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‹

Prise de notes : Trois temps caractéristiques pour les sources et détecteurs optiques,
avec des odg bien distincts : τdétect " τc, T : les détecteurs ne sont sensibles qu’à
l’intensité lumineuse I “

A
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#»

Π
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

.
1ère conséquence (celle là, je la dis pour les marquer : retenir qu’on est sensible qu’à
une MOYENNE, car c’est le point clé !!!) : certes,

#»

Π oscille (ondes !!), mais comme
les détecteurs ne sont sensibles qu’à sa moyenne, on ressent une intensité lumineuse
indépendante du temps (lampe de la salle de classe par exemple). (C’est radicalement
différent de l’acoustique : on met un micro, un oscillo, on voit l’onde.)
2nde conséquence : interférences. On a fait le modèle scalaire de l’OO pour simplifier le
formalisme des ondes EM : va permettre de traiter des situations plus complexes comme
la superposition de deux ondes, qui pourra mener à des interférences sous certaines
conditions bien précises.

Ce chapitre a deux objectifs principaux :

1. Etablir la formule de Fresnel.
2. Identifier une situation de cohérence ou d’incohérence entre deux ondes et en déduire la

formule de calcul de l’intensité à appliquer.

I Comment calculer l’intensité lumineuse résultant de la su-
perposition de deux ondes ?

I.1 Calcul dans le cas général

On se place dans le cadre de l’approximation scalaire de l’optique ondulatoire. Considérons deux
vibrations lumineuses harmoniques, appelées 1 et 2, et se superposant en un point M :

sipM,tq “ A0i cospωit ´ φipMqq pi “ 1,2q

‹
En M , d’après le théorème de superposition :

spM,tq “ s1pM,tq ` s2pM,tq

Or, l’intensité lumineuse IpMq “ K
@

s2pM,tq
D

. On a :

@

s2pM,tq
D

“
1

2
A2

01 `
1

2
A2

02 ` 2A01A02 x cospω1t ´ φ1pMqq cospω2t ´ φ2pMqqy

“
1

2
A2

01 `
1

2
A2

02 ` A01A02

¨

˝x cosppω1 ` ω2qt ´ pφ1pMq ´ φ2pMqqqy
looooooooooooooooooooooooomooooooooooooooooooooooooon

“0

` x cosppω2 ´ ω1qt ´ pφ2pMq ´ φ1pMqqqy

˛

‚

“
1

2
A2

01 `
1

2
A2

02 ` A01A02 x cosppω2 ´ ω1qt ´ pφ2pMq ´ φ1pMqqqy

On pose I1 “ K
@

s21pM,tq
D

“ KA2
01

@

cos2pω1t ´ φ1pMqq
D

“ K ˆ
1

2
A2

01 et I2 “ K ˆ
1

2
A2

02. On

ré-écrit alors le résultat précédent, en utilisant I “ K
@

s2pM,tq
D

:

IpMq “ I1 ` I2 ` 2
a

I1I2 x cosppω2 ´ ω1qt ´ pφ2pMq ´ φ1pMqqqy

‹ Entourer le dernier terme : terme d’interférences, qui doit être non nul pour avoir des
interférences

I.2 Conditions d’obtention d’interférences
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a Condition 1 : ondes synchrones

‹
Si ω1 ‰ ω2, alors x cosppω2 ´ ω1qt ´ pφ2pMq ´ φ1pMqqqy “ 0 : il n’y a pas
d’interférences.
La première condition nécessaire pour obtenir des interférences est ω1 “ ω2 : on parle
dans ce cas d’ondes synchrones.

Sous cette condition, la formule de l’intensité devient :

IpMq “ I1 ` I2 ` 2
a

I1I2 x cospφ2pMq ´ φ1pMqqy

b Condition 2 : ondes cohérentes

Ré-écrivons le terme φ2pMq ´ φ1pMq. Pour cela, appelons S1 et S2 les points sources émettant
les ondes 1 et 2.

‹

On utilise le chemin optique :

φ1pMq “ φ1pS1q
loomoon

“φ10

`
2π

λ0
pS1Mq et φ2pMq “ φ2pS2q

loomoon

“φ20

`
2π

λ0
pS2Mq

Donc,

φ2pMq ´ φ1pMq “ φ20 ´ φ10 `
2π

λ0
ppS2Mq ´ pS1Mqq

Néanmoins, expérimentalement, les sources S1 et S2 ne peuvent pas émettre une onde stricte-
ment monochromatique (il y a toujours une certaine largeur spectrale). Cela implique (à notre
niveau) l’utilisation du modèle des trains d’onde pour décrire l’émission des deux ondes quasi-
monochromatiques.

