CREATION DE LIAISON SIMPLE CC

1 Généralités

Il faut un carbone nucléophile et 1 électrophile Classiguement électrophile ⇒ il faut une inversion de polarité

 Organométallique et plus précisément organomagnésiens mixtes $\delta\text{-}\hspace{0.1cm}\delta\text{+}$

RMgX : C \longrightarrow M (χ (Mg)=1.3, χ (C)=2.5)

• Les carbanions stabilisés : en alpha d'un groupe électroattracteur.

2 Les organomagnésiens mixtes

A. Synthèse

1. Bilan

.....

ρ=95%

Réaction très exothermique

Ex: \longrightarrow Br + Mg \longrightarrow \longrightarrow MgBr

Rmq: PAS de MECA à connaitre car radicalaire

Exception : les alcynures magnésiens RC=C-MgX par réaction:

2. Précautions opératoires

Problèmes et réactions parasites	Précautions associées	
Éviter l'hydrolyse de RMgX :	Verrerie sèche	
$RMgX + H2O \rightarrow RH + \frac{1}{2}Mg(OH)2(s)$	Solvant anhydre	
+ ½ MgX ₂ (s)	Garde à CaCl2	
Eviter la réaction avec CO ₂ et O ₂ :	Travailler sous atmosphère inerte	
$RMgX + CO_2 \rightarrow R-COOMgX$	Au pire, sous atmosphère réelle	
$RMgX + \frac{1}{2}O_2 \rightarrow RO-MgX$	avec une couche d'éther vaporisé	
Eviter la duplication de Wurtz :	Mg en excès	
$RMgX + RX \rightarrow R-R + MgX2$	RX ajouté au goutte à goutte	
Emballement de la réaction	RX ajouté au goutte à goutte	
Emballement de la reaction	Bain d'eau glacée à proximité	

3. Quel solvant choisir:

4. Montage

B. Réaction avec CO₂

1. Bilan

$$R-Mg-X + O=C=O \xrightarrow{1) Et_2O} R \xrightarrow{O} + Mg^{2+} + X^{-}$$

2. Mécanisme

Indiquer la polarité des 2 réactifs

3. Intérêt

Formation d'un AC avec 1 C en plus

C. Action sur un carbonyle (aldéhyde ou cétone)

1. Bilan

$$R-Mg\cdot X + R_1 \longrightarrow C=O \xrightarrow{1) Et_2O} R \xrightarrow{R_1} R \longrightarrow C-OH + Mg^{2+} + X$$

Réaction en 2 étapes :

- A_N du RMgX
- Hydrolyse acide

2. Mécanisme simplifié

Indiquer la polarité des réactifs. Compléter le mécanisme en plaçant les doublets non liants manquants et les flèches de mouvement des électrons.

3. Intérêt

Formation d'alcool avec allongement de chaîne.

H C=0 méthanal
$$\longrightarrow$$
 Alcool laire R-CH₂-OH

R₁

R₁

R=CH-OH

R₁

R₁

R=CH-OH

R₁

R₁

R₂

R=CH-OH

R₂

D. Action sur un époxyde : formation d'un alcool

1. Résultats expérimentaux

La réaction d'1 RMgX sur un époxyde dissymétrique est **régiosélective** et **stéréospécifique.**

2. Mécanisme

E. Action sur un ester

1. Bilan

$$2 R-Mg \cdot X + R_1 \xrightarrow{O-R_2} \frac{1) Et_2O}{2) H_2O, H^+} R_1 \xrightarrow{OH} R + R_2-O-H + Mg^{2+} + X^-$$

Mécanisme

- 2. Intérêt
- Formation d'alcools tertiaires très encombrés.
- 3. Chimiosélectivité

