Optique ondulatoire

lumineuses

001 Approximation scalaire des ondes
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Questions de cours

Sources lumineuses : notion de temps de cohérence, lien avec la largeur spectrale et odg de
la longueur de cohérence temporelle pour les trois types de sources usuelles (lampe blanche,
lampe spectrale, laser).

Récepteurs lumineux : odg des temps de réponse des détecteurs, comparaison aux temps
caractéristiques des vibrations lumineuses. Conséquence sur le calcul de la puissance regue.
Onde plane, onde sphérique. Action d’une lentille mince convergente sur les surfaces d’onde.
Retard de phase pour une onde monochromatique : expression en fonction du chemin
optique et en fonction de la durée de propagation.

Stigmatisme rigoureux : définition, démonstration de la conséquence en terme de chemins
optiques.

Sur un exemple au choix du colleur, avec ou sans lentille convergente, calculer une différence
de chemins optiques et la simplifier en utilisant les conditions de Gauss.
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Prise de notes : On a déja décrit les ondes électromagnétiques, et donc la propagation
de la lumiére dans un milieu. Donc quelle différence avec ce qu’on va faire en optique
ondulatoire ?
Notre description des OEM est trés puissante, mais aussi trés lourde : quand on veut
calculer l'intensité lumineuse, on doit calculer E, puis B en réels, puis Poynting, puis
moyenner. Clest faisable dans des cas simples (une onde), mais devient hyper lourd
si on commence & étudier le cas de plusieurs ondes, se propageant dans des directions
différentes...
L’optique ondulatoire consiste & SIMPLIFIER le modéle des OEM dans le cas de 4
* hypothéses :
* on se limite aux ondes dans le domaine du visible ou proche du visible (-> on
parlera désormais de lumiére)
* sources optiques générant des ondes non polarisées
* aucun milieu avec atténuation (pas de plasma a BF et pas de conducteur ohmique)
-> que des milieux transparents
+ étude de 'onde dans les conditions de Gauss (ce qui reviendra bien souvent a

considérer une étude grand dlstance de la gource)
Donc, on perd en généra 1te mals a mise en équations sera bien plus simple dans des

situations plus complexes (changement de milieu de propagation, lentilles, superposition
d’ondes).

Ce chapitre a deux objectifs principaux :

1. En partant des ondes électromagnétiques, construire le modéle scalaire de I'optique, et en
particulier calculer simplement I'intensité lumineuse dans le cadre de ce modéle.

2. Déterminer le déphasage accumulé par une onde au cours de sa propagation en utilisant les
outils de...
Ioptique géométrique !

Sauf indication contraire explicite, toutes les longueurs d’onde évoquées dans ce chapitre sont les

longueurs d’onde qu’aurait la lumiére si elle se propageait dans le vide.

I Modéle des émetteurs et des récepteurs d’ondes lumineuses

T Spectre visible Smeee

570

G

Plusieurs types de sources de lumiére sont disponibles dans la vie courante ou dans les salles
de travaux pratiques. Nous allons briévement en décrire trois types. Toutes ces sources sont
caractérisées par leur spectre d’émission.

On définit la densité spectrale d’intensité lumineuse, Iy, telle que la contribution & l'intensité
lumineuse I des composantes dont la longueur d’onde appartient a Uintervalle [A, A + dA] est :
dI = Iy(\)dA.

* Tracer un profil de densité spectrale d’intensité lumineuse pour une raie centrée sur Ag
et de largeur A\.

L INA)dA.

L’intensité lumineuse totale est alors I = 0
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i) Les corps noirs (ampoule a filament, Soleil...)

Définition :
Un corps noir a la température T est un systéme matériel thermostaté (température T uniforme
et stationnaire) en équilibre thermodynamique avec le rayonnement électromagnétique.

La loi d’émission d’un corps noir est donnée par la loi de Planck (1900) :

5800K (Am,1 = 500 nm)
4800K (Ap,2 = 604 nm)
3800K (A, 3 = 763 nm)

]
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Longueur d’onde

Par exemple, le filament d’'une ampoule & filament est chauffé par effet Joule & 2500 K environ.
Le maximum d’émission est donné par la loi de Wien :

Am = avec a=29x10°mK =\, =121m

ce qui se situe dans l'infrarouge proche. Néanmoins, comme le spectre d’émission est trés large,
I’ampoule émet aussi dans le visible.

Caractéristiques de 1’émetteur :

* Spectre continu
* Largeur spectrale : tout le visible (AX ~ 350 nm)
* Onde non polarisée

ii) Les lampes a décharge = lampes spectrales

Ces lampes contiennent, en régime permanent de fonctionnement, une vapeur atomique, par
exemple de la vapeur de mercure ou de sodium. Des électrodes permettent d’appliquer une
décharge électrique dans la vapeur, c’est-a-dire émettre un flux d’électrons traversant la vapeur.
Les électrons entrent en collision avec les atomes de la vapeur, qui se retrouvent ainsi dans un
état excité. La désexcitation de ces atomes entraine 1’émission de photons. On parle d’émission
spontanée.
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On peut relier la perte d’énergie de 'atome de vapeur a la longueur d’onde médiane \g

hc
du photon émis & 'aide de la relation de Planck-Einstein : Ey — E; = hyg = —.

* Xo
Néanmoins, le spectre d’émission d’une lampe spectrale ne présente pas une raie infini-

ment fine : SPECTRE

Origines de I’élargissement spectral de la raie : Il existe de nombreux processus entrainant
un élargissement spectral. Citons en quelques-uns :

* Les atomes de la vapeur ne sont pas immobiles dans le référentiel du laboratoire. La lumiére
regue par l'opérateur subit donc de ’effet Doppler : plus I’agitation des atomes est élevée,
plus I’élargissement spectral est important.

* Fondamentalement, la mécanique quantique interdit I’existence de raies d’émission spon-
tanée infiniment fines. En effet, d’aprés la relation d’incertitude de Heisenberg, comme la
durée de vie 7 de 'atome dans son niveau excité est finie, il est impossible de quantifier
exactement l’énergie de ’atome dans le niveau excité : AE x 7> h < Av x7 > 1.

Caractéristiques de 1’émetteur :

* Spectre de raies
* Largeur spectrale : A\ ~ 0.1 & 1nm
* Onde non polarisée

iii) Les lasers

Nous étudierons la physique du laser dans un chapitre dédié. Sachez pour l'instant que le pro-
cessus d’émission des photons est différent (émission stimulée) et que chaque photon est émis
rigoureusement a la méme longueur d’onde que le précédent.

