Ex 1:

- 1. La configuration qui ne vérifie pas la règle de Pauli est la 3^{ième} car il n'existe que 6 quadruplets de type 3p ⇒ impossible de mettre 8 e- dans la sous-couche 3p.
- 2.a) état fondamental : 2ième configuration, car la sous couche 4s doit être remplie avant la 3d, et la sous couche 3d doit être saturée avant de remplir la 4p.
- b) e- célibataires : 3 d'après la règle de Hund.
- c) 5 e- de valence : les 2 4s et les 3 3d.
- 3. La configuration la plus stable est celle fondamentale (la 2^{ième}), ensuite on existe les 2 e- 4s vers la 3d : 1ième configuration, enfin on excite les 2 e- de la 4s vers la 4p, or l'OA 4p est plus haute en énergie que la 3d ⇒ la 4^{ième} configuration est la moins stable.

En résumé : par ordre de stabilité décroissante : 2^{ième} < 1^{ière} < 4^{ième}

Ex 2:

- 1. 203=A, correspond au nombre de masse et au nombre de nucléons du noyau de l'atome.
- 81 = Z, correspond au numéro atomique cad au nombre de proton du noyau de l'atome.

Le noyau d'argent contient 81 protons et 203 - 81= 122 neutrons.

- 2. 2 isotopes sont 2 atomes d'un même élément, ayant donc le même nombre de protons (Z identiques), mais un nombre de neutrons donc de nucléons différent (A différents).
- 3. M= $M=\sum_{i}^{1.3} x_i M_i = \frac{30}{100} \times 203 + \frac{70}{100} \times 205 = 204.4 \text{ g.mol}^{-1}.$ 4. TI: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² 4f¹⁴ 5d¹⁰ 6p¹
- 5. On déduit la position de la configuration électronique selon la règle de Klechkowsky:

 N° de la ligne : n le plus grand \Rightarrow 6^{ième} ligne

 N° de la colonne : 1^{ière} colonne du bloc p \Rightarrow Donc 13^{ième} colonne

Bloc: p

L'Aluminium Al et le bore B sont de la même famille.

6. 3 e- de valence : les 6s et 6p.

Les e- de valence sont ceux de n le plus grand (ici n=6) et éventuellement ceux des sous couches de n inférieurs si elles sont partiellement remplies (ce qui n'est pas le cas ici).

- 5. 6s: $(6,0,0,\frac{1}{2})$ et $(6,0,0,-\frac{1}{2})$; 6p: $(6,1,-1,\frac{1}{2})$ ou $(6,1,0,\frac{1}{2})$ ou $(6,1,1,\frac{1}{2})$
- 6. Les do peuvent aller de -V (on sature toute la couche) à +III (on arrache tous les e- de valence)
- 7. Les do les plus stables sont +I ([Xe] $6s^2$ $4f^{14}$ $5d^{10}$ $6p^0$); +III ([Xe] $6s^0$ $4f^{14}$ $5d^{10}$ $6p^0$ sous-couche pleine); -II ([Xe] $6s^2 4f^{14} 5d^{10} 6p^3$ sous-couche demi-remplie); **-V** ([Xe] $6s^2 4f^{14} 5d^{10} 6p^6 = [Rn]$ couche pleine).

0.					
	6s	6p _х	6 ру	6pz	
Représentation	0	0	∞	8	Å ^z
Symérie (S) Antisymétrie(A)	S	S	S	А	у х
Plan nodal	N	N	N	0	

Un lobe représente le volume où on a 90% de chance de trouver l'e-.

La couleur représente le signe de la fonction d'onde (ce qui permet d'identifier les plans nodaux).

9. Un plan nodal est une surface où la probabilité de présence de l'e- est nulle.

Plan de symétrie : plan qui laisse l'OA (forme et signe) invariante par symétrie dans un miroir p/r à ce plan. Plan d'antisymétrie : plan qui inverse le signe de l'OA par symétrie dans un miroir p/r à ce plan.

10. cf. tableau 8.

11. Domaine du visible 400 à 800 nm, cad 400 10-9 à 800 10-9 m soit 4000 à 8000 Å.

Donc on cherche une transition intense (en gras) dont la longueur d'onde est entre 4000 à 8000 Å. La transition est donc celle à 5350,46 Å, soit du niveau 72S1/2 à 62P3/2 (l'émission étant le passage d'un niveau haut vers un niveau inférieur).

12.
$$\Delta E(J) = \frac{hc}{\lambda} = \frac{6.63 \cdot 10^{-34} \times 3.00 \cdot 10^{8}}{5350.46 \cdot 10^{-10}} = 3.72 \cdot 10^{-19} \text{ J}$$

$$\Delta E(J. mol^{-1}) = \Delta E(J) \times Na = \frac{hc \times Na}{\lambda} = \frac{6.63 \cdot 10^{-34} \times 3.00 \cdot 10^{8} \times 6.02 \cdot 10^{23}}{5350 \cdot 46 \cdot 10^{-10}} = 2.24 \cdot 10^{5} \text{ J.mol}^{-1}$$

niveau haut vers un niveau interieur).

