Optique ondulatoire
002 Superposition de deux ondes
lumineuses
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Questions de cours

* En s’appuyant sur un calcul d’intensité lumineuse, justifier la nécessité d’ondes synchrones
pour observer des interférences.

» Aprés avoir présenté le modéle des trains d’onde, définir la notion de cohérence entre deux
ondes quasi-monochromatiques. Citer un exemple d’ondes cohérentes et un exemple d’ondes
incohérentes.

» Aprés avoir cité les conditions d’obtention d’interférences, établir, par la méthode de votre
choix, la formule de Fresnel pour deux ondes cohérentes entre elles.

* En s’appuyant sur la formule de Fresnel, définir et expliquer I'intérét de ’ordre d’interférences
et du contraste d’une figure d’interférences.
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Prise de notes : Trois temps caractéristiques pour les sources et détecteurs optiques,
avec des odg bien distincts : Tqetect > Te, T : les détecteurs ne sont sensibles qu’a
I'intensité lumineuse [ = <HﬁH>
lére conséquence (celle 13, je la dis pour les marquer : retenir qu’on est sensible qu’a
une MOYENNE, car c’est le point clé I!!) : certes, I oscille (ondes !!), mais comme
* les détecteurs ne sont sensibles qu’a sa moyenne, on ressent une intensité lumineuse
indépendante du temps (lampe de la salle de classe par exemple). (C’est radicalement
différent de ’acoustique : on met un micro, un oscillo, on voit I'onde.)
2nde conséquence : interférences. On a fait le modéle scalaire de ’OO pour simplifier le
formalisme des ondes EM : va permettre de traiter des situations plus complexes comme
la superposition de deux ondes, qui pourra mener & des interférences sous certaines
conditions bien précises.

Ce chapitre a deux objectifs principaux :

1. Etablir la formule de Fresnel.
2. Identifier une situation de cohérence ou d’incohérence entre deux ondes et en déduire la
formule de calcul de l'intensité a appliquer.

I Comment calculer 'intensité lumineuse résultant de la su-
perposition de deux ondes ?

On se place dans le cadre de 'approximation scalaire de I'optique ondulatoire. Considérons deux
vibrations lumineuses harmoniques, appelées 1 et 2, et se superposant en un point M :

$i(Mt) = Ag; cos(wit — @;(M)) (1=1,2)

*

En M, d’aprés le théoréme de superposition :
s(M,t) = s1(M,t) + s2(M,t)

Or, V'intensité lumineuse I(M) = K (s*(M,t)). On a :

1 1
<S2(M,t)> = 51431 + §A(2)2 + 2A01A02< cos(wlt — (pl(M)) COS(Wgt — @2(M))>

= SAR + 5 A%+ Aoy Aoy [ (cos(w1 +wa)t = (1 (M) = pa(M)))) +{ cos((wr — 1)t — (M)

=0

= %A?n + %ASZ + Ag1 Aoz { cos((wa — wi)t — (pa(M) — p1(M))))

On pose I} = K {(s}(Mt)y = KA} { cos®(wit —¢1(M))) = K x %A%l et Iy = K x %A%Q. On

ré-écrit alors le résultat précédent, en utilisant I = K <s2 (M ,t)> :

I(M) =L+ 1+ 2\/[1[2< COS((OJQ — (.d1)t — ((pQ(M) — (pl(M)))>

Entourer le dernier terme : terme d’interférences, qui doit étre non nul pour avoir des
interférences
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Si wy # we, alors {cos((w2 —wi)t — (w2(M) —@1(M)))) = 0 : il n’y a pas
d’interférences.

* ences. o |
La premiére condition nécessaire pour obtenir des interférences est w; = ws : on parle
dans ce cas d’ondes synchrones.

Sous cette condition, la formule de I'intensité devient :

I(M) =L+ 1+ 2\/[1[2< COS((pg(M) — (pl(M))>

Ré-écrivons le terme o(M) — ¢1(M). Pour cela, appelons S; et Sy les points sources émettant
les ondes 1 et 2.