Origine de 1’élargissement spectral de la raie : Néanmoins, & nouveau, la raie d’émission
n’est pas infiniment fine, car les photons doivent étre amplifiés dans une cavité contenant des
miroirs, par interférences constructives. Les vibrations mécaniques extérieures induisent un léger
changement de la taille de la cavité, suffisant & élargir la raie.

Caractéristiques de I’émetteur :

* Une raie
+ Largeur spectrale : A\ ~ 10~4nm
* Onde non polarisée

La largeur spectrale est donc trés petite devant la longueur d’onde médiane d’émission : on
considérera souvent I’émission laser comme monochromatique.
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La relation de dispersion de la lumiére dans le vide implique un lien entre longueur d’onde et

C
fréquence : v = . On peut ainsi traduire les largeurs spectrales en longueurs d’onde A\ en

largeurs spectrales en fréquences Av.

Prenons la différentielle de la relation de dispersion :

*

C

En supposant que A\ « A\g, on en déduit :

dv = _ﬁdA
c
Av = )\—(QJA)\

Du fait de la largeur spectrale d’émission des sources, les sources réelles émettent donc toutes des
paquets d’onde. La théorie de Fourier impose alors un lien entre la largeur spectrale en fréquences
Av de 'onde émise et la durée 7. pendant laquelle 'onde est émise :

Av x 1, ~1

Spectre et représentation temporelle du champ électrique (mettre en évidence la période

Ty et 7e).

Ainsi, une source lumineuse émet une succession de portions de sinusoides, chacune de
* ces portions étant émise pendant une durée finie valant en moyenne 7.. On appelle les
portions de sinusoides des trains d’onde et 7, le temps de cohérence de la source. Deux
trains d’onde successifs sont émis avec une variation brutale et aléatoire de la phase a

I’origine.

Plus une source a une grande largeur spectrale, plus son temps de cohérence est faible.

1 _ N
Av  cAX

Te

A

Dans le modéle des trains d’onde, 7. est la durée d’un train d’onde.

= Temps de cohérence et longueur de cohérence temporelle d’une source

Le temps de cohérence 7. d’une source est reliée a la largeur spectrale de la source :

On définit également la longueur de cohérence temporelle ¢, comme la distance parcourue
par un train d’onde dans le vide pendant 7. :

l. = cTe
Ordres de grandeur :
Source Ao (nm) | AX (nm) | Av (Hz) Te (8) L. (m)
Lampe blanche 575 350 3x10" [ 3x107 | 1pm
Lampe spectrale au mercure 546 0.1 10T 10~1T 1 mm
Laser utilisé en TP 632.8 1074 108 1078 1m

Nous allons détailler trois types de détecteurs lumineux fréquemment utilisés en TP.

i) L ceil

L’eil est constitué de deux types de cellules sensibles a la lumiére visible : les cones (sensibles a
la couleur) et les batonnets (trés sensibles aux faibles intensités lumineuses). Détaillons (un peu)
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le fonctionnement d’un batonnet. Il contient un pigment, la rhodopsine, qui change de forme
sous leffet de I’énergie apportée par la lumiére. Ce changement de forme induit 'apparition d’un
message nerveux, transmis au cerveau. Le message nerveux fourni par 'oeil au cerveau ne se
renouvelle que toutes les 0,1 secondes environ.

Caractéristiques du récepteur : :

» Sensible a la puissance lumineuse
e Temps de réponse : Tqetect ~ 0.18

ii) La photodiode

Lorsqu’une photodiode est polarisée en inverse,

Reverse bias :ﬁ}/l-\(; l’arrivée de la lumiére sur le composant génére,

voltage grace a I’énergie lumineuse, une excitation élec-

=4 -8 =8 -l 0p 29 Upha tronique. Cette excitation électronique se traduit

=0 V) par un courant inverse dans la photodiode. Le

h o courant est proportionnel & 'intensité lumineuse

L Aé regue. L’utilisation d’une résistance permet alors
I /J

juaaand
EEREREN]

301 par exemple la détection d’une tension propor-
A tionnelle au courant inverse, et donc proportion-
/ nelle & l'intensité lumineuse.

La photodiode est sensible au spectre visible et
[ Characteristics curve of Photodiode | a linfrarouge proche.

—

=

Caractéristiques du récepteur :

* Sensible & la puissance lumineuse
» Temps de réponse : Tgetect ~ 107° s

iii) Le capteur CCD (charge coupled device)

Le capteur CCD est composé d’une suite de petites photodiodes
placées les unes contre les autres, et se présente souvent sous la forme
d’une barrette ou d’une zone rectangulaire. Les électrons excités par
I’arrivée d’énergie sur une photodiode sont ensuite détectés photo-
diode aprés photodiode pour reconstruire une image. On trouve des
capteurs CCD dans les caméras ou les appareils photos numériques.

Caractéristiques du récepteur :

* Sensible a la puissance lumineuse
» Temps de réponse : Tgstect ~ 10725

On remarque que quelque soit le type de récepteur, celui-ci est sensible & une puissance lumineuse
recue.

Les longueurs d’onde dans le visible varient entre 400 nm (violet) et 750 nm (rouge), ce qui cor-
respond & une fréquence de I'ordre de 10'* & 10'° Hz.

On distingue donc trois échelles de temps différentes :
* la période de 'onde T ~ 10~ 1% s
* * le temps de cohérence, i.e. la durée d’un train d’onde 107 8s < 7, < 107155

.« le temps de réponse d’un détecteur Tieteet > 1072 . ya
Ainsi, on a toujours Tqetect > 1, Te : les détecteurs optiques ne sont sensibles qu’a

une puissance moyenne recue durant Tgetect-
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Un détecteur optique n’est donc sensible qu’a l'intensité lumineuse de 'onde électromagnétique
I= <‘ ‘ﬁH> Pour cette raison, dans tout le théme d’optique, ’objectif sera de calculer 'intensité
lumineuse.

II La vibration lumineuse : le champ scalaire de 'optique

Nous avons vu, au chapitre O2, que, pour une OPPH polarisée rectilignement et se propageant
dans le vide selon +é;, on peut exprimer le vecteur de Poynting simplement :

E = %) co_s)(wt —kz)e, . BAB 2 , R
> kAE Ey = Il = = — cos“(wt — kz)e,
B = = — cos(wt — kz)e, Ho Hoc

w c

On en déduit que l'intensité lumineuse est proportionnelle & la moyenne temporelle de la norme
du champ électrique au carré :
012
(|17

On admet que ce résultat se généralise a tous les types d’ondes (seul le facteur de proportionnalité
change).

