumineux.

IV.4 Exemples concrets de calculs de chemins optiques

On considère un point source S. Dans la suite des chapitres d’optique, on sera très souvent amené
à calculer une différence de chemins optiques pSBq ´ pSAq. Entraînons nous donc à réaliser ce
calcul sur deux exemples simples.

Exemple 1 : Avec une lentille mince convergente

‹ Cf. ma feuille de préparation du chapitre.

Exemple 2 : Sans lentille

‹ Cf. ma feuille de préparation
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V Conditions de validité de l’optique géométrique

Ce chapitre a permis d’expliquer comment nous allons nous servir des outils de l’optique géométrique
pour calculer le déphasage des ondes lumineuses entre deux points. Finissons ce chapitre en rap-
pelant le cadre de validité de l’optique géométrique.

Approximation de l’optique géométrique et cadre de validité

L’approximation de l’optique géométrique consiste à négliger tout phénomène ondulatoire
de la lumière.

Ceci n’est valable qu’à la condition que tous les obstacles rencontrés par la lumière soit de
taille caractéristique a bien bien plus grande que la longueur d’onde : a ą 1000λ.

‹ En odg, a ą 0.5mm

Dans le cas où a ă 1000λ, on fait apparaitre le phénomène de diffraction : après l’obstacle, la
lumière se propage principalement dans un cône appelé cône de diffraction.

‹
Schéma, en plaçant le demi-angle au sommet du cône θ, D et la tache centrale de
diffraction L

On peut relier θ à la dimension de l’obstacle : sinpθq »
λ

a

Dans la plupart des expériences d’optique, on choisit D " L, ce qui implique que θ ! 1. On a

alors : tanpθq » θ “
L{2

D
. Donc :

λ

a
“

L

2D
ðñ L “

2Dλ

a
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Exercices

Ex. 1 Modes de propagation dans une fibre optique à saut d’indices

Exercice issu du Dunod, Physique, PC/PC*, 6ème édition

Une fibre optique à saut d’indices est modélisée par une lame de verre d’épaisseur d “ 50 µm et d’indice optique
n1 “ 1.5 placée entre deux couches de verre d’indice n2 “ 1.4. La fibre est entourée d’air d’indice optique équivalent
à celui du vide. Les rayons lumineux suivent des trajets compris dans un plan, comme schématisé ci-après.

1. A quelle condition portant sur l’angle θ le rayon est-il confiné dans la lame d’indice n1 ? L’ensemble des
rayons incidents à l’interface air/fibre pouvant se propager dans la fibre optique forment le cône d’acceptance
de la fibre. Déterminer l’expression du demi-angle au sommet du cône d’acceptance en fonction de n1 et n2.
A.N. ?

2. Pour qu’il y ait propagation de l’énergie, l’onde doit être en phase aux points A et H de la figure. En déduire
une seconde condition sur l’angle θ.

3. Chaque valeur de θ correspond à un mode de propagation. Calculer le nombre de modes possibles pour une
longueur d’onde dans le vide λ0 “ 0.5 µm.

Correction de l’exercice 1

1. Pour que le rayon soit confiné dans la lame d’indice n1, il faut qu’il y ait réflexion totale en A : aucun rayon
réfracté ne peut exister dans le milieu d’indice n2. Avec la loi de Snell-Descartes de la réfraction :

n1 sinpθq ą n2 ðñ sinpθq ą
n2

n1

On peut réaliser une A.N., et comme θ ă
π

2
: 69˝ ă θ ă 90˝.

On en déduit l’angle d’incidence i à l’interface air/fibre en utilisant à nouveau la loi de Snell-Descartes de la
réfraction :

1 ˆ sinpiq “ n1 sin
´π

2
´ θ

¯

“ n1 cospθq

On en déduit la valeur maximale de l’angle d’incidence pour que le rayon lumineux se propage dans la fibre,
en utilisant cosparcsinpxqq “

?
1 ´ x2 :

imax “ arcsin pn1 cospθminqq “ arcsin pn1 cosparcsinpn2{n1qqq “ arcsin

ˆ

b

n2
1 ´ n2

2

˙

A.N. : imax “ 33˝.
2. Le déphasage entre les points H et A est :

φpHq ´ φpAq “
2π

λ0
pAHq

Ici, on souhaite donc que φpHq ´ φpAq “ 2nπ ðñ pAHq “ nλ0 avec n P N.
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Géométriquement, comme A et H sont sur le même rayon lumineux : pAHq “ n1ppAJq ` pJHqq. A ce stade,
il reste à raisonnement avec des relations trigonométriques. Introduire tous les angles connus sur la figure.