Sy

S2

On utilise le chemin optique :

2 2
P1(M) = 01(S1) +°2(SIM) et a(M) = p(Ss) + = (So M)
* — )\0 ~—— )\0
=p10 =¥20

Donc,

02(M) — p1(M) = @20 — P10 + % ((S2M) — (S1M))

Néanmoins, expérimentalement, les sources S; et Sy ne peuvent pas émettre une onde stricte-
ment monochromatique (il y a toujours une certaine largeur spectrale). Cela implique (& notre
niveau) l'utilisation du modéle des trains d’onde pour décrire I’émission des deux ondes quasi-
monochromatiques.

Conséquences du modéle des trains d’onde :

Rappel du modéle : Une source lumineuse émet une succession de portions de sinusoides (=
les trains d’onde), chacune de ces portions étant émise pendant une durée finie valant en moyenne
le temps de cohérence 7.. Deux trains d’onde successifs sont émis avec une variation brutale et
aléatoire de la phase a l'origine ;.

Ainsi, a cause de I’émission sous la forme de trains d’onde, ¢;o(¢) fluctue avec le temps.

Si @10 et oo fluctuent de maniére indépendante entre eux, alors en moyenne sur un

2
* grand nombre de trains d’onde <<p20 — @10 + )\—W ((SaM) — (SlM))> =0.
0

Pour visualiser des interférences, il est nécessaire que 99— 10 ne varie pas aléatoirement
dans le temps.

Pour réaliser ceci expérimentalement, on doit nécessairement utiliser un point source primaire S
dont on divise le faisceau en deux avant de se faire superposer de nouveau les deux faisceaux.

S1

La formule du déphasage devient alors : (M) — @1 (M) = @hy — o + ?\% ((SSoM) — (SS1M))

avec ¢}, et ph, désignant désormais les phases & l'origine au niveau du point source primaire S.
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On définit alors 6(M) = (SS2M) — (SS1 M), la différence des chemins optiques, aussi appelée la
différence de marche.

Néanmoins, ceci n’est pas suffisant pour observer des interférences. Représentons les trains d’onde
émis par la source primaire.

(Faire le schéma ci-dessous en commencant & partir d’un point S. Leur dire qu’ils ont
de la place et de prendre plein de couleurs.) Indiquer : ¢, : longueur de cohérence
temporelle

Si §(M) = L., alors ¢ et ph, n'ont & nouveau aucun lien entre eux : la moyenne du
déphasage est alors nulle. Pour observer des interférences, il faut nécessairement que
(M) < t..

Dans le cas ol les deux ondes sont issues du méme point source primaire S et que la différence
de chemins optiques §(M) < £., alors les deux ondes sont dites cohérentes entre elles. Sous
ces conditions, les deux phases a l'origine fluctuent aléatoirement, mais de la méme maniére :
Yo = ¥ho- La formule de 'intensité devient :

2

I(M) =11+ Iy + 2~/ 1115 cos </\05(M))

Remarque : En toute rigueur, la relation ¢y ~ @5 n’est valable que si (M) « £.. Dans le cas
contraire, on observerait bien des interférences, mais la formule de l'intensité serait 1égérement modifiée.

= Conditions d’obtention d’interférences lumineuses
Pour observer des interférences lumineuses, il faut que :

* les deux ondes soient synchrones : les pulsations centrales des spectres d’émission des
deux ondes sont identiques : w; = wy (critére lié aux pulsations centrales des spectres
d’émission).

¢ les deux ondes soient cohérentes entre elles : elles sont issues du méme point source
primaire S (critére lié au point source) et ont une différence de chemins optiques
inférieure a la longueur de cohérence temporelle : |6(M)| < £, (critére lié aux largeurs
spectrales des spectres d’émission).

Dans le cas contraire, le terme d’interférences est nul.

Comme la notion de cohérence implique celle de synchronicité, on se contentera couramment de
dire que les deux ondes sont cohérentes entre elles.