On peut simplifier encore davantage le calcul de l'intensité lumineuse sous certaines

hypotheéses.

Hypothése : les systémes optiques seront utilisés dans les conditions de Gauss, i.e. les

rayons lumineux seront peu inclinés et proches _d)e I’axe optique.

Schéma avec une propagation selon un vecteur k légérement incliné par rapport a 'axe

optique, mis selon z.

Dans le vide, ’onde est transverse : la composante du champ électrique selon z est donc
* négligeable devant celles selon x et y. On en déduit 'intensité lumineuse :

Ia(B; + Ey) = (B +(Ey)

Hypothése : les sources optiques ne sont pas polarisées.
Dans ce cas, le champ électrique a une direction variant aléatoirement dans le plan
(Mxy) : les directions x et y sont équivalentes. Donc <Eg> = <E§> et

Ioc (E2)

= Vibration lumineuse

En optique ondulatoire, contrairement aux ondes électromagnétiques, on raisonnera sur
un champ scalaire s(M,t) correspondant a l'une des composantes transverses du champ
électrique. On appelle le champ s(M,t) la vibration lumineuse.

= Calcul de l’intensité lumineuse

L’intensité lumineuse est proportionnelle & la moyenne temporelle de la vibration lumineuse
au carré :

Toc (s(M,t)*)

Comme ce qui nous intéressera sera la variation spatiale de I'intensité lumineuse, et non sa
valeur numérique, on se contentera donc de calculer <s(M ,t)2>.

Il est courant, de ce fait, d’employer un abus de langage en optique ondulatoire et d’appeler
intensité lumineuse la valeur (s(M,t)?). (Attention aux unités...)
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Electromagnétisme Optique ondulatoire
Champs électrique E et magnétique B Vibration lumineuse s
Calcul de Vintensité lumineuse I = ¢ || Calcul de l'intensité lumineuse oc <52>

En passant a un champ scalaire, on a fait disparaitre la notion méme de polarisation de

i On ne peut pas interpréter d’expériences de polarisation avec la vibration lumineuse.
I'onde.

Les équations de Maxwell étant linéaires, le principe de superposition s’applique toujours. Si
plusieurs sources ponctuelles émettent une vibration lumineuse s;(M,t), la vibration lumineuse
totale sera ). s;(M,t).

III Formes d’ondes considérées

Dans toute la suite, on considérera une lumiére monochromatique.

Remarque : En pratique, du fait de la largeur spectrale des sources, il faut sommer plusieurs vibrations
monochromatiques pour décrire complétement la source.

Définition : Une vibration lumineuse sera monochromatique si elle peut s’écrire :
s(M,t) = A(M) cos(wt — @o(M))
avec w la pulsation de 'onde, A(M) amplitude de onde en M et (M) la phase en M.

L’intérét de considérer une lumiére monochromatique est de pouvoir utiliser la notation complexe

s(Mt) = A(M) /@i (M) avec s(M,t) = Re(s(M,t))

On définit alors couramment 'amplitude complexe de I'onde a(M,t) = A(M) e=7¢(M). On
retrouve les propriétés de calcul usuelles : A(M) = |a(M,t)| = |s(M,t)| et —p(M) = arg(a(M,t)).

Pour calculer 'intensité lumineuse, on doit rester en réels :

Toc (s(Mt)*) = A(M)? x

N |

o . 2 ara . . .
On remarque une propriété de calcul pratique : Toc |s|”. Méme si physiquement, il n’y a
aucun sens a calculer un produit avec des grandeurs complexes, on utilisera ce raccourci
de calcul pratique dans le cas de l'intensité lumineuse en optique.

On qualifie une onde de plane ou sphérique par rapport a la forme de ses surfaces d’onde.
Définition (rappel) : Surface d’onde
Ensemble des points de ’espace présentant le méme état vibratoire, c’est-a-dire tels que la fonction

d’onde posséde la méme valeur & un instant ¢ fixé

Une onde est plane si ses surfaces d’onde sont des plans paralléles entre eux. Une onde est
sphérique si ses surfaces d’onde sont des sphéres de méme centre.

i) Onde plane
On a déja vu la forme de la fonction d’onde d’une onde plane progressive harmonique :

s(Mt) = A cos(wt — & - 7 — p)
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avec k = ku le vecteur d’onde de 'onde plane pour une onde se propageant dans la direction .
* Représentation plans d’onde = méme valeur de s(M,t) a t fixé avec U

Dans un milieu diélectrique linéaire homogeéne isotrope (DLHI) transparent, la relation de dis-

persion est

avec n U'indice optique (réel) du milieu.

En notation complexe, on a simplement :

s(Mt) = A J@t=F-7=p0)

ii) Onde sphérique

Représentation des surfaces d’onde a partir d’un point source S (appelé foyer de ’onde)
On se place en coordonnées sphériques (S,e,,e5,6,).
Une onde sphérique divergente se propage selon +e,.. La fonction d’onde s’écrit alors :

B 2
s(M,t) = — cos(wt — kr — ) avec k=
r )\0
> ¢ (Dire oralement que le terme B/r est li¢ a la conservation de la puissance de 'onde

au cours de sa propagation. Mais je ne vais pas jusqu’a calculer cette puissance, car
reviendrait & calculer un vecteur de Poynting, et ce n’est pas I'idée en optique : on le
fera lors des ondes acoustiques seulement.)

Pour une onde sphérique convergente, la fonction d’onde s’écrit :

B 2
s(M,t) = — cos(wt + kr — o) avec k= /\Ln
r 0

Or, l'une des hypothéses de I'approximation scalaire de l'optique est de se placer dans les condi-
tions de Gauss. On peut se placer dans ces conditions en observant la lumiére & grande distance

B
de la source S. Dans ce cas, le terme — varie beaucoup plus lentement que le terme en cosinus :
r

B
on supposera donc que, dans les conditions d’observation de l'optique, — ~ cste = A. Ainsi, les
r

fonctions d’onde simplifiées seront :

s(M,t) = A cos(wt F kr — ¢q)

En notation complexe :
§<M7t) - A ej(WtikT—sﬂo)

L’objectif du théoréme de Malus est de relier 'aspect ondulatoire de la lumiére aux rayons lu-
mineux de l'optique géométrique. On supposera donc étre, dans la suite, dans les conditions de
validité de 'optique géométrique.

Définition : Rayons lumineux
Lignes de champ du vecteur de Poynting moyen. Dans un DLHI transparent, cela correspond
aux lignes tangentes en tout point au vecteur k de ’onde.