On obtient : AJ “
d

cospθq
et JH “ AJ cosp2θq. Donc :

pAHq “ n1AJp1 ` cosp2θqq “ 2n1AJ cos2pθq “ 2n1d cospθq

Ainsi, la condition de propagation devient :

2n1d cospθq “ nλ0

3. Les deux conditions précédentes doivent être respectées. On en déduit donc la valeur maximale de n :

nmax “
2n1d cospθminq

λ0
“ 107. n varie donc de 0 à 107 inclus : il y a 108 modes de propagation possibles.

Remarque : Important : Chacun des modes se propageant parcourt une longueur différente dans la fibre optique
et n’arrive donc pas en même temps que les autres à l’extrémité de la fibre optique. On parle de vitesse effective de
propagation différente. On dit alors qu’il y a présence de dispersion intermodale dans la fibre optique.

Ex. 2 Démonstration de la loi de Snell-Descartes de la réfraction

Dans cet exercice, on se propose de démontrer la loi de Snell-Descartes de la réfraction en utilisant la notion de
chemin optique.

1. Rappeler la loi de Snell-Descartes de la réfraction.

Une onde plane monochromatique émise par une source ponctuelle S arrive sur un dioptre plan séparant deux
milieux d’indice n1 et n2. On appelle θ1 l’angle d’incidence et θ2 l’angle de réfraction.

2. En faisant apparaître un point H situé sur le rayon passant par B et tel que pSAq “ pSHq, déterminer une
expression de pSBq ´ pSAq en fonction de AB et de θ1.

3. Déterminer une nouvelle expression de pSBq ´ pSAq en fonction de AB et de θ2.
4. Montrer que l’on retrouve la loi de la réfraction reliant θ1 à θ2.

Correction de l’exercice 2

1. Loi de Snell-Descartes de la réfraction (attention à ne pas oublier la 1ère partie de la loi !) :
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• Le rayon réfracté appartient au plan d’incidence, i.e. le plan contenant le rayon incident et la normale
au dioptre. (C’est cette propriété qui permet de se contenter de schémas 2D en optique géométrique.)

• n1 sinpθ1q “ n2 sinpθ2q avec n1 et n2 les indices optiques des deux milieux séparés par le dioptre, θ1
l’angle d’incidence et θ2 l’angle de réfraction.

Dans cet exercice, on admet la première partie de la loi, et on va démontrer la seconde.

2. Tous les rayons lumineux sont initialement émis par une même source ponctuelle S. Ainsi, la propriété
pSAq “ pSHq signifie que les points A et H appartiennent à la même surface d’onde. D’après le théorème de
Malus, H est donc le projeté orthogonal de A sur le rayon incident passant par B.
Ainsi,

pSBq ´ pSAq “ pSBq ´ pSHq “ pHBq “ n1
ĚHB

car H et B appartiennent au même rayon lumineux. Géométriquement, on aboutit à :

pSBq ´ pSAq “ n1AB sinpθ1q

3. En procédant de manière similaire, on introduit le point K, projeté orthogonal de B sur le rayon émergent
passant par A. Sachant que tous les rayons sont émis par un même point source S et d’après le théorème de
Malus, pSKq “ pSBq. Donc :

pSBq ´ pSAq “ pAKq “ n2AB sinpθ2q

4. En égalisant les deux expressions précédentes, on aboutit à n1 sinpθ1q “ n2 sinpθ2q.

Ex. 3 Sup’ : Tripleur de focale de Barlow

Données numériques :

• Les orbites de la Terre et de Jupiter sont coplanaires et approximativement circulaires de centre le centre
d’inertie du Soleil.

• Rayon des orbites de la Terre et de Jupiter : RT “ 1.5 ˆ 108 km et RJ “ 7.8 ˆ 108 km.
• Diamètre de Jupiter : DJ “ 1.4 ˆ 105 km.

1. Calculer le diamètre angulaire maximal α0 sous lequel on peut observer Jupiter depuis la Terre. Peut-on
distinguer deux points à l’opposé de Jupiter à l’œil nu ?
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On souhaite photographier Jupiter à travers un télescope simple, voir figure (a), assimilé à une unique lentille mince
convergente de focale f 1

1 “ 2250mm. L’image doit se former sur le capteur. Le tube T2 peut coulisser à l’intérieur
du tube T1 pour régler la mise au point.

2. Déterminer la distance objectif - capteur pour obtenir une image nette. Calculer alors le diamètre maximal
de Jupiter sur le capteur.