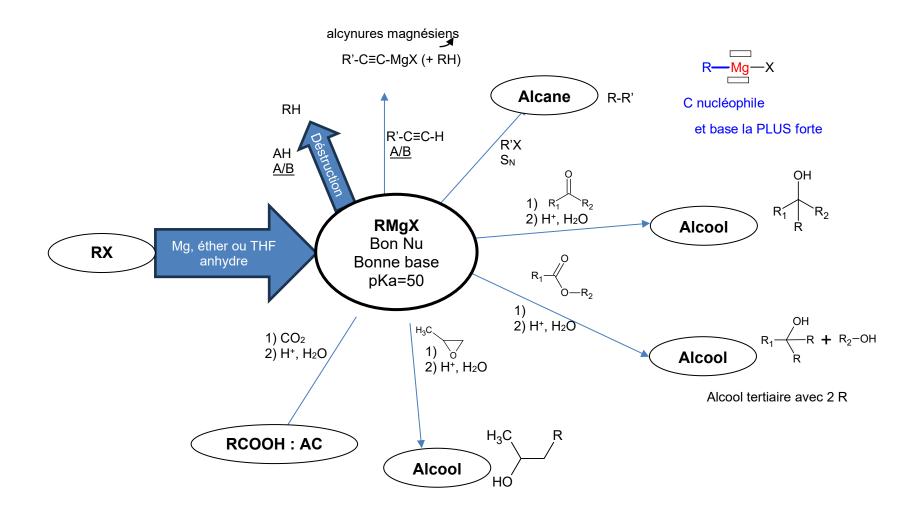
A_N sur la C=O (cf. chap A-3 et sera vu O-5) Amide < ester < AC < cétone < aldéhyde < anhydride < chlorure d'acyle Car

- \Rightarrow avec un ester la 2^{nde} A_N est inévitable car la cétone est plus réactive que l'ester
- \Rightarrow avec **un chlorure d'acyle**, on peut se limiter à 1 A_N si on met 1 équivalent de RMgX et à basse T on forme alors un **carbonyle**

4. Remarque

Pourquoi ne fait-on pas réagir CH₃COOH avec RMgX ???

⇒.....


F. Action sur les alcools, amines, AC, l'eau...

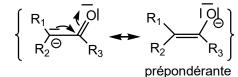
G. Quel acide choisir pour l'hydrolyse?

- □ H₂O ?
- ☐ H₂SO₄ ? HCl ?
- □ NH₄⁺

H. Rétrosynthèse

Proposer des réactifs faisant intervenir un organomagnésien pour la synthèse des produits suivants :

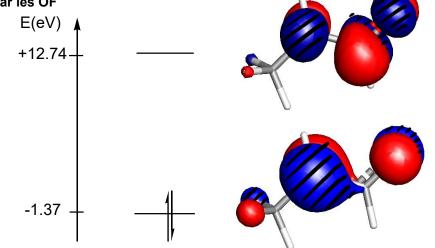
PC Page 4 sur 7


3 Les carbanions stabilisés


pKa des couples dont la base carbanion est stabilisée

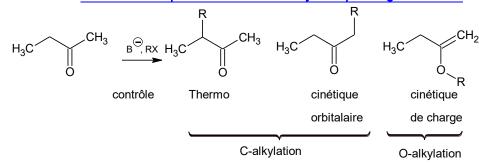
pKa des couples dont la base carbanion est stabilisée					
Acide	Base	рКа			
Cétone/ Aldéhyde H OI R R'	$ \left\{ \begin{array}{cccc} & & & & & & & \\ & & & & & & \\ & & & &$	≈20			
ester_Ol	{OI IOI OR OR	≈25			
Chlorure d'acyle		≈16			
Amide tertiaire		≈30			
β-dicétones O O R R'		≈9			
β-diester O O RO OR'		≈13			
Nitroalcanes H N N N N N N N N N N N N		≈10			

Structure électronique de l'énolate


Par mésomérie

⇒ caractère **très** Nucléophile de

Par les OF


<u>Sous contrôle orbitalaire</u>, le site le plus nucléophile est :