Théoréme de Malus (admis)

* Dans le cadre de validité de 'optique géométrique, les rayons lumineux sont or-
thogonaux aux surfaces d’onde.

Ainsi, on pourra utiliser les outils de 'optique géométrique pour tracer les rayons lu-
* mineux. En utilisant le théoréme de Malus, on conclura alors sur la forme des surfaces
d’onde et donc sur le type d’onde existant dans le milieu. Théoréme puissant !
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i) Onde plane

Représentons les rayons lumineux associés & une onde plane, en se plagant dans un plan orthogonal

aux plans d’onde :

A 4

A 4

n
?
v
Ve

A 4

A 4

Les rayons lumineux d’une onde plane sont paralléles entre eux. On peut ainsi former

une onde plane de deux maniéres :
* avec une source ponctuelle située & 'infini
* en plagant une source ponctuelle dans le plan foyer objet d’une lentille mince

ii) Onde sphérique

Représentons, dans un plan, les rayons lumineux associés a une onde sphérique :

Ondes sphériques : a) divergente ; b) convergente.

Les rayons lumineux d’une onde sphérique sont des droites concourantes en un point S, appelé le
foyer de I'onde. On peut ainsi former une onde sphérique en observant la lumiére émise par une

source ponctuelle.

On remarque qu’une onde sphérique observée a grande distance de la source ponctuelle peut étre

localement approximée comme une onde plane.

Prenons I’exemple d’une lentille mince convergente, étudiée dans les conditions de Gauss. On est
dans le cadre de validité de 'optique géométrique, le théoréme de Malus s’applique donc bien.
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» Cas (a) : A est a distance finie et n’est pas sur le foyer objet : I'onde sphérique issue de A
aprés traversée de la lentille devient une onde sphérique de centre A’.

* Cas (b) et(c) : la source est placée au foyer objet ou dans le plan focal objet de la lentille :
I’onde sphérique est transformée en onde plane aprés traversée de la lentille.

« Cas (d) et (e) : la lentille est éclairée par une onde plane (cas (d) : source a l'infini sur
laxe optique, cas (e) : source & Uinfini en dehors de ’axe optique ) : aprés traversée de la
lentille ’onde devient une onde sphérique de centre F’ (cas (d)) ou de centre & foyer image
secondaire (cas (e)).

IV  Déphasage accumulé lors de la propagation de ’onde

IV.1 Expression du déphasage

Reprenons la forme générale d’une vibration lumineuse harmonique : s(M,t) = A(M) cos(wt —
©(M)). Dans la suite des chapitres d’optique ondulatoire, on s’intéressera a l'intensité lumineuse
résultant d’un systéme optique ou plusieurs vibrations lumineuses se somment. Un des points
cruciaux sera alors d’exprimer la phase ¢(M) de chacune des vibrations lumineuses. Comment
relier (M) au trajet suivi par le rayon lumineux ?

i) Onde plane

Considérons une onde plane se propageant selon +eé, dans un milieu DLHI transparent d’indice
optique n. Le fonction d’onde s’écrit donc :

- 2
s(Mjt) = Ag cos(wt — k - 7 — o) = Ag cos(wt — )\—ch — o)

- 27 _,
avec k = —ne,.

Ao
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La vibration lumineuse aux points A et B
s’écrit :

2
s(A,t) = Ag cos(wt — (/\—anA + ¢0))

2

L TR
Apnlo Bl o % —o(4)
e
> _).x et
> 2m
> s(B,t) = Ap cos(wt — (/\—an + ©0))
0
—_—
=¢(B)

Le retard de phase en B par rapport & A est donc :

27
P(B) —¢(4) = =n(zp —2a)
0
* Si les points A et B appartiennent au méme rayon lumineux, alors

o(B) — p(4) = %”@

Ce retard est lié a la propagation de I'onde. Il est positif si le rayon lumineux passe par
A avant de passer par B.

ii) Onde sphérique

Considérons désormais une onde sphérique divergente dans un milieu DLHI transparent d’indice
optique n. La fonction d’onde s’écrit donc :

s(Mt) = A cos(wt — kr — ) = Ag cos(wt — i—an — o)

Le retard de phase en B par rapport & A est :

o(B) — p(A) = %WB )

Si les points A et B appartiennent au méme
rayon lumineux :
2T

p(B) —p(A) = )\*OHE

Dans les deux exemples précédents, la direction de propagation de ’onde n’est pas la méme. Mais,
dans les deux cas, si les points A et B appartiennent au méme rayon lumineux, le déphasage
accumulé au cours de la propagation est proportionnel a la distance parcourue par le rayon
lumineux AB. On définit alors le chemin optique (AB) :

— Expression du déphasage da a la propagation avec le chemin optique

Le retard de phase au point B par rapport a A du fait de la propagation de ’onde s’exprime

avec Ao la longueur d’onde de la lumiére dans le vide et (AB) le chemin optique pour aller
de A a B.

Le retard de phase dii & la propagation est proportionnel au chemin optique parcouru.

12 E@®SO Lycée Rabelais - PC - 2025-2026 - C. Logé



Propriété ("relation de Chasles") : Pour 3 points quelconques A, B et H, (AB) = (AH) +
(HB).

i) Cas d’un seul milieu DLHI transparent

Dans le cas ou les points A et B sont sur le méme rayon lumineux, 'optique géométrique nous
permet de calculer le chemin optique.

= Définition : chemin optique

Dans un milieu diélectrique linéaire homogéne isotrope et transparent d’indice optique n,
on considére deux points A et B situés sur le méme rayon lumineux. Le chemin optique
pour aller du point A au point B est défini comme :

(AB) = nAB

%  Unité

ii) Cas de plusieurs milieux DLHI transparents

A, I, J et B appartiennent au méme rayon

lumineux :
n, *

nq — — S
! J (AB) = (A)+(IJ)+(JB) = ny Al +noIJ+n3J B
Le retard de phase en B par rapport & A est

toujours : @(B) — p(A) = i—Z(AB)

iii) Cas d’un milieu inhomogéne

On considére enfin le cas le plus général d’'un milieu diélectrique linéaire isotrope transparent,
mais inhomogeéne. La trajectoire du rayon lumineux n’est alors plus rectiligne.

On généralise la définition de l'indice optique

M B en introduisant 'abscisse curviligne ¢(M) : elle

/—'\*_/ donne la distance entre le point M et une origine
A en suivant la trajectoire du rayon lumineux.