Cette image est observable sur un capteur CCD, mais est petite. Pour agrandir l’image, on intercale une lentille
divergente L2 de distance focale f 1

2 entre la lentille L1 et le capteur, voir figure (b). La distance d entre la lentille
L2 et le capteur est fixe, égale à 200 mm. On admet que le foyer image F 1

1 de la lentille L1 se situe entre la lentille
L2 et le capteur.

3. Reproduire le dispositif et tracer la marche d’un rayon lumineux incident venant d’une des extrémités de
Jupiter. On indiquera :

• l’angle d’incidence α0{2,
• l’image intermédiaire A1B1,
• l’image finale réelle A2B2.

4. Déterminer l’expression de la distance focale f 1
2 et de la distance O1O2 entre les deux lentilles pour que le

dispositif produise sur le capteur une image de Jupiter trois fois plus grande que précédemment.
5. Ce dispositif est alors appelé "tripleur de focale". Expliquer.

On souhaite enfin observer Jupiter à l’œil à travers ce dispositif (b). On conserve la valeur de f 1
2 “ ´100mm trouvée

en question Q4.

6. Afin que l’observation puisse s’effectuer sans fatigue visuelle pour l’œil emmétrope, où doit être située l’image
finale A2B2 en sortie de L2 ? Calculer alors la distance O1O2 à imposer.

7. Calculer la valeur du diamètre angulaire α1
0 sous lequel l’œil perçoit Jupiter à l’issue de la lunette astronomique.

Peut-on désormais distinguer deux points à l’opposé de Jupiter ?

Correction de l’exercice 3

1. La distance minimale entre la Terre et Jupiter est atteinte lorsqu’elles sont alignées avec le Soleil dans l’ordre
Soleil - Terre - Jupiter. Cette distance vaut L “ RJ ´ RT " D. L’angle α0 vérifie alors α0 ! 1 et on a donc

: α0 “
D

RJ ´ RT
. A.N. : α0 “ 2.2 ˆ 10´4 rad “ 0.761 ă 11. Ce diamètre angulaire est inférieur à la limite de

résolution angulaire de l’œil : on ne peut pas distinguer deux points à l’opposé de Jupiter (Jupiter est perçu
à l’œil nu comme un point).

2. On a L " f 1
1 : tout se passe comme si les rayons lumineux étaient émis depuis l’infini. L’image se forme alors

dans le plan focal image de L1, on impose donc une distance L1 - capteur de f 1
1 “ 2250mm.

Le diamètre de Jupiter sur le capteur est alors D1 “ α0f
1
1 “ 0.50mm.

3. Au brouillon, on se rend compte que le seul moyen que l’image finale soit réelle est que F 1
1 P rO2F2s. On

réalise alors le schéma des rayons lumineux :
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4. On souhaite obtenir une image 3 fois plus grande qu’avec le dispositif (a), donc : ĞA2B2 “ 3ĞA1B1. On peut
utiliser la relation de grandissement de Descartes pour la lentille L2 (que l’on retrouve de manière évidente
avec un théorème de Thalès sur le schéma précédent) :

γ2 “
ĞA2B2

ĞA1B1

“ 3 “
ĞO2A2

ĞO2A1

“
d

f 1
1 ´ ĞO1O2

Donc, ĞO1O2 “ f 1
1 ´

d

3
, ce qui semble cohérent avec le schéma.

On détermine f 1
2 avec la relation de conjugaison de Descartes par exemple :

1
ĞO2A2

´
1

ĞO2A1

“
1

f 1
2

ñ f 1
2 “ ´

d

2

5. Avec le télescope simple (a), pour obtenir une image trois fois plus grande, il faut multiplier par 3 la distance
focale de L1. Grâce à la lentille divergente L2, on obtient cette image 3 fois plus grande, d’où le nom de
"tripleur de focale", tout en évitant de devoir multiplier par 3 l’encombrement du système.

6. Pour un œil emmétrope, une observation sans fatigue nécessite une image finale A2B2 située à l’infini. Il faut
donc que l’image intermédiaire A1B1 soit située dans le plan focal objet de L2, soit que F 1

1 “ F2 “ A1. On lit
donc géométriquement :

ĞO1O2 “ f 1
1 ` f 1

2

A.N. : ĞO1O2 “ 2150mm.
7. Avec un schéma des rayons lumineux et une formule de trigonométrie :

α1
0

2
“

ĞA1B1

ĘO2F2

“ ´
ĞA1B1

f 1
2

et ĞA1B1 “
α0

2
f 1
1

Ainsi α1
0 “ ´α0

f 1
1

f 1
2

. A.N. : α1
0 “ 171. On peut distinguer nettement à l’œil deux points situés à l’opposé de

Jupiter avec cette lunette astronomique.