12. $\Delta E(J) = \frac{hc}{\lambda} = \frac{6.63 \cdot 10^{-34} \times 3.00 \cdot 10^8}{5350.46 \cdot 10^{-10}} = 3.72 \cdot 10^{-19} \text{ J}$ $\Delta E(J. mol^{-1}) = \Delta E(J) \times Na = \frac{hc \times Na}{\lambda} = \frac{6.63 \cdot 10^{-34} \times 3.00 \cdot 10^8 \times 6.02 \cdot 10^{23}}{5350.46 \cdot 10^{-10}} = 2.24 \cdot 10^5 \text{ J.mol}^{-1}$ Soit $\Delta E(kJ.mol^{-1}) = 2.24 \cdot 10^2 \text{ kJ.mol}^{-1} = 224 \text{ kJ.mol}^{-1}$. $\Delta E(eV) = \frac{\Delta E(J)}{e} = \frac{hc}{\lambda \times e} = \frac{6.63 \cdot 10^{-34} \times 3.00 \cdot 10^8}{5350.46 \cdot 10^{-10} \times 1.6 \cdot 10^{-19}} = 2.32 \, eV$ (cette valeur est bien conforme à celle que l'on lit sur le diagramme $\Delta E = E(7^2 \text{S}_{1/2}) - E(6^2 \text{P}_{3/2}) \approx -2.7 - (-5) = 2.3 \, eV$)

- 13. A gauche la grandeur portée correspond à l'énergie de chaque niveau en eV (électronvolt), à droite, c'est le nombre d'onde associé $\sigma = \frac{1}{3}$.
- 14. PI est associé à la transformation TI → TI+ + 1 e-

D'où PI = $E_{tot}(TI^+) - E_{tot}(TI)$

Configuration de TI+: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p0

On réorganise les sous couches selon les groupes de Slater :

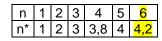
TI: $1s^2 \mid 2s^2 \mid 2p^6 \mid 3s^2 \mid 3p^6 \mid 3d^{10} \mid 4s^2 \mid 4p^6 \mid 4d^{10} \mid 4f^{14} \mid 5s^2 \mid 5p^6 \mid 5d^{10} \mid 6s^2 \mid 6p^1 \mid 5g^2 \mid 2s^2 \mid 2p^6 \mid 3s^2 \mid 3p^6 \mid 3d^{10} \mid 4s^2 \mid 4p^6 \mid 4d^{10} \mid 4f^{14} \mid 5s^2 \mid 5p^6 \mid 5d^{10} \mid 6s^2 \mid 6p^0 \mid 4g^{10} \mid 4g^{10} \mid 4g^{14} \mid 5g^2 \mid 5g^6 \mid 5d^{10} \mid 6g^2 \mid 6p^0 \mid 4g^{10} \mid 4g^{10}$

Commun aux 2 configurations

D'une manière générale : tous les e- des groupes inférieurs à celui perturbé ont la même énergie dans les 2 systèmes, il est alors inutile de calculer leur énergie.

Donc PI = $2 \times E_{6s6p}(TI^+)$ - $3 \times E_{6s6p}(TI)$

Groupe d'origine	Contributions des autres électrons					
Groupe d'origine	Couches		Couche n Couche			Couches
de l'électron	n-2, n-3,	Couche n-1	s,p	d	f	supérieures
s,p	<mark>1,0</mark>	<mark>0,85</mark>	0,35*	0,0	0,0	0,0



E_{6s6p}(TI⁺)

1e- 6s6p est écranté par <u>1 e-</u> du même groupe (l'autre), 10 e- 5d, 8 e- 5s5p, 14 e- 4f, 10 e- 4d, 8 e- 4s4p, 10 e- 3d, 8 e- 3s3p, 8 e- 2s2p et 2 e- 1s

Soit 1e- 6s6p est écranté par 1 de la couche 6=n + 18 de la couche 5=n-1 + 60 des couches n-2, n-3...

 $\Box_{686p}(Tl^+)=1\times0.35+18\times0.85+60\times1=75.65$ d'où $Z^*_{686p}(Tl^+)=(81-75.65)=\frac{5.85}{5.85}=5.35$

alors E_{6s6p} (TI+)= - 13.6×5.35²/4.2²

E_{6s6p}(TI)

1e- 6s6p est écranté par <u>2 e-</u> du même groupe, 10 e- 5d, 8 e- 5s5p, 14 e- 4f, 10 e- 4d, 8 e- 4s4p, 10 e- 3d, 8 e- 3s3p, 8 e- 2s2p et 2 e- 1s

Soit 1e- 6s6p est écranté par 2 de la couche 6=n + 18 de la couche 5=n-1 + 60 des couches n-2, n-3...