Remarque : Dans le cas oil on travaillerait avec des ondes polarisées, il faudrait ajouter en condition
- —
d’obtention d’interférences lumineuses que 'amplitude vectorielle Ey1 ne soit pas orthogonale & Fos.

La formule de calcul de 'intensité est modifiée selon que les ondes soient cohérentes ou inco-
hérentes entre elles.
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— Formule de Fresnel

Dans le cas ol les deux ondes sont cohérentes entre elles, la formule de I'intensité est :

2
I(M) = I, + I + 2/T, I cos (A:(S(M))

avec 6(M) = (SS2M) — (SS1 M) la différence des chemins optiques. Cette formule est dite
formule de Fresnel.

Comme les deux ondes interférant proviennent initialement du méme point source primaire
S, on aura souvent I; = Iy = Iy. La formule de Fresnel simplifiée est alors :

(M) = 21, <1 + cos (i:é(M)>>

On parle d’additivité des amplitudes complexes (cf. partie III).

— Additivité des intensités lumineuses

Dans le cas ot les deux ondes sont non synchrones ou incohérentes entre elles, on n’observe
pas d’interférences, et la formule des intensités est simplement :

IM)=1,+ I,

On parle d’additivité des intensités.

Il existe deux modélisations pour prendre en compte le caractére non monochromatique d’une
source. Ces deux modélisations ont un impact sur le caractére cohérent ou incohérent de deux
ondes se superposant.

Modélisation n°1 : On prend directement en compte 1’intégralité du spectre d’émission
de la source

Dans ce cas, la longueur de cohérence temporelle /. est reliée & la largeur spectrale totale de la

source :
1 , c
Te~— =>4l =CTe ~ —
Av Av

C’est la vision couramment utilisée en TP.

Exercice : Identifier si les deux ondes se superposant sont cohérentes ou incohérentes entre
elles dans les exemples suivants.

1. Trous d’Young avec une source monochromatique S ponctuelle (source infiniment fine)

2. Trous d’Young avec une source monochromatique étendue (la source a une certaine
largeur spatiale)

3. Trous d’Young éclairés par une lampe blanche S ponctuelle. On distinguera les cas ot
les deux ondes se superposent proche du centre de I’écran ou proche des bords de ’écran.

4. Michelson en configuration "lame d’air" avec un écart entre les miroirs Az ~ lcm et
éclairé par un laser (on suppose la direction incidente fixée et que les deux ondes provi-
ennent du méme point source)

5. Michelson en configuration "lame d’air" avec un écart entre les miroirs Az ~ 1lcm et
éclairé par une lampe blanche (on suppose la direction incidente fixée et que les deux
ondes proviennent du méme point source)
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(Je leur représente les deux schémas de principe des trous d’Young et du Michelson
en lame d’air.)

1. Cohérentes. Insister sur : monochromatique = ¢, = 4o0.

2. Distinguer deux cas : si les deux ondes considérées viennent du méme point

* source : cohérentes. Sinon : non.
3. Ondes synchrones. Pour la cohérence : au centre de 'écran § ~ 0 « £, :
cohérentes / au bord § » £, ~ 1pm : incohérentes
4. § ~2Ax « f, ~ 1m : cohérentes
5. 0 » {, ~ 1pm : incohérentes

Modélisation n°2 : On décompose la source comme une infinité de sources monochro-
matiques

On peut décomposer la source & spectre large en une infinité de sources monochromatiques de
fréquences v;. Prenons 'exemple de trous d”Young éclairés par une lampe blanche S ponctuelle.

* Deux ondes émises & la méme fréquence v; sont synchrones et cohérentes entre elles, y
compris sur les bords de ’écran. En effet, la source est ponctuelle et la source émettant a
la fréquence v; étant monochromatique, sa longueur de cohérence temporelle £, = +00 >

0(M)].
* Deux ondes de fréquences v; différentes ne sont pas synchrones entre elles. Sur 1’écran,
I’intensité est donc la somme des intensités associées & chacune des fréquences v;.