Ex. 4 Sup’ : Profondeur de champ d’un appareil photographique

On étudie un appareil photographique, modélisé comme l’association d’une lentille mince convergente de distance
focale f 1 “ 50mm (centre optique nommé O) et d’un capteur.

1. On souhaite photographier un bâtiment de h “ 100m de haut situé à une distance de D “ 140m du
photographe. Déterminer la taille minimale du capteur pour pouvoir photographier le bâtiment dans son
intégralité.

Initialement, l’appareil photo est réglé sur l’infini, c’est-à-dire que la distance entre le plan de l’objectif et celui du
capteur est égale à la distance focale f 1. Pour mettre au point (i.e. obtenir une image nette) d’un objet à une
distance finie, on écarte l’objectif de sa position initiale d’une distance t, appelée distance de tirage. On appelle
alors D la distance entre l’objet et le point O.
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2. Déterminer l’expression de t en fonction de D et f 1. Simplifier cette expression dans le cas où D " f 1.

Dans toute la suite, on suppose que la mise au point est réalisée pour une distance D “ 18m.

On constate en pratique que l’image formée reste nette de part et d’autre de la mise au point théorique (c’est
la profondeur de champ), car on peut qualifier d’image nette d’un point, toute tache de dimension inférieure au
diamètre δ des cellules photosensibles du capteur.

3. L’objectif de l’appareil photographique a un diamètre d’ouverture d “
f 1

N
avec N le nombre d’ouverture. Si

N “ 5.6, on constate que l’image est nette si l’objet est situé entre l’infini et une distance de 9m de l’objectif.
Déterminer numériquement δ.

4. Déterminer la profondeur de champ pour des nombres d’ouverture N “ 2.8 et N “ 16. Commenter. Quel
autre facteur influence le choix de N par un photographe ?

Correction de l’exercice 4

1. On a D " f 1, on peut donc considérer que tout se passe comme si le bâtiment était presque situé à l’infini.
Donc, l’image se forme presque dans le plan focal image de la lentille : ĚOA1 » f 1. Un schéma des rayons
lumineux ou l’application de la relation de grandissement de Descartes donne alors :

ĘA1B1 “ ĚAB ˆ
f 1

´D
“ ´

f 1h

D

A.N. : ĘA1B1 “ 36mm (ordre de grandeur cohérent avec les dispositifs pratiques).
2. Je vous conseille de faire un schéma et d’y indiquer les différentes distances introduites par l’énoncé : ĚOA1 “

f 1 ` t et ĚAO “ D.
On utilise la relation de conjugaison de Descartes (par exemple) :

1
ĚOA1

´
1

ĚOA
“

1

f 1
ñ t “ f 1

¨

˚

˝

1

1 ´
f 1

D

´ 1

˛

‹

‚

Si D " f 1, un développement limité à l’ordre 1 en f 1{D donne : t “
f 12

D
.

Remarque : La Q.1 revenait à faire un DL à l’ordre 0 en f 1
{D, car on ne gardait que le terme dominant. Ici, il

faut pousser à l’ordre 1 en f 1
{D.

3. Vu la profondeur de champ donnée, c’est le cas limite de l’objet au plus proche de l’objectif qui fixe la taille
de δ. Dans cette question, on considère donc cette seule situation d’un objet situé en Amin.

D’après le théorème de Thalès,

δ “ d ˆ
ĞEA1

min

ĞOA1
min

“ d

¨

˚

˝

1 ´

f 1p1 `
f 1

D
q

ĞOA1
min

˛

‹

‚

On détermine ĞOA1
min avec la relation de conjugaison de Descartes par exemple :

1
ĞOA1

min

´
1

ĚOA
“

1

f 1
ñ

1
ĞOA1

min

“
1

f 1
´

1

ℓmin
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Ainsi,

δ “ d

ˆ

1 ´ p1 `
f 1

D
q `

f 1

ℓmin
p1 `

f 1

D
q

˙

“ d

ˆ

´
f 1

D
`

f 1

ℓmin
p1 `

f 1

D
q

˙

Or, on a ℓmin " f 1. Donc, le terme
f 1

ℓmin
ˆ

f 1

D
est un terme infiniment petit d’ordre 2 : on le néglige devant

les termes infiniment petits d’ordre 1 en f 1{D et f 1{ℓmin. Ainsi, en ne gardant que les termes dominants :

δ “ df 1

ˆ

1

ℓmin
´

1

D

˙

A.N. : δ “ 25 µm.
Remarque : Dans le cas précis proposé par l’énoncé, il se trouve qu’on obtient exactement le même résultat
numérique en étudiant Amax situé à l’infini. Mais c’est un "coup de chance" lié aux valeurs numériques choisies...