Conséquences du modèle des trains d’onde :

Rappel du modèle : Une source lumineuse émet une succession de portions de sinusoïdes (=
les trains d’onde), chacune de ces portions étant émise pendant une durée finie valant en moyenne
le temps de cohérence τc. Deux trains d’onde successifs sont émis avec une variation brutale et
aléatoire de la phase à l’origine φi0.

‹

Ainsi, à cause de l’émission sous la forme de trains d’onde, φi0ptq fluctue avec le temps.
Si φ10 et φ20 fluctuent de manière indépendante entre eux, alors en moyenne sur un

grand nombre de trains d’onde
B

φ20 ´ φ10 `
2π

λ0
ppS2Mq ´ pS1Mqq

F

“ 0.

Pour visualiser des interférences, il est nécessaire que φ20´φ10 ne varie pas aléatoirement
dans le temps.

Pour réaliser ceci expérimentalement, on doit nécessairement utiliser un point source primaire S
dont on divise le faisceau en deux avant de se faire superposer de nouveau les deux faisceaux.

La formule du déphasage devient alors : φ2pMq ´φ1pMq “ φ1
20 ´φ1

10 `
2π

λ0
ppSS2Mq ´ pSS1Mqq

avec φ1
10 et φ1

20 désignant désormais les phases à l’origine au niveau du point source primaire S.
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On définit alors δpMq “ pSS2Mq ´ pSS1Mq, la différence des chemins optiques, aussi appelée la
différence de marche.

Néanmoins, ceci n’est pas suffisant pour observer des interférences. Représentons les trains d’onde
émis par la source primaire.

‹

(Faire le schéma ci-dessous en commençant à partir d’un point S. Leur dire qu’ils ont
de la place et de prendre plein de couleurs.) Indiquer : ℓc : longueur de cohérence
temporelle

Si δpMq ě ℓc, alors φ1
10 et φ1

20 n’ont à nouveau aucun lien entre eux : la moyenne du
déphasage est alors nulle. Pour observer des interférences, il faut nécessairement que
δpMq ď ℓc.

Dans le cas où les deux ondes sont issues du même point source primaire S et que la différence
de chemins optiques δpMq ď ℓc, alors les deux ondes sont dites cohérentes entre elles. Sous
ces conditions, les deux phases à l’origine fluctuent aléatoirement, mais de la même manière :
φ1
10 “ φ1

20. La formule de l’intensité devient :

IpMq “ I1 ` I2 ` 2
a

I1I2 cos
ˆ

2π

λ0
δpMq

˙

Remarque : En toute rigueur, la relation φ1
10 » φ1

20 n’est valable que si δpMq ! ℓc. Dans le cas
contraire, on observerait bien des interférences, mais la formule de l’intensité serait légèrement modifiée.

I.3 Synthèse des résultats

Conditions d’obtention d’interférences lumineuses

Pour observer des interférences lumineuses, il faut que :

• les deux ondes soient synchrones : les pulsations centrales des spectres d’émission des
deux ondes sont identiques : ω1 “ ω2 (critère lié aux pulsations centrales des spectres
d’émission).

• les deux ondes soient cohérentes entre elles : elles sont issues du même point source
primaire S (critère lié au point source) et ont une différence de chemins optiques
inférieure à la longueur de cohérence temporelle : |δpMq| ď ℓc (critère lié aux largeurs
spectrales des spectres d’émission).

Dans le cas contraire, le terme d’interférences est nul.

Comme la notion de cohérence implique celle de synchronicité, on se contentera couramment de
dire que les deux ondes sont cohérentes entre elles.

Remarque : Dans le cas où on travaillerait avec des ondes polarisées, il faudrait ajouter en condition
d’obtention d’interférences lumineuses que l’amplitude vectorielle

#»
E01 ne soit pas orthogonale à

#»
E02.