Remarque : Sur les bords de lécran, nous verrons (chapitre OO3) que les maxima d’intensité
lumineuse pour certaines fréquences v; coincident avec des minima d’intensité lumineuses pour d’autres
fréquences. On ne distinguera donc pas de figure d’interférences sur les bords de ’écran. Les deux
modélisations d’émission d’une source a spectre large sont donc compatibles.

Cette vision de décomposition d’une source & spectre large sera celle couramment utilisée en TD.

II Analyse de la figure d’interférences

Dans toute cette partie, on suppose que des interférences sont visibles, i.e. que les deux ondes se
superposant sont cohérentes entre elles.

On appelle champ d’interférences la zone de I'espace ol les deux ondes cohérentes se superposent.

Expérimentalement, cette zone de superposition est forcément limitée (I'intensité lumineuse ne
peut pas étre non nulle partout). Il ne peut pas y avoir d’interférences en dehors du champ
d’interférences.

Représentons U'intensité I(M) donnée par la formule de Fresnel en fonction du déphasage entre
les deux ondes au point M : Ap(M) = ;5(M) On se place pour le moment dans le cas ol
0

I = I, la formule de Fresnel est donc : I(M) = 2Iy (1 + cos(Ap(M))).

12
— L=l = 25W.m™2

104

1 (W.m=2)

A¢ (rad)
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* Placer les Ay pertinents (en mettre des négatifs) et placer le max et min en intensité.
Plus tard : numéroter les ordres d’interférences entiers.

On observe des maxima et des minima de l’intensité lumineuse selon la valeur du

déphasage entre les deux ondes.

On appelle franges brillantes, ’ensemble des points sur I’écran d’observation tels que

I(M) est maximal. On parle alors d’interférences constructives. Ceci revient a un
* déphasage Ap(M) = 2pm avec p € Z : les deux ondes sont en phase au point M.

On appelle franges sombres, ’ensemble des points sur I’écran d’observation tels que

I(M) est minimal (pas forcément nul). On parle alors d’interférences destructives. Ceci

1
revient a un déphasage Ap(M) = 2n(p + 5) avec p € Z : les deux ondes sont en
opposition de phase au point M.

On définit alors un outil pratique pour analyser la figure d’interférences.

Définition : Ordre d’interférences
On définit 'ordre d’interférence p(M) au point M comme le rapport du déphasage entre les deux
ondes interférant en M et 27 :

Ap(M)
M)=——-+
p(M) o
* Sans dimension
2
Or, le déphasage est relié a la différence de chemins optiques §(M) : Ap(M) = )\—W&(M ). Donc :
0

— Détermination et utilisation de 1’ordre d’interférences

L’ordre d’interférences p(M) au point M est relié a la différence de chemins optiques 6(M)

Ao

* Si p(M) est un entier relatif, alors les interférences sont constructives en M et on y
observe une frange brillante. 6(M) est alors un multiple entier de Ao.

* Si p(M) est un demi-entier relatif, alors les interférences sont destructives en M et on
y observe une frange sombre. (M) est alors un multiple demi-entier de Ao.

On utilisera I’ordre d’interférences pour justifier la présence d’une frange brillante et pour numéroter
ces franges brillantes sur I’écran.

Représentons a nouveau 'intensité lumineuse I(M) donnée par la formule de Fresnel en fonction
du déphasage entre les deux ondes au point M, mais dans le cas ou I; # Is.

12

— h=l= 2.5 W.m™2

I,= 0.5W.m=2
I,= 4.5W.m2

10 1

1 (W.m~2)

A¢ (rad)
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Placer sur la courbe en pointillés le max Iax = It + Is + 24/1115 et le min [, =

I+ Iy — 24/ 11 .

On observe toujours des franges brillantes et des franges sombres, pour les mémes valeurs
* de Pordre d’interférences p(M), mais I’écart entre I'intensité des franges brillantes et

I'intensité des franges sombres a diminué. Expérimentalement, on aura plus de difficulté

a repérer les franges brillantes/sombres. On dit que le contraste (= la visibilité) de la

figure d’interférences a diminué.