 $\Box_{686p}(TI^+)=2\times0.35+18\times0.85+60\times1=76.00$ d'où $Z^*_{686p}(TI^+)=(81-76.00)=\frac{6.00}{5.00}=5.00$ alors $E_{686p}(TI^+)=-13.6\times5.00^2/4.2^2$

Alors PI = $2 \times E_{686p}(TI^+)$ - $3 \times E_{686p}(TI)$ = $2 \times -13.6 \frac{5.35^2}{4.2^2} - 3 \times -13.6 \times \frac{5.00^2}{4.2^2}$ = **13.7 eV=PI**_{calc}

On trouve un résultat du même ordre de grandeur que la valeur expérimentale bien que l'erreur relative vaille $ER = \left| \frac{\text{vérité-mensonge}}{\text{vérité}} \right| \times 100 = \left| \frac{6.11-13.7}{6.11} \right| \times 100 = 124\%$. Cette erreur est due aux approximations du modèle de Slater qui considère entre autre que les e- ns et np sont équivalents énergétiquement.

<u>Ex 3 :</u>

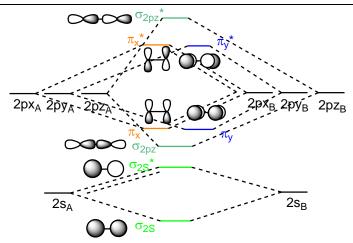
- 1- On ne prend en compte que les **orbitales de la couche de valence** soit 2s, 2px, 2py et 2pz pour chaque atome. Pour que 2 OA puissent interagir, il faut que leur recouvrement **S**_{AB} **soit non nul** (cad avoir les mêmes éléments de symétrie) et que leur différence d'énergie **Δ**ε_{AB} **soit faible**.
- éléments de symétrie communs (aux fragments et à la molécule finale) cad à O_A-•, •-O_B et O_A-O_B.

OA	2 s	2px	2py	2pz	
Oxz	S	S	Α	S	
Oyz	S	A	S	S	

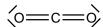
Du point de du recouvrement, on considère les interactions :

- 2s_A, 2s_B, 2pz_A, 2pz_B soient 4 OA \Rightarrow 4 OM : 4OM σ : 2 liantes + 2 antiliantes
- 2px_A et 2px_B soient 2 OA \Rightarrow 2 OM : $1\pi_x$ + 1 π_x *
- 2py_A et 2py_B soient 2 OA \Rightarrow 2 OM : $1\pi_y$ + 1 π_y *

Du point de vue énergétique $\Delta\epsilon_{2s/2p}$ est importante pour O, on peut donc négliger l'interaction entre les OA de type 2s et 2pz. On ne considère que les interactions $2s_A$ avec $2s_B$ et séparément $2pz_A$ et $2pz_B$: le diagramme est décorrélé.



2- Nv=4+6×2 = 16 \Rightarrow 8 doublets

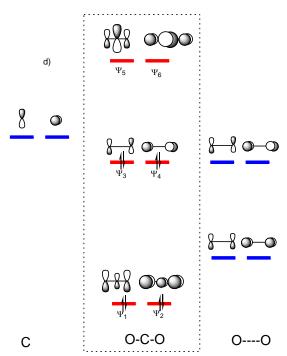


3- Les 3 plans xOz, yOz et xOy sont plans de symétrie des fragments O_A-•-O_B et •-C-• et de la molécule finale O_A-C-O_B.

OA	2s	2px	2py	2pz	π_x	π_{y}	π* _x	π* _y
Oxz	S	S	Α	S	S	Α	S	Α
Oyz	S	Α	S	S	Α	S	Α	S
Оху	S	S	S	Α	S	S	Α	Α

- Les antiliantes n'interagissent avec aucune OA de C
- π_x interagit avec la 2px(C)
- π_y interagit avec la 2py(C)

4-



OM liantes : Ψ_1 et Ψ_2 ; NON liantes : Ψ_3 et Ψ_4 et antiliantes Ψ_5 et Ψ_6

- **5-** C apporte 2 e- π et O_2 6 e- π (configuration $\pi_x^2\pi_y^2\pi_x^{*1}\pi_y^{*1}$) \Rightarrow 8 e- π à placer \Rightarrow Configuration de CO_2 : Ψ_1^2 Ψ_2^2 Ψ_3^2 Ψ_4^2 .
- 6- Il y a bien 2 liaisons π (CO) et 2 doublets NON liants qui peuvent intervenir dans le système π (délocalisables par mésomérie).

$$\left\{|\underline{\overline{Q}}_{0}-c\underline{=}_{0}| \xrightarrow{\oplus} (\underline{\overline{Q}}_{0}) \xrightarrow{\oplus} |\underline{\overline{Q}}_{0}|\right\}$$

7- Dans CO_2^+ , on enlève un électron NON liant (de Ψ_3 ou Ψ_4) à CO_2 , la liaison n'est donc pas perturbée (l'indice de liaison reste le même). La liaison CO aura donc une longueur et une force semblable dans CO_2 et CO_2^+ .