La formule de calcul de l’intensité est modifiée selon que les ondes soient cohérentes ou inco-
hérentes entre elles.
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Formule de Fresnel

Dans le cas où les deux ondes sont cohérentes entre elles, la formule de l’intensité est :

IpMq “ I1 ` I2 ` 2
a

I1I2 cos
ˆ

2π

λ0
δpMq

˙

avec δpMq “ pSS2Mq ´ pSS1Mq la différence des chemins optiques. Cette formule est dite
formule de Fresnel.

Comme les deux ondes interférant proviennent initialement du même point source primaire
S, on aura souvent I1 “ I2 “ I0. La formule de Fresnel simplifiée est alors :

IpMq “ 2I0

ˆ

1 ` cos
ˆ

2π

λ0
δpMq

˙˙

On parle d’additivité des amplitudes complexes (cf. partie III).

Additivité des intensités lumineuses

Dans le cas où les deux ondes sont non synchrones ou incohérentes entre elles, on n’observe
pas d’interférences, et la formule des intensités est simplement :

IpMq “ I1 ` I2

On parle d’additivité des intensités.

I.4 Deux ondes sont-elles cohérentes entre elles ? Deux visions dif-
férentes de l’émission d’une source

Il existe deux modélisations pour prendre en compte le caractère non monochromatique d’une
source. Ces deux modélisations ont un impact sur le caractère cohérent ou incohérent de deux
ondes se superposant.

Modélisation n°1 : On prend directement en compte l’intégralité du spectre d’émission
de la source

Dans ce cas, la longueur de cohérence temporelle ℓc est reliée à la largeur spectrale totale de la
source :

τc „
1

∆ν
ñ ℓc “ cτc „

c

∆ν

C’est la vision couramment utilisée en TP.

Exercice : Identifier si les deux ondes se superposant sont cohérentes ou incohérentes entre
elles dans les exemples suivants.

1. Trous d’Young avec une source monochromatique S ponctuelle (source infiniment fine)
2. Trous d’Young avec une source monochromatique étendue (la source a une certaine

largeur spatiale)
3. Trous d’Young éclairés par une lampe blanche S ponctuelle. On distinguera les cas où

les deux ondes se superposent proche du centre de l’écran ou proche des bords de l’écran.
4. Michelson en configuration "lame d’air" avec un écart entre les miroirs ∆x „ 1 cm et

éclairé par un laser (on suppose la direction incidente fixée et que les deux ondes provi-
ennent du même point source)

5. Michelson en configuration "lame d’air" avec un écart entre les miroirs ∆x „ 1 cm et
éclairé par une lampe blanche (on suppose la direction incidente fixée et que les deux
ondes proviennent du même point source)
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‹

(Je leur représente les deux schémas de principe des trous d’Young et du Michelson
en lame d’air.)

1. Cohérentes. Insister sur : monochromatique ñ ℓc “ `8.
2. Distinguer deux cas : si les deux ondes considérées viennent du même point

source : cohérentes. Sinon : non.
3. Ondes synchrones. Pour la cohérence : au centre de l’écran δ „ 0 ! ℓc :

cohérentes / au bord δ " ℓc „ 1 µm : incohérentes
4. δ „ 2∆x ! ℓc „ 1m : cohérentes
5. δ " ℓc „ 1 µm : incohérentes

Modélisation n°2 : On décompose la source comme une infinité de sources monochro-
matiques

On peut décomposer la source à spectre large en une infinité de sources monochromatiques de
fréquences νi. Prenons l’exemple de trous d’Young éclairés par une lampe blanche S ponctuelle.

• Deux ondes émises à la même fréquence νi sont synchrones et cohérentes entre elles, y
compris sur les bords de l’écran. En effet, la source est ponctuelle et la source émettant à
la fréquence νi étant monochromatique, sa longueur de cohérence temporelle ℓc “ `8 ě

|δpMq|.
• Deux ondes de fréquences νi différentes ne sont pas synchrones entre elles. Sur l’écran,

l’intensité est donc la somme des intensités associées à chacune des fréquences νi.

Remarque : Sur les bords de l’écran, nous verrons (chapitre OO3) que les maxima d’intensité
lumineuse pour certaines fréquences νi coïncident avec des minima d’intensité lumineuses pour d’autres
fréquences. On ne distinguera donc pas de figure d’interférences sur les bords de l’écran. Les deux
modélisations d’émission d’une source à spectre large sont donc compatibles.

Cette vision de décomposition d’une source à spectre large sera celle couramment utilisée en TD.