— Contraste de la figure d’interférences

On définit le contraste (= la visibilité) de la figure d’interférences par :

C = Imax - Imin
Irnax + Imin

* Sans dimension, et 0 < C <1

Plus le contraste C est élevé, plus il est aisé de repérer expérimentalement les franges bril-
lantes et les franges sombres.

Dans le cas de 'interférence de deux ondes cohérentes, d’aprés la formule de Fresnel, on remarque
que le contraste vaut C = 1 et est donc maximal quand I; = Is.

On retiendra qu’un bon contraste est associé a linterférence d’ondes d’intensités
voisines.

On peut trouver ’équation mathématique des franges en imposant p(M) = = cste <<

0(M) =cste. On a: §(M) = (SSaM) — (SS1 M).

S1

Expérimentalement, dans un systéme interférentiel, le point source primaire .S et les points sources
secondaires Sy et So sont fixes, quelque que soit le point M observé. Donc, (5S2) — (SS1) = cste.
Ainsi, I'équation des franges vérifie (SoM) — (S1 M) = cste.

Supposons que les points S, So et M soient dans un milieu homogéne d’indice optique n. Comme
S1 et M sont sur le méme rayon lumineux, on a (S1 M) = nS;M = nS; M. De méme, (SoM) =
nSa M. Ainsi les franges sont 1’ensemble des points M vérifiant :

SoM — S1 M = cste

Les mathématiciens ont appelé les surfaces obtenues des hyperboloides de foyers S; et Sy et d’axe
de révolution (S51.52).
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) " plan orthogonal
4 I'axe des sources

intersection des hyperboloides de révolution

avec un plan contenant les deux sources

(ici un plan paralléle au plan de la feuille)

Si on place un écran parallele & la direction (51.53) (cf. & droite du schéma), on observe des
franges sous forme de branches d’hyperboles sur I’écran. Mais, en pratique, comme le champ
d’interférences est limité, les franges apparaissent comme rectilignes.

Si on place un écran orthogonal & la direction (S1.52) (cf. en haut du schéma), on observe des
franges sous forme de cercles concentriques.

IIT Autre démonstration de la formule de Fresnel en sup-
posant que les deux ondes sont cohérentes entre elles

III.1 Préambule : utiliser la notation complexe pour calculer 'intensité
lumineuse

Si la vibration lumineuse s(M,t) est harmonique, alors on peut utiliser le raccourci de calcul en
notation complexe :

I0M) = K (" (Mf) = 5 Re(s x %) = o |sf?

Si deux vibrations lumineuses sont harmoniques, synchrones (pulsation w) et co-
hérentes entre elles, alors leur superposition s(M,t) = s1(M,t) + so(M,t) est aussi
une vibration lumineuse harmonique de pulsation w. (Se poser pour justifier la né-
cessité de synchrones (deux fonctions harmoniques de méme période, donc la somme

* est harmonique) et cohérentes (il ne faudrait pas avoir des sauts de phase aléatoires
indépendants pour les deux vibrations).) Donc, la formule précédente s’applique a cette
superposition :

1) = 5 51 (M) + oM )

I1I1.2 Démonstration de la formule de Fresnel avec la notation complexe

Nous allons retrouver plus rapidement la formule de Fresnel en supposant que les deux vibrations
lumineuses harmoniques se superposant sont synchrones et cohérentes entre elles.

