FONCTION ALCOOL

I- Relation structure-réactivité

- ⇒ O est à la fois basique (Brönsted et Lewis) et MAUVAIS Nu
- ⇒ H est acide, donc les alcools sont des amphotères
- ⇒ pKa (R-OH₂+ appelé alkyloxonium/R-OH)≈ -3; pKa(ROH/RO-)≈17
- ⇒ C^{δ+} site électrophile MAUVAIS (HO- est un mauvais nucléofuge) peut subir des attaques Nu
- ⇒ sensibles aux oxydants

II- Activation nucléophile

A. Pouvoir nucléophile

Le pouvoir nucléophile augmente :

- avec la charge moins : RO- >> ROH
- ⇒ On arrache le proton par réaction A/B : pour former l'alcoolate

pKa (alcool/alcoolate) >14 : - les alcools sont des acides plus faibles que $H_2O \Rightarrow$ indifférents dans l'eau.

- les alcoolates sont des bases fortes dans l'eau.
- L'acidité diminue quand la classe de l'alcool augmente.
- pKa(alcool/alcoolate)~16-17

Exception: Ph-OH → Ph-O- + H+ pKa≈10

En effet le phénolate est stabilisé par effet -M du -Ph.

Obtention: En solvant NON AQUEUX

Réaction redox avec un alcalin

$$ROH + Na \rightarrow RO^{-} + Na^{+} + \frac{1}{2}H_{2}$$

$$(ROH + 1 e^{-} \rightarrow RO^{-} + \frac{1}{2} H_{2}$$
 et Na \rightarrow Na⁺ + 1 e⁻)

Réaction A/B, il faut une base plus forte : cad de pKa > : on choisit : H⁻ ou NH₂-

 $ROH + \overline{NH_2} \rightarrow RO + \overline{NH_3}$

 $ROH + H^- \rightarrow RO^- + H_2$

Rmq: OH $^{-}$ n'est pas une base assez forte pour avoir une réaction A/B quantitative, sauf pour le phénol : Ph-OH + OH $^{-}$ \rightarrow Ph-O $^{-}$ + H₂O

A- Application : Synthèse d'un éther : synthèse de Williamson

1- Bilan

$$R-O^{-} + R'-X \rightarrow R-O-R' + X^{-}$$

R'-X est fréquemment un dérivé halogéné laire peu encombré.

2- COP

Solvant : - très souvent l'alcool correspondant à l'alcoolate

- ou solvant aprotique (car sinon abaisse la nucléophilie) tel que le DMSO (diméthylsulfoxyde) : $(CH_3)_2S=O$

- éviter toute trace d'eau pour ne pas détruire l'alcoolate par réaction A/B

R'-X: souvent des **iodo**alcanes laires car le meilleur nucléofuge.

3- Mécanisme

Halogénoalcane I^{aire} ⇒ S_N2

$$R - \underline{\underline{\bigcirc}} + R' \underline{\underline{-}} = R - \underline{\underline{\bigcirc}} - R' + \underline{\underline{\square}} = R' \underline{\underline{-}} = R' + \underline{\underline{\square}} = R' \underline{\underline{-}} = R' + \underline{\underline{\square}} = R' \underline{\underline{-}} = R' \underline{\underline{-$$

Mécanisme en 1 étape.

Réaction énantiospécifique à 100%, grâce à l'attaque dorsale et l'inversion de Walden.

• Mécanisme concurrent : la E₂ surtout pour les R-X II^{aire} et III^{aire}, car R-O⁻ est une base forte.

4- Intérêt

Solvant (éthoxyéthane, THF) : éther-oxydes non cycliques ou cycliques à 5 ou 6 atomes ont une très faible réactivité

Epoxydes (éther-oxydes cycliques à deux carbones et un oxygène) sont de très bons intermédiaires de synthèse car ils peuvent être ouverts et fonctionnalisés sous l'action de divers nucléophiles.