Sur chaque portion de longueur infinitésimale d/, on peut considérer que I'indice optique varie
peu : le milieu peut étre approximé comme homogéne sur une longueur df. Ainsi, le chemin
optique entre deux points M et N infiniment proches est (M N) = n(M)d¢.

A

En intégrant sur toute la trajectoire entre A et B, situés sur le méme rayon lumineux :

(AB) = LﬁB n(M)dl

Le retard de phase en B par rapport & A est toujours : ¢(B) — p(4) = —(AB)

En négligeant toute atténuation de la vibration lumineuse au cours de la propagation, I’onde est
alors progressive. On peut de ce fait ré-exprimer le déphasage dii & la propagation au point B
par rapport au point A en faisant intervenir la durée de propagation t4p de A vers B :

Vi, s(Bt) = s(At —tap) = Vi, cos(wt — p(B)) = cos(wt —wtap — p(A))
Ainsi, le retard de phase en B par rapport a A est :

¢(B) = p(A) = wtap
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— Expression du déphasage dia a la propagation avec la durée de propagation =

Le retard de phase au point B par rapport a A du fait de la propagation de ’onde s’exprime

¢(B) —¢(A) = wtap

avec w la pulsation de 'onde et t 45 la durée de propagation pour aller de A & B.

Le retard de phase di a la propagation est proportionnel & la durée de propagation.

En égalisant les deux expressions trouvées pour le retard de phase, on aboutit a

AB AB
(AB):tAB=7_7

; w
WwlaAp = — =
c c/n v,

si A et B appartiennent au méme rayon lumineux, dans le méme milieu DLHI transparent. Cela
est bien cohérent avec la définition de I'indice optique d’un milieu !

En plus du déphasage da a la propagation, la lumiére subit un déphasage supplémentaire de 7
dans les cas suivants :

* lorsque le rayon subit une réflexion sur un milieu DLHI plus réfringent que son milieu
incident, i.e. que les indices optiques vérifient ns > nq.

* lorsque le rayon subit une réflexion sur une surface métallique.

* au passage d’un point de convergence (foyer)

Dans ces cas, le retard de phase en B par rapport a A s’écrit :

@(B) —p(A) = 2—7T(AB) P 3 ((AB) i ’\20>

Ao Ao

Considérons toujours une vibration lumineuse harmonique :

s(M,t) = A(M) cos(wt — @o(M))
Une surface d’onde est I’ensemble des points de Uespace tels que, a t fixé, s(M,t) = cste. En
négligeant toute atténuation spatiale de l'onde, cela est équivalent & ¢(M) = cste.

Considérons un faisceau de rayons lumineux issus d’un méme point source S. Pour un point M,
2
du fait de la propagation, (M) = ¢(S) + )\LT(SM) Ainsi, les points M d’une surface d’onde
0
sont les points tels que (SM) = cste.

Définition équivalente d’une surface d’onde

Soit S le point source de 'onde. Une surface d’onde est 1’ensemble des points M vérifiant
(SM) = cste.

Définition (rappel) : Stigmatisme rigoureux

Un systéme optique est rigoureusement stigmatique pour un couple de points (A,A’) si tout rayon
incident passant par A passe par A’ aprés avoir traversé le systéme. Autrement dit, 'image d’un
point est un point.

Cherchons a traduire cette propriété de stigmatisme rigoureux en terme de chemins optiques.
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systéme

optique

' rayon 1

Remarque : On suppose que l'optique géométrique est partout valide dans le systéme optique (pas
de diffraction).

Avant le systéme optique, les rayons sont des droites passant par A. D’aprés le théoréme de Malus,
les surfaces d’onde sont des sphéres de centre A.
De méme, aprés le systéme optique les surfaces d’onde sont des sphéres de centre A’.

On considére deux rayons issus de A et convergeant en A’. Soient M; et My deux points situés
sur ces rayons et situés sur la méme surface d’onde (relative a A).

Par définition des surfaces d’onde, comme les deux rayons sont issus de la méme source
* De plus, M; et My étant situés sur la méme sphére de centre A’ : M A’ = MyA' =
(M A") = (Mo A).
Ainsi,
(AA"); = (AMy) + (M1 A") = (AMs) + (MaA') = (AA"),

Condition de stigmatisme rigoureux

Un systéme optique est rigoureusement stigmatique pour un couple de points (A,A’) si le
chemin optique (AA’) est indépendant du rayon lumineux suivi pour aller de A & A’] i.e.
(AA") = cste.

Schématiser & nouveau LCV + A + A’. Mettre en évidence deux RL (sur I’AO
* et un hors AO). Géométriquement, les longueurs AA’ sont différentes entre les

rayons 1 et 2. MAIS, les chemins optiques sont identiques.
En effet, une lentille convergente est taillée dans du verre, d’indice optique supérieur &

celui de 'air. La différence d’épaisseur du verre entre le centre et le bord de la lentille
suffit alors & permettre cette égalité des chemins optiques.

* On retiendra qu’en présence d’une lentille mince, il ne faut JAMAIS calculer un chemin
optique via les longueurs des rayons lumineux.

On considére un point source S. Dans la suite des chapitres d’optique, on sera trés souvent amené
a calculer une différence de chemins optiques (SB) — (SA). Entrainons nous donc a réaliser ce
calcul sur deux exemples simples.
Exemple 1 : Avec une lentille mince convergente

* Cf. ma feuille de préparation du chapitre.

Exemple 2 : Sans lentille

* Cf. ma feuille de préparation
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V Conditions de validité de 'optique géométrique

Ce chapitre a permis d’expliquer comment nous allons nous servir des outils de 'optique géométrique
pour calculer le déphasage des ondes lumineuses entre deux points. Finissons ce chapitre en rap-
pelant le cadre de validité de 'optique géométrique.

— Approximation de ’optique géométrique et cadre de validité

L’approximation de l'optique géométrique consiste a négliger tout phénomeéne ondulatoire
de la lumiére.

Ceci n’est valable qu’a la condition que tous les obstacles rencontrés par la lumiére soit de
taille caractéristique a bien bien plus grande que la longueur d’onde : a > 1000A.

* En odg, ¢ > 0.5 mm

Dans le cas ot a < 1000, on fait apparaitre le phénoméne de diffraction : aprés 'obstacle, la
lumiére se propage principalement dans un céne appelé cone de diffraction.

