SEMAINE 1

- ➤ Chap A-1 : Les orbitales atomiques
- Chap A-2 : les orbitales moléculaires
- Révisions SUP :
 - Structure électronique de l'atome
 - Structure électronique des molécules (Structure de Lewis, mésomérie, VSEPR, moment dipolaire)
 - Stéréochimie : conformation/configuration

Savoirs et savoirs faire :

> Chap A-1:

- Établir une configuration électronique fondamentale (d'atome, d'ion)
- Différencier les e- de cœur, de valence, les systèmes dia ou paramagnétiques
- Notion de charge effective
- Les formules du rayon atomique et de l'énergie d'une OA ou d'un atome.
- L'allure des OA de type ns, np (en fonction du système d'axe)
- L'évolution au sein de la classification périodique, du rayon, des énergies des e- les plus externes, de l'électronégativité et de la polarisabilité

Notes aux colleurs:

Le modèle de Slater n'a PAS été vu

L'allure des OA d n'est plus au programme

> Chap A-2:

- Différencier les OM liante, antiliante et non-liante ; Différencier les OM σ et π
- Classer les OM selon leur énergie
- Construire le diagramme NON corrélé d'OM d'une molécule diatomique par CLOA
- Interpréter le diagramme d'OM d'une plus grosse molécule à l'aide de la méthode des fragments
- Décompter les e- et les placer dans les OM
- Calculer l'indice de liaison

Notes aux colleurs : le diagramme corrélé (Li₂ ... N₂) n'est PAS dans les connaissances exigibles il doit être donné

Liste de questions de cours :

A1:

- 1. Configurations électroniques des atomes et des ions (règles ; ex.) ; lien avec la position dans la classification périodique.
- Evolution des propriétés atomiques dans la classification périodique (notion de charge effective, rayon, énergie, électronégativité, polarisabilité)

Révisions SUP

- 3. Chiralité
- 4. ***Obtention d'un énantiomère pur
- 5. Stéréochimie de conformation ; cas des chaînes ouvertes (éthane, butane)

A2

- 6. Diagramme des OM des espèces diatomiques homonucléaires de la première ligne (intro sur les conditions d'interaction des 2 OA, présenter le diagramme d'OM, applications)
- 7. Diagramme des OM des molécules homonucléaires de la deuxième ligne du tableau périodique (diagramme décorrélé principe de construction, application, modification pour le diagramme corrélé, application)
- 8. ***Diagramme des OM dans le cas d'espèces hétéronucléaires (intro sur les conditions du mélange de deux OA, cas de HHe+ puis de HF, caractéristiques de la liaison)
- 9. ***Méthode des fragments choisir un exemple H₂O ou BeH₂ (plus simple car linéaire)