II Analyse de la figure d’interférences

Dans toute cette partie, on suppose que des interférences sont visibles, i.e. que les deux ondes se
superposant sont cohérentes entre elles.

II.1 Champ d’interférences
On appelle champ d’interférences la zone de l’espace où les deux ondes cohérentes se superposent.

Expérimentalement, cette zone de superposition est forcément limitée (l’intensité lumineuse ne
peut pas être non nulle partout). Il ne peut pas y avoir d’interférences en dehors du champ
d’interférences.

II.2 Franges d’interférences et ordre d’interférences
Représentons l’intensité IpMq donnée par la formule de Fresnel en fonction du déphasage entre

les deux ondes au point M : ∆φpMq “
2π

λ0
δpMq. On se place pour le moment dans le cas où

I1 “ I2, la formule de Fresnel est donc : IpMq “ 2I0 p1 ` cosp∆φpMqqq.
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‹ Placer les ∆φ pertinents (en mettre des négatifs) et placer le max et min en intensité.
Plus tard : numéroter les ordres d’interférences entiers.

‹

On observe des maxima et des minima de l’intensité lumineuse selon la valeur du
déphasage entre les deux ondes.
On appelle franges brillantes, l’ensemble des points sur l’écran d’observation tels que
IpMq est maximal. On parle alors d’interférences constructives. Ceci revient à un
déphasage ∆φpMq “ 2pπ avec p P Z : les deux ondes sont en phase au point M .
On appelle franges sombres, l’ensemble des points sur l’écran d’observation tels que
IpMq est minimal (pas forcément nul). On parle alors d’interférences destructives. Ceci

revient à un déphasage ∆φpMq “ 2πpp `
1

2
q avec p P Z : les deux ondes sont en

opposition de phase au point M .

On définit alors un outil pratique pour analyser la figure d’interférences.

Définition : Ordre d’interférences
On définit l’ordre d’interférence ppMq au point M comme le rapport du déphasage entre les deux
ondes interférant en M et 2π :

ppMq “
∆φpMq

2π

‹ Sans dimension

Or, le déphasage est relié à la différence de chemins optiques δpMq : ∆φpMq “
2π

λ0
δpMq. Donc :

Détermination et utilisation de l’ordre d’interférences

L’ordre d’interférences ppMq au point M est relié à la différence de chemins optiques δpMq

:

ppMq “
δpMq

λ0

• Si ppMq est un entier relatif, alors les interférences sont constructives en M et on y
observe une frange brillante. δpMq est alors un multiple entier de λ0.

• Si ppMq est un demi-entier relatif, alors les interférences sont destructives en M et on
y observe une frange sombre. δpMq est alors un multiple demi-entier de λ0.

On utilisera l’ordre d’interférences pour justifier la présence d’une frange brillante et pour numéroter
ces franges brillantes sur l’écran.

II.3 Contraste (= visibilité) de la figure d’interférences

Représentons à nouveau l’intensité lumineuse IpMq donnée par la formule de Fresnel en fonction
du déphasage entre les deux ondes au point M , mais dans le cas où I1 ‰ I2.
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‹

Placer sur la courbe en pointillés le max Imax “ I1 ` I2 ` 2
?
I1I2 et le min Imin “

I1 ` I2 ´ 2
?
I1I2.

On observe toujours des franges brillantes et des franges sombres, pour les mêmes valeurs
de l’ordre d’interférences ppMq, mais l’écart entre l’intensité des franges brillantes et
l’intensité des franges sombres a diminué. Expérimentalement, on aura plus de difficulté
à repérer les franges brillantes/sombres. On dit que le contraste (= la visibilité) de la
figure d’interférences a diminué.

Contraste de la figure d’interférences

On définit le contraste (= la visibilité) de la figure d’interférences par :

C “
Imax ´ Imin

Imax ` Imin

‹ Sans dimension, et 0 ď C ď 1

Plus le contraste C est élevé, plus il est aisé de repérer expérimentalement les franges bril-
lantes et les franges sombres.

Dans le cas de l’interférence de deux ondes cohérentes, d’après la formule de Fresnel, on remarque
que le contraste vaut C “ 1 et est donc maximal quand I1 “ I2.

‹ On retiendra qu’un bon contraste est associé à l’interférence d’ondes d’intensités
voisines.