Schéma, en placant le demi-angle au sommet du cone 6, D et la tache centrale de

>* diffraction L \
On peut relier § a la dimension de l'obstacle : sin(f) ~ —
a

Dans la plupart des expériences d’optique, on choisit D » L, ce qui implique que # <« 1. On a
L/2
alors : tan(f) ~ 0 = % Donc :
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Exercices

Ex. 1 Modes de propagation dans une fibre optique a saut d’indices
Ezercice issu du Dunod, Physique, PC/PC*, 6éme édition
Une fibre optique & saut d’indices est modélisée par une lame de verre d’épaisseur d = 50 pm et d’indice optique

n1 = 1.5 placée entre deux couches de verre d’indice ny = 1.4. La fibre est entourée d’air d’indice optique équivalent
a celui du vide. Les rayons lumineux suivent des trajets compris dans un plan, comme schématisé ci-aprés.

=

1. A quelle condition portant sur l'angle 6 le rayon est-il confiné dans la lame d’indice n; 7 L’ensemble des
rayons incidents a linterface air/fibre pouvant se propager dans la fibre optique forment le cone d’acceptance
de la fibre. Déterminer I’expression du demi-angle au sommet du céone d’acceptance en fonction de n; et nso.
AN.?

2. Pour qu’il y ait propagation de ’énergie, 'onde doit étre en phase aux points A et H de la figure. En déduire
une seconde condition sur I'angle 6.

3. Chaque valeur de 6 correspond & un mode de propagation. Calculer le nombre de modes possibles pour une
longueur d’onde dans le vide Ag = 0.5 pm.

Correction de l’exercice 1

1. Pour que le rayon soit confiné dans la lame d’indice ny, il faut qu’il y ait réflexion totale en A : aucun rayon
réfracté ne peut exister dans le milieu d’indice ny. Avec la loi de Snell-Descartes de la réfraction :

ny sin(f) > ng <= sin(f) > —

On peut réaliser une A.N., et comme 0 < T, 69° < 6 < 90°.

On en déduit 'angle d’incidence ¢ a Pinterface air/fibre en utilisant & nouveau la loi de Snell-Descartes de la
réfraction :

1 x sin(i) = ng sin <g - 0) =nq cos(d)

On en déduit la valeur maximale de I’angle d’incidence pour que le rayon lumineux se propage dans la fibre,
en utilisant cos(arcsin(z)) = /1 — 22 :

imasz = arcsin (ny cos(m,in)) = arcsin (ny cos(arcsin(ng/ny))) = arcsin ( n? — n%)

AN. : dpee = 33°.
2. Le déphasage entre les points H et A est :

Ici, on souhaite donc que p(H) — p(A) = 2nm <= (AH) =n)y avec n € N.
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Géométriquement, comme A et H sont sur le méme rayon lumineux : (AH) = ny((AJ)+ (JH)). A ce stade,
il reste & raisonnement avec des relations trigonométriques. Introduire tous les angles connus sur la figure.

On obtient : AJ = d et JH = AJ cos(26). Donc :
cos(0)

(AH) = n1 AJ(1 + cos(20)) = 2n1 AJ cos*(0) = 2n1d cos(6)
Ainsi, la condition de propagation devient :
2n1d cos(f) = ng

Les deux conditions précédentes doivent étre respectées. On en déduit donc la valeur maximale de n :
2n1d cos(Om; . . . . .
Nmax = 1)\—(“”“) = 107. n varie donc de 0 & 107 inclus : il y a 108 modes de propagation possibles.
0
Remarque : Important : Chacun des modes se propageant parcourt une longueur différente dans la fibre optique
et n’arrive donc pas en méme temps que les autres a I'extrémité de la fibre optique. On parle de vitesse effective de
propagation différente. On dit alors qu’il y a présence de dispersion intermodale dans la fibre optique.

Ex. 2 Démonstration de la loi de Snell-Descartes de la réfraction

Dans cet exercice, on se propose de démontrer la loi de Snell-Descartes de la réfraction en utilisant la notion de
chemin optique.

1.

Rappeler la loi de Snell-Descartes de la réfraction.

Une onde plane monochromatique émise par une source ponctuelle S arrive sur un dioptre plan séparant deux
milieux d’indice n; et ng. On appelle 6; 'angle d’incidence et 65 ’angle de réfraction.

w

N\

0

g

nz

)

En faisant apparaitre un point H situé sur le rayon passant par B et tel que (SA) = (SH), déterminer une
expression de (SB) — (SA) en fonction de AB et de 6;.

Déterminer une nouvelle expression de (SB) — (SA) en fonction de AB et de 0.

Montrer que l'on retrouve la loi de la réfraction reliant 6, a 6.

Correction de ’exercice 2

. Loi de Snell-Descartes de la réfraction (attention & ne pas oublier la lére partie de la loi !) :
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* Le rayon réfracté appartient au plan d’incidence, i.e. le plan contenant le rayon incident et la normale
au dioptre. (C’est cette propriété qui permet de se contenter de schémas 2D en optique géométrique.)

* ny sin(fy) = ng sin(fz) avec ny et ny les indices optiques des deux milieux séparés par le dioptre, 64
I’angle d’incidence et 0 1'angle de réfraction.

Dans cet exercice, on admet la premiére partie de la loi, et on va démontrer la seconde.

Sl\ AY :3

0] H

@ A 1‘91 B M
<

()

2. Tous les rayons lumineux sont initialement émis par une méme source ponctuelle S. Ainsi, la propriété
(SA) = (SH) signifie que les points A et H appartiennent a la méme surface d’onde. D’aprés le théoréme de
Malus, H est donc le projeté orthogonal de A sur le rayon incident passant par B.

Ainsi,
(SB) — (SA) = (SB) — (SH) = (HB) =n,HB
car H et B appartiennent au méme rayon lumineux. Géométriquement, on aboutit a :

(SB) — (SA) = n1 AB sin(6;)

3. En procédant de maniére similaire, on introduit le point K, projeté orthogonal de B sur le rayon émergent
passant par A. Sachant que tous les rayons sont émis par un méme point source S et d’aprés le théoréme de
Malus, (SK) = (SB). Donc :

(SB) — (SA) = (AK) = no AB sin(6s)

4. En égalisant les deux expressions précédentes, on aboutit & nq sin(f1) = ny sin(6s).

Ex. 3 Sup’: Tripleur de focale de Barlow

Données numériques :

* Les orbites de la Terre et de Jupiter sont coplanaires et approximativement circulaires de centre le centre
d’inertie du Soleil.

+ Rayon des orbites de la Terre et de Jupiter : Ry = 1.5 x 108km et Ry = 7.8 x 108 km.

+ Diamétre de Jupiter : Dy = 1.4 x 10° km.