Fonction de protection d'un alcool par formation d'un éther benzylique :

Cf. fiche Fonctions de protection

5- Résumé et compétition

	R⊪OH	R⊩OH	R₁OH	
Activation	R-O-			
COP	Tamb, base forte ou alcalin			
Stabilité du C+	BON	BOF	Mauvais	
Mécanisme	S _N 1	S _N 1 / S _N 2	S _N 2	
Stéréosélectivite	NON stéréosélective		Enatiospécifique (Inversion de Walden)	
Stéréospécificité	NON Stereoselective		Enatiospecifique (inversion de vvaluen)	
Mécanisme compétitif	E2			

6- Exemples

Ex: Donner les mécanismes et produits dans les 2 cas suivants:

A)
$$H_3C$$
—OH $\frac{1) \text{ Na, MeOH}}{2) \text{ EtCl}}$

B)
$$\sim$$
 OH $\stackrel{1) \text{NaOH, H}_2\text{O}}{\sim}$

III- Activation électrophile

A- Pouvoir électrophile ⇔ pouvoir nucléofuge

Un nucléofuge est d'autant meilleur que :

- sa polarisabilité est grande
- son pKa est faible

Couple	HI/I	HCI/CI-	APTS/tosylate	CH ₃ SO ₃ H/CH ₃ SO ₃ -	H ₃ O ⁺ /H ₂ O	H ₂ O/OH ⁻
pKa	-10	-6	-3	-2		

✓ Classer les groupes suivant par caractère nucléofuge croissant :

I⁻ CI⁻ TsO⁻ MsO⁻ H₂O HO⁻

- activation protonique
- ➤ Méca : avec APTS ou H₂SO₄
- Méca avec HX :

• activation par ester sulfonique (A_N puis E : cf. chap O-5)

Méca:

• activation par agent chlorurant

Bilans:

Chlorure de thionyle : R-OH + SOCl₂ \rightarrow R-Cl + "HCl" + "SO₂" Pentachlorure de phosphore : R-OH + PCl₅ \rightarrow R-Cl + "HCl" + PCl₃ Trichlorure de phosphore : 3 R-OH + PCl₃ \rightarrow 3 R-Cl + H₃PO₃

Carte Mentale:

• Activation protonique :

> S_N

	R⊪OH	R⊪OH	R₁OH	
Activation	R-OH₂+			
COP	Tamb			
Stabilité du C+	BON	BOF mais milieu protique	Mauvais	
Mécanisme	S _N 1	S _N 1	S _N 2	
Stéréosélectivite Stéréospécificité	NON stéréosélective		Enantiospécifique (Inversion de Walden)	
Mécanisme compétitif	E			

≻ E

	RiiiOH	RııOH	R₁OH	
Activation		R-OH ₂ +		
COP	Δ 50°C	Δ 100°C	Δ 160°C	
Stabilité du C+	BON	BOF mais milieu protique	Mauvais	
Mécanisme	E1	E1	E2	
Stéréosélectivite Stéréospécificité	Stéréosélective	Stéréosélective : %(E) > %(Z) Diastéréos		
Régiosélectivité		Zaïtsev		
Mécanisme compétitif	Sn			

• activation par ester sulfonique

> S_N

	R _{III} OH	R∥OH	R₁OH
Activation R-O₃SR'	Difficile	Facile	
COP	Tamb		
Stabilité du C+	BON	BOF mais milieu aprotique	Mauvais
Mécanisme	S _N 1	S _N 2	S _N 2
Stéréosélectivite Stéréospécificité	NON stéréosélective	Enantiospécifique Walde	•

➤ E

	R⊪OH	RıIOH	R₁OH
Activation	R-O₃SR'		
BONNE Base encombrée (pour éviter la S _N)	pKa	DBU = 13.5 pk	NEt₃ (a =10.8
COP	Δ 50°C	Δ 100°C	Δ 160°C
Force de la base	BONNE		
Mécanisme	E2		
Stéréosélectivite Stéréospécificité	Diastéréospécifique (H et H ₂ O en anti)		
Régiosélectivité	Zaïtsev		

B- Exemples

Donner les produits et mécanismes dans les cas suivants :

C)
$$CH_3 H_3PO_4$$
 D) $CH_3 TSCI, pyridine OH 2) OH A $Z$$

FONCTION CARBONYLE

I- Activation OUI ou NON ????