II.4 Forme géométrique des franges d’interférences

On peut trouver l’équation mathématique des franges en imposant ppMq “
δpMq

λ0
“ cste ðñ

δpMq “ cste. On a : δpMq “ pSS2Mq ´ pSS1Mq.

Expérimentalement, dans un système interférentiel, le point source primaire S et les points sources
secondaires S1 et S2 sont fixes, quelque que soit le point M observé. Donc, pSS2q ´ pSS1q “ cste.
Ainsi, l’équation des franges vérifie pS2Mq ´ pS1Mq “ cste.

Supposons que les points S1, S2 et M soient dans un milieu homogène d’indice optique n. Comme
S1 et M sont sur le même rayon lumineux, on a pS1Mq “ nĘS1M “ nS1M . De même, pS2Mq “

nS2M . Ainsi les franges sont l’ensemble des points M vérifiant :

S2M ´ S1M “ cste

Les mathématiciens ont appelé les surfaces obtenues des hyperboloïdes de foyers S1 et S2 et d’axe
de révolution pS1S2q.
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Si on place un écran parallèle à la direction pS1S2q (cf. à droite du schéma), on observe des
franges sous forme de branches d’hyperboles sur l’écran. Mais, en pratique, comme le champ
d’interférences est limité, les franges apparaissent comme rectilignes.

Si on place un écran orthogonal à la direction pS1S2q (cf. en haut du schéma), on observe des
franges sous forme de cercles concentriques.

III Autre démonstration de la formule de Fresnel en sup-
posant que les deux ondes sont cohérentes entre elles

III.1 Préambule : utiliser la notation complexe pour calculer l’intensité
lumineuse

Si la vibration lumineuse spM,tq est harmonique, alors on peut utiliser le raccourci de calcul en
notation complexe :

IpMq “ K
@

s2pM,tq
D

“
K

2
Re ps ˆ s˚q “

K

2
|s|

2

‹

Si deux vibrations lumineuses sont harmoniques, synchrones (pulsation ω) et co-
hérentes entre elles, alors leur superposition spM,tq “ s1pM,tq ` s2pM,tq est aussi
une vibration lumineuse harmonique de pulsation ω. (Se poser pour justifier la né-
cessité de synchrones (deux fonctions harmoniques de même période, donc la somme
est harmonique) et cohérentes (il ne faudrait pas avoir des sauts de phase aléatoires
indépendants pour les deux vibrations).) Donc, la formule précédente s’applique à cette
superposition :

IpMq “
K

2

ˇ

ˇs1pM,tq ` s2pM,tq
ˇ

ˇ

2

III.2 Démonstration de la formule de Fresnel avec la notation complexe
Nous allons retrouver plus rapidement la formule de Fresnel en supposant que les deux vibrations
lumineuses harmoniques se superposant sont synchrones et cohérentes entre elles.

Exercice : En écrivant s1pM,tq et s2pM,tq en notation complexe, déterminer la formule de
Fresnel.
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‹

On pose : s1pM,tq “ A10 ejpωt´φ1pMqq et idem pour s2. Par principe de superposition,
spM,tq “ s1`s2 (c’est pour cela que l’on parle d’additivité des amplitudes complexes).
Donc :

IpMq “
K

2

ˇ

ˇs1 ` s2
ˇ

ˇ

2

“
K

2
ps1 ` s2qps1

˚ ` s2
˚q

“
K

2

´

ˇ

ˇs1
ˇ

ˇ

2
`

ˇ

ˇs2
ˇ

ˇ

2
` 2Re

`

s1s2
˚

˘

¯

“ I1 ` I2 ` KA10A20 cospφ2pMq ´ φ1pMqq

“ I1 ` I2 ` 2
a

I1I2 cospφ2pMq ´ φ1pMqq

Enfin, deux ondes cohérentes entre elles ont été émises par le même point source
durant le même train d’onde

φ2pMq ´ φ1pMq “
2π

λ0
ppSS2Mq ´ pSS1Mqq

Vision graphique : représentation de Fresnel

Nous allons utiliser la représentation vectorielle de Fresnel des nombres complexes. Elle consiste
à représenter les amplitudes complexes dans le plan complexe (sous forme de vecteurs).