Exercice : En écrivant sy (M,t) et so(M,t) en notation complexe, déterminer la formule de
Fresnel.
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On pose : s1(M,t) = Ay el Wit=¢1(M)) et idem pour s,. Par principe de superposition,
s(M,t) = s1+s2 (c’est pour cela que I'on parle d’additivité des amplitudes complexes).
Donc :

K
(M) = 5 |31 + 2]

= —(s14 s2)(s1* + 82¥)

%
I

K

5 (Is1* + lsa” + 2Re (s150))

= 11 =+ IQ + KA10A20 COS((pg(M) — (pl(M))
=11 +1s+2+/1115 COS(QDQ(M) — (pl(M))

Enfin, deux ondes cohérentes entre elles ont été émises par le méme point source
durant le méme train d’onde

2

p2(M) —p1(M) = o ((SS2M) — (SS1M))

Vision graphique : représentation de Fresnel

Nous allons utiliser la représentation vectorielle de Fresnel des nombres complexes. Elle consiste
a représenter les amplitudes complexes dans le plan complexe (sous forme de vecteurs).

Par exemple, pour la vibration lumineuse s; (M,t) = Ay /@t (M) = G, (M) e avec Sy (M) =

Ay e~ der(M ), la représentation de Fresnel est :
Jécris §1> . On a en particulier :
* S,
Js1] = || = |34

Démonstration de la formule de Fresnel :

On pose les grandeurs complexes s; = 51 e/*? avec S; = Ay e Iv1(M) et s = Sy eI avec
52 = A20 e_jSDQ(M)_

Représentation de Fresnel.
On en déduit :

2 — — (12
s = B+ 3|

51" + [saf” + 2410420 cos(i22(M) — 1 (M)
= I(M) =11 + Iz + 24/ 1115 cos(p2(M) — o1(M))

La représentation de Fresnel est particuliérement efficace lorsqu’on est amené a calculer la somme
de différentes grandeurs complexes synchrones car on somme des vecteurs. Lien vers une construc-

tion numérique de la représentation de Fresnel : https://femto-physique.fr/simulations/
interference-deux-ondes.php.
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Exercices

Ex. 1 (Ecrit ccINP PC 20220 'V élocimétrie laser a franges

Bien souvent, la mesure de la vitesse d’écoulement d’un fluide nécessite de placer 'appareil de mesure dans
I’écoulement, ce qui est susceptible de perturber ce dernier. Cet inconvénient a conduit a développer des méth-
odes optiques ne nécessitant pas d’introduire de capteur. Elles sont actuellement utilisées dans le domaine de la
recherche. On s’intéresse ici a I'une de ces méthodes : la vélocimétrie laser & franges.

Figure 8 - Franges d'interférences créées par les faisceaux laser. Une particule suivant le
mouvement du fluide passe a travers les franges (source : ONERA)

Le principe consiste a croiser deux faisceaux issus d’une méme source laser dans une zone de 1’écoulement afin de
créer des franges d’interférences lumineuses. On introduit dans le fluide des particules d’ensemencement (gout-
telettes d’huile, microbilles d’aluminium ou de polystyréne...) qui suivent ’écoulement du fluide. Lorsqu’une de ces
particules traverse les franges d’interférences, elle diffuse la lumiére du laser. L’intensité diffusée est proportionnelle
a l'intensité lumineuse du laser. Ainsi, en mesurant l'intensité de la lumiére diffusée par la particule au cours du
temps, on peut accéder a la vitesse a laquelle celle-ci traverse les franges, ce qui permet de déduire la vitesse du
fluide.

~~es
Sl

=

~—,
~—.

-
-
-

Figure 9 - Croisement des faisceaux laser : la zone d’interférences est représentée en gris

La configuration d’étude de la vélocimétrie laser a franges est représentée a la figure 9. Les deux faisceaux laser
issus d’une méme source de fréquence fr et de pulsation w; = 27 f; se croisent dans un écoulement d’air dont
on veut mesurer la vitesse. Le centre O de la figure d’interférences est l'origine d’un repére (Oxyz), tel que les
directions des deux faisceaux sont inclinées d’un angle o = 6,0° par rapport a 'axe (Oz). La longueur d’onde du

laser dans l'air est assimilable & celle dans le vide Ay = 514,5 nm, les vecteurs d’onde k_)l et k_; des deux faisceaux

2w

ont des normes égales, telles que Hk_{H = Hk—;H =1 Les champs électriques F‘l et E) associés aux deux faisceaux,
0

de méme amplitude FEy, ont pour expression, en un point quelconque M (z,y) appartenant a I'un ou autre des

faisceaux:
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E)(M,t)on cos thfk_1>~OM u,
F;(M,t):EO cos th—k_g)-O—]\)J Uy

1. Les ondes laser sont-elles longitudinales ou transversales 7 Quel est 1’état de polarisation de ces ondes ?
Justifier briévement.