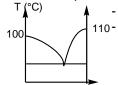
C électrophile moyen \Rightarrow si très bon Nu comme RMgX \Rightarrow pas besoin d'activation Sinon activation protonique ou électrophile

• Bon Nu⁻. Ex des RMgX

• Mauvais Nu. Ex: Acétalisation

Dans tous les cas, les réactions sont NON-stéréosélectives car :

II- Cétalisation- Acétalisation : réaction avec un alcool

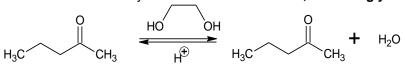

• Bilan : Cette réaction est équilibrée

Mécanisme

• COP

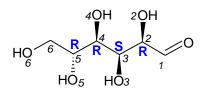
Toutes ces étapes sont équilibrées avec K°=10⁻³-10⁻²

Donc pour avoir un bon rendement, il faut :


travailler avec un excès d'alcool

éliminer H_2O au fur et à mesure. Pour cela on utilise un montage de Dean-Stark (cf. Chap T-5). On utilise un co-solvant non miscible avec H_2O (toluène, cyclohexane...), puis on effectue une distillation hétéroazéotropique.

X_{toluène}Intérêt


La réaction étant réversible, la fonction acétale est alors une excellente fonction de protection car elle est inerte notamment à l'hydrolyse basique, sauf à l'hydrolyse acide (méthode de déprotection).

Protection d'un carbonyle : réaction avec l'éthan-1,2-diol ou glycol :

III- HEMIACETALISATION DU GLUCOSE

B. Glucose linéaire :

(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal

Composé poly-fonctionnel : contient les fonctions :

⇒ La réaction d'hémiacétalisation intramoléculaire peut avoir lieu.

Bilan :
$$R_1$$
-OH $+$ R_2
 $+$ R_2
 $+$ R_2
 $+$ R_2
 $+$ R_2

C. Régiosélectivité de l'hémiacétalisation :

Entre C₁ et	O ₆	O ₅	O ₄
Hémiacétal obtenu		HO 0 6 OH HO OH OH	OH HO 0 1 4 5 6 OH HO OH
Cycle à n atomes : n	7	6	5
Stabilité	moyenne	Très bonne	Bonne
Observé	NON	OUI (>99,75%)	OUI (traces)
NOM		Glucopyranose	Glucofuranose

Entre C ₁ et	O ₃	O ₂	Linéaire
Hémiacétal obtenu		O HO 1 2 OH HO 5 OH	4OH 2OH HO 6 5 4 3 2 1 0 HO 5 HO 3
Cycle à n atomes : n	4	3	
Stabilité	Mauvaise (trop tendu)	Mauvaise (trop tendu)	
Observé	NON	NON	OUI (<0.25%)

D. Stéréochimie de l'hémiacétalisation du glucose en glucopyranose

1. Configuration

La réaction d'hémiacétalisation du glucose en glucopyranose fait intervenir le C_1 et le O_5 . La stéréochimie des atomes C_2 , C_3 , C_4 et C_5 n'est donc pas perturbée. Par contre un nouveau carbone asymétrique est né : le C_1 qui peut être R ou S. On obtient 2 composés cycliques qui sont diastéréoisomères et qui diffèrent par la configuration absolue d'un seul atome de carbone : on dit que ces deux composés diastéréoisomères sont des anomères. Le C_1 est appelé carbone anomérique.

 $[\alpha(\alpha)]_{D^{20}}=112^{\circ}.g^{\text{-}1}.mL.dm^{\text{-}1} \qquad [\alpha(\beta)]_{D^{20}}=18.7^{\circ}.g^{\text{-}1}.mL.dm^{\text{-}1}$ Identifier le C anomérique.

A- Mutarotation du glucose et loi de Biot

Il existe un équilibre en milieu acide entre les formes α et β appelé **mutarotation du glucose**, passant par l'intermédiaire linéaire :

On peut en faire une étude cinétique suivie ou thermodynamique par polarimétrie en appliquant la loi de BIOT. On suit l'évolution du pouvoir rotatoire à l'aide d'un polarimètre de Laurent et en appliquant la loi de BIOT.

PC