4. Le raisonnement fait précédemment reste vrai et on a donc : ℓmin “
f 1

δ

d
`

f 1

D

.

Concernant ℓmax, on peut déjà remarquer que si N ą 5.6, alors d diminue par rapport à la Q.3, permettant
de faire reculer encore davantage Amax. Or, comme pour N “ 5.6, Amax est à l’infini, on peut tout de suite
conclure que pour N “ 16, ℓmax “ `8. Ainsi, le seul cas restant à traiter est la détermination de ℓmax pour
N “ 2.8.
En refaisant un théorème de Thalès + une relation de conjugaison de Descartes, on trouve tous calculs faits :

ℓmax “
f 1

f 1

D
´

δ

d

A.N. : Pour N “ 2.8 : ℓmax “ 36m et ℓmin “ 12m.
A.N. : Pour N “ 16 : ℓmax “ `8 et ℓmin “ 4.6m.
Ainsi, si N augmente, la profondeur de champ augmente. Néanmoins, si N augmente, l’intensité lumineuse
reçue diminue, et donc on doit augmenter la durée d’exposition pour obtenir une photo lumineuse. Ceci peut
être gênant dans le cas d’un sujet mouvant car la photo pourrait devenir floue. Il faut donc faire un compromis
entre profondeur de champ et durée d’exposition.

Ex. 5 Largeur naturelle d’une lampe spectrale

On considère une lampe spectrale basse pression émettant une raie à la longueur d’onde dans le vide λ0 “ 0.5 µm.

1. Quelle est la fréquence centrale ν0 de cette raie ? Quelle est sa couleur ?
2. La longueur de cohérence temporelle d’une telle raie liée à la seule largeur naturelle (i.e. atome sans agitation

thermique, isolé du reste de l’univers) serait de Lc “ 3m. Définir la notion de "longueur de cohérence" et en
expliquer l’origine. En déduire la valeur numérique de la durée τc des trains d’onde émis.

3. Calculer le nombre moyen d’oscillations par train d’onde.
4. Donner un ordre de grandeur de la largeur spectrale naturelle en fréquence ∆ν et en longueur d’onde ∆λ.
5. En TP, les lampes spectrales utilisées ont une longueur de cohérence temporelle bien plus faible. En donner

un ordre de grandeur pour les lampes spectrales de TP. Proposer une origine physique de la diminution de
cette longueur de cohérence dans les lampes réelles.

Correction de l’exercice 5

1. Dans le vide, la relation de dispersion donne : ν0 “
c

λ0
“ 6 ˆ 1014 Hz. Au vu de la longueur d’onde dans le

vide, la raie est verte.
2. La longueur de cohérence temporelle est la distance parcourue par un train d’onde durant son temps de

cohérence τc, c’est donc aussi la longueur spatiale du train d’onde dans le vide. L’émission de train d’onde
de durée finie s’explique par la largeur spectrale non nulle de la raie. Dans le cas de la largeur naturelle,
cet élargissement spectral est lié uniquement à des effets quantiques : la relation d’incertitude de Heisenberg
interdit en effet la connaissance de l’énergie du niveau excité de manière infiniment précise.

Ainsi : τc “
Lc

c
“ 1 ˆ 10´8 s

3. Deux façons de procéder :
• Vision temporelle : on calcule la période de l’onde T “

1

ν0
et on en déduit le nombre d’oscillations par

train d’onde
τc
T

.
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• Vision spatiale : on connait la période spatiale λ0 de l’onde émise et la longueur totale du train d’onde

Lc. Le nombre d’oscillations est
Lc

λ0
.

On trouve 6ˆ 106 oscillations par train d’onde. (Un grand nombre d’oscillations arrive donc au détecteur par
rapport à son temps de réponse.)

4. D’après la théorie de Fourier, en ordre de grandeur :

∆ν ˆ τc „ 1 ðñ ∆ν „
1

τc
“ 108 Hz ! ν0

Pour déterminer la largeur spectrale en longueur d’onde, on différentie la relation de dispersion :

λ0 “
c

ν0
ñ dλ “ ´

c

ν20
dν ñ ∆λ „

c∆ν

ν20
„ 10´13 m “ 0.1 pm

5. En TP, les lampes spectrales basse pression ont une longueur de cohérence temporelle Lc „ 0.1 à 1mm, soit
largement inférieure à la largeur naturelle. Ceci est relié à un élargissement spectral important. On peut citer
plusieurs origines de cet élargissement spectral : effet Doppler lié à l’agitation thermique, collisions entre les
atomes et les parois.
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