1. Calculer le diamétre angulaire maximal ag sous lequel on peut observer Jupiter depuis la Terre. Peut-on
distinguer deux points a I'opposé de Jupiter a 1’ceil nu 7
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(a) Dispositif simple (b) Dispositif avec tripleur de focale

On souhaite photographier Jupiter a travers un télescope simple, voir figure (a), assimilé & une unique lentille mince
convergente de focale f{ = 2250mm. L’image doit se former sur le capteur. Le tube 73 peut coulisser a I'intérieur
du tube 77 pour régler la mise au point.

2. Déterminer la distance objectif - capteur pour obtenir une image nette. Calculer alors le diamétre maximal
de Jupiter sur le capteur.

Cette image est observable sur un capteur CCD, mais est petite. Pour agrandir 'image, on intercale une lentille
divergente Lo de distance focale f} entre la lentille L, et le capteur, voir figure (b). La distance d entre la lentille
Lo et le capteur est fixe, égale & 200 mm. On admet que le foyer image F| de la lentille L; se situe entre la lentille
Lo et le capteur.

3. Reproduire le dispositif et tracer la marche d’un rayon lumineux incident venant d’une des extrémités de
Jupiter. On indiquera :
+ l'angle d’incidence «y/2,
* I'image intermédiaire A1 B,
* I'image finale réelle AsBs.
4. Déterminer 'expression de la distance focale f5 et de la distance O;05 entre les deux lentilles pour que le
dispositif produise sur le capteur une image de Jupiter trois fois plus grande que précédemment.
5. Ce dispositif est alors appelé "tripleur de focale". Expliquer.

On souhaite enfin observer Jupiter a I'ceil & travers ce dispositif (b). On conserve la valeur de f§ = —100 mm trouvée
en question Q4.

6. Afin que I'observation puisse s’effectuer sans fatigue visuelle pour I'ceil emmétrope, ou doit étre située 'image
finale A3 B> en sortie de Lo ? Calculer alors la distance 0102 & imposer.

7. Calculer la valeur du diameétre angulaire o sous lequel I'ceil pergoit Jupiter a I'issue de la lunette astronomique.
Peut-on désormais distinguer deux points a 'opposé de Jupiter ?

Correction de ’exercice 3

1. La distance minimale entre la Terre et Jupiter est atteinte lorsqu’elles sont alignées avec le Soleil dans 1’ordre
Soleil - Terre - Jupiter. Cette distance vaut L = R; — Ry » D. L’angle g vérifie alors ag € 1 et on a donc

e Ty VAN o9 =22 x107%rad = 0.76' < 1’. Ce diamétre angulaire est inférieur & la limite de

Ry—R
résolutionJangu:faire de V'ceil : on ne peut pas distinguer deux points a 'opposé de Jupiter (Jupiter est pergu
a l'ceil nu comme un point).

2. On a L » f{ : tout se passe comme si les rayons lumineux étaient émis depuis I'infini. L’image se forme alors
dans le plan focal image de Ly, on impose donc une distance L; - capteur de f{ = 2250 mm.
Le diameétre de Jupiter sur le capteur est alors D' = g f] = 0.50 mm.

3. Au brouillon, on se rend compte que le seul moyen que I'image finale soit réelle est que F| € [O3F3]. On
réalise alors le schéma des rayons lumineux :
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4. On souhaite obtenir une image 3 fois plus grande qu’avec le dispositif (a), donc : A3By = 341 B;. On peut
utiliser la relation de grandissement de Descartes pour la lentille Lo (que 1'on retrouve de maniére évidente
avec un théoréme de Thalés sur le schéma précédent) :

A232 02A2 d
- —3=
A By

024 f] — 010,

72

Donc, 0105 = f] — 3 ce qui semble cohérent avec le schéma.
On détermine f} avec la relation de conjugaison de Descartes par exemple :

1 1 1 , d
—_— == fo=—Z
024y O241 [ 2

5. Avec le télescope simple (a), pour obtenir une image trois fois plus grande, il faut multiplier par 3 la distance
focale de Li. Gréace a la lentille divergente Ly, on obtient cette image 3 fois plus grande, d’ou le nom de
"tripleur de focale", tout en évitant de devoir multiplier par 3 ’encombrement du systéme.

6. Pour un ceil emmétrope, une observation sans fatigue nécessite une image finale As Bs située a Uinfini. 11 faut
donc que 'image intermédiaire A; B; soit située dans le plan focal objet de Lo, soit que F| = Fy = A;. On lit
donc géométriquement :

0,05 = f1 + fy
AN.: 0,0, = 2150 mm.
7. Avec un schéma des rayons lumineux et une formule de trigonométrie :

R — _
ao A1B1 AlBl (67} ,
ey A A R
!
Ainsi o) = — S AN.: ap = 17". On peut distinguer nettement a I’ceil deux points situés a 'opposé de

(7)) f/ .
2
Jupiter avec cette lunette astronomique.

Ex. 4 Sup’: Profondeur de champ d’un appareil photographique

On étudie un appareil photographique, modélisé comme ’association d’une lentille mince convergente de distance
focale f' = 50 mm (centre optique nommé O) et d’un capteur.

1. On souhaite photographier un batiment de h = 100m de haut situé & une distance de D = 140m du
photographe. Déterminer la taille minimale du capteur pour pouvoir photographier le batiment dans son
intégralité.

Initialement, I’appareil photo est réglé sur I'infini, c’est-a-dire que la distance entre le plan de I'objectif et celui du
capteur est égale a la distance focale f’. Pour mettre au point (i.e. obtenir une image nette) d’un objet a& une
distance finie, on écarte I'objectif de sa position initiale d’une distance t, appelée distance de tirage. On appelle
alors D la distance entre 'objet et le point O.
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2. Déterminer I'expression de ¢ en fonction de D et f’. Simplifier cette expression dans le cas ou D » f’.

Dans toute la suite, on suppose que la mise au point est réalisée pour une distance D = 18 m.

On constate en pratique que l'image formée reste nette de part et d’autre de la mise au point théorique (c’est
la profondeur de champ), car on peut qualifier d’image nette d’un point, toute tache de dimension inférieure au
diameétre ¢ des cellules photosensibles du capteur.

!

3. L’objectif de 'appareil photographique a un diameétre d’ouverture d = - avec N le nombre d’ouverture. Si
N = 5.6, on constate que 'image est nette si I’objet est situé entre 'infini et une distance de 9 m de ’objectif.
Déterminer numériquement 0.