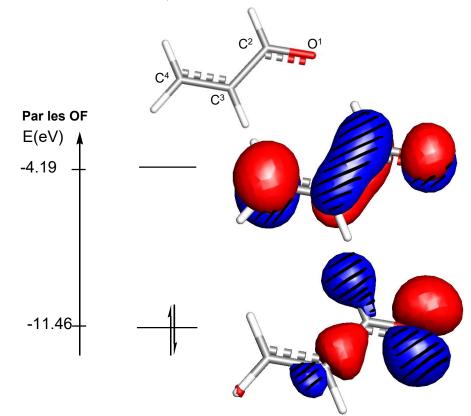
Charges de Mulliken

1O 2C 3H 4C 5H 6C 7H 8H 9H -0.697 0.441 -0.143 -0.561 0.032 0.066 -0.039 -0.049 -0.049

Sous contrôle de charge, le site le plus nucléophile est :

Contrôle cinétique - Contrôle thermodynamique : régiosélectivité

Contrôle	Thermodynamique	Cinétique orbitalaire	Cinétique de charge
Base	Peu encombrée H ⁻	Très encombrée : LDA	
T	haute	basse	
t	long	court	
RX		H ₃ C — I δ+ δ-	$H_3C - O - S - O - CH_3$ $\delta + \delta - O \delta - \delta +$
Solvant		Polaire/ Non dissociant : Ether/THF	Polaire / dissociant : DMSO


Aldolisation / cétolisation

Structure électronique des α-énones : Par la théorie des OF

Par mésomérie

$$\left\{ \begin{array}{c} 4 & 3 \\ \hline \end{array} \right\} \begin{array}{c} 1 \\ \hline \end{array} \begin{array}{c} 0 \\ \end{array} \begin{array}{c} 0$$

⇒ caractère **très** électrophile de

Sous contrôle orbitalaire, le site le plus électrophile est :

PC Page 6 sur 7

Décomposition en CLOA des OM 9 à 13 de l'acroléine, axe z perpendiculaire à la molécule.

```
9-( )
                    10-( )
                            11-( )
                                     12-( )
                                            13-( )
           -16.8816 -15.5204 -11.4571 -4.1946
ENERGY =
                                            6.0040
 10 2s
           0.36649 0.00000 0.00022
                                   0.00000
                                           0.00000
           0.67268 0.00000 0.51934 0.00000 0.00000
 10
      2 px
     2 py -0.47838
                    0.00000 0.79571 0.00000 0.00000
 10
     2 pz 0.00000
                    0.59530
                           0.00000 0.60700 0.44655
 10
 2 C
      2 s
           -0.05109
                   0.00000 0.02879
                                   0.00000 0.00000
     2 px -0.28998 0.00000 -0.11710 0.00000 0.00000
 2 C
 2 C
      2 py
           0.11895 0.00000 -0.10178 0.00000 0.00000
    2 pz
 2 C
          0.00000 0.24701 0.00000 -0.54715 -0.80342
           0.03243 \quad 0.00000 \quad 0.12243 \quad 0.00000 \quad 0.00000
 3 C
      2 s
 3 C
     2 px 0.20633 0.00000 0.27896
                                   0.00000 0.00000
     2 py 0.03801 0.00000 0.12707 0.00000 0.00000
 3 C
     2 pz 0.00000 -0.42649 0.00000 -0.43235 0.85275
 3 C
           4 C 2 s
     2 px -0.12244 0.00000 -0.07863 0.00000 0.00000
 4 C
 4 C
     2 py -0.01754 0.00000 0.01111 0.00000 0.00000
 4 C
      2 pz 0.00000 -0.52527 0.00000 0.72555 -0.52577
```

Charges de Mulliken

1 O 2 C 3 C 4 C 5 H 6 H 7 H 8 H -0.392 0.454 -0.087 0.027 -0.076 0.040 0.016 0.017

<u>Sous contrôle de charge</u>, le site le plus électrophile est :