Par exemple, pour la vibration lumineuse s1pM,tq “ A10 ejpωt´φ1pMqq “ S1pMq ejωt avec S1pMq “

A10 e´jφ1pMq, la représentation de Fresnel est :

‹
J’écris

# »

S1. On a en particulier :

ˇ

ˇs1
ˇ

ˇ “
ˇ

ˇS1

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#»

S 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Démonstration de la formule de Fresnel :

On pose les grandeurs complexes s1 “ S1 ejωt avec S1 “ A10 e´jφ1pMq et s2 “ S2 ejωt avec
S2 “ A20 e´jφ2pMq.

‹

Représentation de Fresnel.
On en déduit :

ˇ

ˇs1 ` s2
ˇ

ˇ

2
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#»

S 1 `
#»

S 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ ¨ ¨ ¨

“
ˇ

ˇs1
ˇ

ˇ

2
`

ˇ

ˇs2
ˇ

ˇ

2
` 2A10A20 cospφ2pMq ´ φ1pMqq

ñ IpMq “ I1 ` I2 ` 2
a

I1I2 cospφ2pMq ´ φ1pMqq

La représentation de Fresnel est particulièrement efficace lorsqu’on est amené à calculer la somme
de différentes grandeurs complexes synchrones car on somme des vecteurs. Lien vers une construc-
tion numérique de la représentation de Fresnel : https://femto-physique.fr/simulations/
interference-deux-ondes.php.
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Exercices

Ex. 1 (Ecrit CCINP PC 2022) Vélocimétrie laser à franges

Bien souvent, la mesure de la vitesse d’écoulement d’un fluide nécessite de placer l’appareil de mesure dans
l’écoulement, ce qui est susceptible de perturber ce dernier. Cet inconvénient a conduit à développer des méth-
odes optiques ne nécessitant pas d’introduire de capteur. Elles sont actuellement utilisées dans le domaine de la
recherche. On s’intéresse ici à l’une de ces méthodes : la vélocimétrie laser à franges.

Le principe consiste à croiser deux faisceaux issus d’une même source laser dans une zone de l’écoulement afin de
créer des franges d’interférences lumineuses. On introduit dans le fluide des particules d’ensemencement (gout-
telettes d’huile, microbilles d’aluminium ou de polystyrène...) qui suivent l’écoulement du fluide. Lorsqu’une de ces
particules traverse les franges d’interférences, elle diffuse la lumière du laser. L’intensité diffusée est proportionnelle
à l’intensité lumineuse du laser. Ainsi, en mesurant l’intensité de la lumière diffusée par la particule au cours du
temps, on peut accéder à la vitesse à laquelle celle-ci traverse les franges, ce qui permet de déduire la vitesse du
fluide.

La configuration d’étude de la vélocimétrie laser à franges est représentée à la figure 9. Les deux faisceaux laser
issus d’une même source de fréquence fL et de pulsation ωL “ 2πfL se croisent dans un écoulement d’air dont
on veut mesurer la vitesse. Le centre O de la figure d’interférences est l’origine d’un repère pOxyzq, tel que les
directions des deux faisceaux sont inclinées d’un angle α “ 6,0˝ par rapport à l’axe pOxq. La longueur d’onde du
laser dans l’air est assimilable à celle dans le vide λ0 “ 514,5 nm, les vecteurs d’onde ÝÑ

k1 et ÝÑ
k2 des deux faisceaux

ont des normes égales, telles que
›

›

›

ÝÑ
k1

›

›

›
“

›

›

›

ÝÑ
k2

›

›

›
“

2π

λ0
. Les champs électriques ÝÑ

E1 et ÝÑ
E2 associés aux deux faisceaux,

de même amplitude E0, ont pour expression, en un point quelconque Mpx, yq appartenant à l’un ou l’autre des
faisceaux:
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$

&

%

ÝÑ
E1pM, tq “ E0 cos

´

ωLt ´
ÝÑ
k1 ¨

ÝÝÑ
OM

¯

ÝÑuz

ÝÑ
E2pM, tq “ E0 cos

´

ωLt ´
ÝÑ
k2 ¨

ÝÝÑ
OM

¯

ÝÑuz

1. Les ondes laser sont-elles longitudinales ou transversales ? Quel est l’état de polarisation de ces ondes ?
Justifier brièvement.