4. Déterminer la profondeur de champ pour des nombres d’ouverture N = 2.8 et N = 16. Commenter. Quel
autre facteur influence le choix de N par un photographe 7

Correction de ’exercice 4

1. On a D » f’, on peut donc considérer que tout se passe comme si le batiment était presque situé a l'infini.
Donc, 'image se forme presque dans le plan focal image de la lentille : OA’ ~ f’. Un schéma des rayons
lumineux ou l'application de la relation de grandissement de Descartes donne alors :

A !
. f'h
IR __ —_

A'B' = AB x =

AN.: A’B’ = 36 mm (ordre de grandeur cohérent avec les dispositifs pratiques).

2. Je vous conseille de faire un schéma et d’y indiquer les différentes distances introduites par I'énoncé : OA’ =
f'+tet AO = D.
On utilise la relation de conjugaison de Descartes (par exemple) :

1 1 1 1
j—::fzt:f/ /_1
OA" OA  f 1_ ]i
D
f/2
Si D » f', un développement limité a 'ordre 1 en f//D donne : t = o
Remarque : La Q.1 revenait a faire un DL a l'ordre 0 en f’/D, car on ne gardait que le terme dominant. Ici, il

faut pousser a 'ordre 1 en f'/D.
3. Vu la profondeur de champ donnée, c’est le cas limite de 'objet au plus proche de I'objectif qui fixe la taille
de §. Dans cette question, on considére donc cette seule situation d’un objet situé en A, ;,.

d

Q V(2L

D’aprés le théoréme de Thalés,

- f!
7 f/(l + 7)
5—dx BAmin _ g2 "D’

On détermine OA! . avec la relation de conjugaison de Descartes par exemple :

NS U R S G
OA;nzn m_f/ OA;-mn_f/ Emzn
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Ainsi,

_ [ f! N fof 1
5_d(1_(1+D)+£mm(l+D)> _d<_D+€mm(1+D))
fl !

Or, on a £, » f'. Dong, le terme X “— est un terme infiniment petit d’ordre 2 : on le néglige devant

mn
les termes infiniment petits d’ordre 1 en f/'/D et f’/ly,in. Ainsi, en ne gardant que les termes dominants :

g (L
AN.: 6 =25um.

Remarque : Dans le cas précis proposé par ’énoncé, il se trouve qu’on obtient exactement le méme résultat

numérique en étudiant A,,q. situé a Uinfini. Mais c’est un "coup de chance" lié aux valeurs numériques choisies...

f/
) r
i
Concernant, £,,,4,, on peut déja remarquer que si N > 5.6, alors d diminue par rapport & la Q.3, permettant
de faire reculer encore davantage A,,q.. Or, comme pour N = 5.6, A,,4, est a I'infini, on peut tout de suite
conclure que pour N = 16, £,,,, = +00. Ainsi, le seul cas restant a traiter est la détermination de £,,,, pour
N =28.
En refaisant un théoréme de Thalés + une relation de conjugaison de Descartes, on trouve tous calculs faits :

f/
I
D

Le raisonnement fait précédemment reste vrai et on a donc : £, =

gmax =

Ul >

AN.: Pour N =28: {0 = 36m et £, = 121m.

AN.: Pour N =16 : {40 = +0 et pip, = 4.6 m.

Ainsi, si N augmente, la profondeur de champ augmente. Néanmoins, si N augmente, l'intensité lumineuse
regue diminue, et donc on doit augmenter la durée d’exposition pour obtenir une photo lumineuse. Ceci peut
étre génant dans le cas d’un sujet mouvant car la photo pourrait devenir floue. Il faut donc faire un compromis
entre profondeur de champ et durée d’exposition.

5 Largeur naturelle d’'une lampe spectrale

On considére une lampe spectrale basse pression émettant une raie a la longueur d’onde dans le vide Ay = 0.5 pm.

1.
2.

-

Quelle est la fréquence centrale vy de cette raie 7 Quelle est sa couleur ?

La longueur de cohérence temporelle d’une telle raie liée a la seule largeur naturelle (i.e. atome sans agitation
thermique, isolé du reste de l'univers) serait de L. = 3m. Définir la notion de "longueur de cohérence" et en
expliquer 'origine. En déduire la valeur numérique de la durée 7, des trains d’onde émis.

Calculer le nombre moyen d’oscillations par train d’onde.

Donner un ordre de grandeur de la largeur spectrale naturelle en fréquence Av et en longueur d’onde AA.
En TP, les lampes spectrales utilisées ont une longueur de cohérence temporelle bien plus faible. En donner
un ordre de grandeur pour les lampes spectrales de TP. Proposer une origine physique de la diminution de
cette longueur de cohérence dans les lampes réelles.

Correction de ’exercice 5

. Dans le vide, la relation de dispersion donne : vy = £ 6 x 10 Hz. Au vu de la longueur d’onde dans le

0
vide, la raie est verte.

. La longueur de cohérence temporelle est la distance parcourue par un train d’onde durant son temps de

cohérence ., c’est donc aussi la longueur spatiale du train d’onde dans le vide. L’émission de train d’onde
de durée finie s’explique par la largeur spectrale non nulle de la raie. Dans le cas de la largeur naturelle,
cet élargissement spectral est 1ié uniquement & des effets quantiques : la relation d’incertitude de Heisenberg
interdit en effet la connaissance de I’énergie du niveau excité de maniére infiniment précise.

Ainsi: 7. = == =1x10"8s

¢
Deux fagons de procéder :

1
* Vision temporelle : on calcule la période de I'onde T" = — et on en déduit le nombre d’oscillations par
2

. Te
train d’onde —.
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» Vision spatiale : on connait la période spatiale A\g de 'onde émise et la longueur totale du train d’onde

L.. Le nombre d’oscillations est —<.
On trouve 6 x 109 oscillations par train @’onde. (Un grand nombre d’oscillations arrive donc au détecteur par
rapport & son temps de réponse.)
. D’aprés la théorie de Fourier, en ordre de grandeur :

1
AvXxTe~1 = Av~—=10%Hz « 1
Te

Pour déterminer la largeur spectrale en longueur d’onde, on différentie la relation de dispersion :

A
Ao = ‘o= —%dV:>A)\ ~ % ~107"®m = 0.1pm
Vo Vg Vg

. En TP, les lampes spectrales basse pression ont une longueur de cohérence temporelle L. ~ 0.1 & 1 mm, soit
largement inférieure a la largeur naturelle. Ceci est relié a un élargissement spectral important. On peut citer
plusieurs origines de cet élargissement spectral : effet Doppler lié a I’agitation thermique, collisions entre les
atomes et les parois.
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