2. L’éclairement & est défini comme la moyenne temporelle du carré du champ électrique. Montrer que dans la
zone d’interférences:

E(M) = 2& (1 + cos ((k_)l — E) O—]\)/[>)

E2
avec & = 70

A
3. Montrer que les franges brillantes sont des droites d’équations ¥, = ?707 avec p un entier relatif. L’interfrange

2 sina
est la distance entre deux franges brillantes rectilignes successives. Déterminer I'expression de 'interfrange

Ay et faire 'application numérique.

4. On suppose qu’'une particule en mouvement avec le fluide passe & travers la zone d’interférences avec une
vitesse vy selon ;. On mesure I'intensité lumineuse diffusée par la particule au cours du temps et on obtient
un signal de fréquence fq = 2,45MHz. Déterminer la valeur numeérique de vy.

Correction de l’exercice 1

Remarque : Cet exercice fait partie des rares exemples de prépa qui sont plus simples a traiter avec une description par le
champ électrique plutoét que par la vibration lumineuse (car les sources secondaires sont considérées a l'infini et le théoréme
de Malus n’est pas pratique a utiliser).

1. k1 et ko appartiennent au plan (Ozy). Donc, El- k1 = 0 et de méme Eg' ko = 0 : les ondes sont transverses
(ce qui n’est pas surprenant car on assimile l'air & du vide).
Les champs électriques ne sont portés que par le vecteur u, : les ondes sont polarisées rectilignement selon
u,.

2. Par principe de superposition, le champ électrique total s’écrit E = El + ﬁg. Donc :

e- (Il

= <(E1 + EQ) : (El + E)z)>

- |2 - |2 > -
B ) (2] ) +2(20- 22
E2 E?

1 — — — — —
- 20+20+2E§<2(cos(2th(k1+ ko) OM) + cos((ky — k2).0M))>

260 (1+ cos (2~ F2) - 00))

Remarque : On peut aussi introduire la notation complexe des champs E 1 et Ez, puis calculer ’éclairement via le
raccourci de calcul en complexes : £ = %Re (E . E*) = % ‘E‘Q
Remarque : 1l n’y pas besoin ici de s’attarder sur la justification de la cohérence des deux ondes : ceci est caché
dans écriture des champs proposés (pas de déphasage aléatoire entre les deux champs).

3. Vu qu’on a déterminé I'expression de ’éclairement, on cherche les points M tels que £ soit maximal. On veut
donc que (Z@’:g — Z{1> -OM = 2pm avec p € Z.
Calculons ko — k1. On a :

- 2
=T (cos(a)u, — sin(a)uy)
Ao — — 47
- o = ko— ki = = sin (o) iy,
ko =" (cos(a)u, + sin(a)uy) 0
Ao
Ainsi,
— — —_— 4
(kg —kq1)-OM = il sin(a)y

Ao
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La condition d’obtention d’une frange brillante se ré-écrit donc :

4 (@) oprr < PAo
— sin(a)y, = 2pm = —
0 Yp = 2P LA sin(a)
Il s’agit bien de franges rectilignes.
L’interfrange est donc :
A
Ay=—"2
2 sin(a)

AN.:7=25pm
4. L’intensité diffusée passe par un maximum & chaque fois que la particule passe sur une frange brillante. Ainsi,

la période Ty = — du signal diffusé est égal au temps mis par la particule pour passer d’une frange brillante
d
a la frange brillante la plus proche. Ainsi :
A
Td:—yévy:Ayxfd
Uy

AN.: v, =60ms™*
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