Si on passe de CO_2 à CO_2 , on ajoute un électron dans Ψ_5 ou Ψ_6 donc un e- antiliant \Rightarrow les liaisons seront plus fragiles, donc plus longues.

Ex 4: Agro-Veto 2005

- 1.1. 2 molécules sont énantiomères si elles ont la même formule développée plane, si elles sont non superposables et si elles sont images spéculaires l'une de l'autre.
- 1.2. Dans le cas d'un mélange racémique nd = nl ⇒ ee = 0, dans le cas d'un mélange énantiomériquement pur exemple nd = 0 alors ee = 1. Donc : 0≤ee≤1 2.

- 3.1. Les produit 10 et 11 sont diastéréoisomères car seule la configuration d'1 C* sur 3 est changée.
- 3.2. Nous sommes partis initialement d'un mélange racémique, donc d'un mélange équimolaire de (S)-9 et de (R)-9. Soit $C_{R0} = C_{S0} = C_0/2$

3.3.
$$v_R = -\frac{dC_R}{dt} = k_R C_R$$
, donc en intégrant entre t=0 et t, on trouve $C_R = \frac{c_0}{2} exp(-k_R t)$, idem $C_S = \frac{c_0}{2} exp(-k_S t)$
3.4.1. $\frac{c_R}{c_S} = \frac{exp(-k_R t)}{exp(-k_S t)} = \exp(-(k_R - k_S)t) = \exp(-k_S (E - 1)t)$

3.4.1.
$$\frac{c_R}{c_S} = \frac{exp(-k_R t)}{exp(-k_S t)} = \exp(-(k_R - k_S)t) = \exp(-k_S (E - 1)t)$$

3.4.2. Si E=1, alors
$$\frac{c_R}{c_S}$$
 = 1, donc C_R = C_S

En effet si E = 1 les vitesses de disparition du R et du S sont identiques, or comme on part d'un mélange équimolaire, donc racémique, il le resterait $\forall t$.

3.4.3. Si E > 1, alors $\lim_{t\to +\infty} \frac{c_R}{c_S} = 0$, donc il ne resterait que l'énantiomère S et tout R aurait été consommé par la réaction.

Ce serait donc une bonne méthode de séparation du composé S.

3.4.4.
$$\frac{c_R}{c_S} = \exp(-k_S(100-1)t) \approx \exp(-100k_St)$$
 et $C_S = \frac{c_0}{4} = \frac{c_0}{2} exp(-k_St)$ (puisque S a diminué de moitié).

Alors
$$exp(-k_S t) = \frac{1}{2}$$
 et $\frac{c_R}{c_S} = \approx \frac{1}{2}^{100} = 2^{-100} = 10^{-30}$

Donc on obtient S pratiquement pur, donc la séparation est bonne, mais 50% de S ont été consommés.

3.5.1. Si E=2 d'après le diagramme nous constatons que ee tend vers 1 si **t tend vers 1**.

Donc si nous désirons une bonne séparation des énantiomères, il faut pratiquement consommer tout le **mélange racémique** (puisque si $\tau = \frac{c_0 - (c_R + c_S)}{c_0} = 1$, $(C_R + C_S) \rightarrow 0$) donc le rendement de la séparation tend vers 0...

- 3.5.2. Si E croit alors l'énantiomère (R) réagit plus vite que l'isomère (S). Donc l'efficacité de la séparation est plus efficace, car alors l'énantiomère (R) est plus consommé que l'énantiomère (S).
- 3.5.3. Si E=1 le dédoublement est impossible cf 3.4.2.
- 3.5.4. on veut que $E \rightarrow +\infty$ et que la séparation de S soit totale donc que ee=1
- Si E tend vers l'infini on constate d'après le diagramme que ee=1 pour **T=0.5**.

Mathématiquement : de la relation (1) nous en tirons si $E \to +\infty$, le dénominateur doit tendre vers 0

Donc
$$ln[(1-\tau)(1+ee)] \to 0$$
, soit $(1-\tau)(1+ee) = 1$: $(1-\tau) = \frac{1}{(1+ee)}$

Or si on n'obtient que S, ee=1, donc $(1-\tau)=\frac{1}{(1+1)}=\frac{1}{2}$ alors $\tau=\frac{1}{2}$