2. L’éclairement E est défini comme la moyenne temporelle du carré du champ électrique. Montrer que dans la
zone d’interférences:

EpMq “ 2E0
´

1 ` cos
´´

ÝÑ
k1 ´

ÝÑ
k2

¯

¨
ÝÝÑ
OM

¯¯

avec E0 “
E2

0

2

3. Montrer que les franges brillantes sont des droites d’équations yp “
pλ0

2 sinα
, avec p un entier relatif. L’interfrange

est la distance entre deux franges brillantes rectilignes successives. Déterminer l’expression de l’interfrange
∆y et faire l’application numérique.

4. On suppose qu’une particule en mouvement avec le fluide passe à travers la zone d’interférences avec une
vitesse vy selon ÝÑuy. On mesure l’intensité lumineuse diffusée par la particule au cours du temps et on obtient
un signal de fréquence fd “ 2,45MHz. Déterminer la valeur numérique de vy.

Correction de l’exercice 1

Remarque : Cet exercice fait partie des rares exemples de prépa qui sont plus simples à traiter avec une description par le
champ électrique plutôt que par la vibration lumineuse (car les sources secondaires sont considérées à l’infini et le théorème
de Malus n’est pas pratique à utiliser).

1.
#»

k 1 et
#»

k 2 appartiennent au plan pOxyq. Donc,
#»

E1 ¨
#»

k 1 “ 0 et de même
#»

E2 ¨
#»

k 2 “ 0 : les ondes sont transverses
(ce qui n’est pas surprenant car on assimile l’air à du vide).
Les champs électriques ne sont portés que par le vecteur # »uz : les ondes sont polarisées rectilignement selon
# »uz.

2. Par principe de superposition, le champ électrique total s’écrit
#»

E “
#»

E1 `
#»

E2. Donc :

E “

B

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#»

E
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
F

“

A

p
#»

E1 `
#»

E2q ¨ p
#»

E1 `
#»

E2q

E

“

B

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#»

E1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
F

`

B

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

#»

E2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
F

` 2
A

#»

E1 ¨
#»

E2

E

“
E2

0

2
`

E2
0

2
` 2E2

0

B

1

2

´

cosp2ωLt ´ p
#»

k 1 `
#»

k 2q ¨
#      »

OMq ` cospp
#»

k 1 ´
#»

k 2q ¨
#      »

OMq

¯

F

“ 2E0
´

1 ` cos
´´

#»

k 1 ´
#»

k 2

¯

¨
#      »

OM
¯¯

Remarque : On peut aussi introduire la notation complexe des champs
#»
E1 et

#»
E2, puis calculer l’éclairement via le

raccourci de calcul en complexes : E “
1

2
Re

´

#»
E ¨

#»
E

˚
¯

“
1

2

ˇ

ˇ

ˇ

#»
E

ˇ

ˇ

ˇ

2

.
Remarque : Il n’y pas besoin ici de s’attarder sur la justification de la cohérence des deux ondes : ceci est caché
dans l’écriture des champs proposés (pas de déphasage aléatoire entre les deux champs).

3. Vu qu’on a déterminé l’expression de l’éclairement, on cherche les points M tels que E soit maximal. On veut
donc que p

#»

k 2 ´
#»

k 1q ¨ OM “ 2pπ avec p P Z.
Calculons

#»

k 2 ´
#»

k 1. On a :

$

’

’

&

’

’

%

#»

k 1 “
2π

λ0
p cospαq # »ux ´ sinpαq # »uyq

#»

k 2 “
2π

λ0
p cospαq # »ux ` sinpαq # »uyq

ñ
#»

k 2 ´
#»

k 1 “
4π

λ0
sinpαq # »uy

Ainsi,

p
#»

k 2 ´
#»

k 1q ¨
#      »

OM “
4π

λ0
sinpαqy
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La condition d’obtention d’une frange brillante se ré-écrit donc :

4π

λ0
sinpαqyp “ 2pπ ñ yp “

pλ0

2 sinpαq

Il s’agit bien de franges rectilignes.
L’interfrange est donc :

∆y “
λ0

2 sinpαq

A.N. : i “ 2.5 µm
4. L’intensité diffusée passe par un maximum à chaque fois que la particule passe sur une frange brillante. Ainsi,

la période Td “
1

fd
du signal diffusé est égal au temps mis par la particule pour passer d’une frange brillante

à la frange brillante la plus proche. Ainsi :

Td “
∆y

vy
ñ vy “ ∆y ˆ fd

A.N. : vy “ 6.0m s´1
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