Exercice 0:

EXCICICE 0.				
PAS d'interaction	Interaction			
	S ≠ 0			
	0 > 0	S < 0		S ≈ 0
	S > 0 ⇒ liante ⇒		antiliante	NON liante
S = 0	S le long de la liaison : S axial ⇒ σ		S perpendiculaire à la	
			liaison :	
			S latéral	
			$\Rightarrow \pi$	

	а	b	С	d	е	f	g
s	S<0 axial	S ≈ 0	S = 0	S < 0 Latéral	S = 0	S > 0 Latéral	S>0, axial
interactio n	σ*	NON liante	Pas d'inter action	π*	Pas d'inter action	Π	σ

Exercice 1:

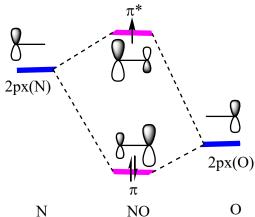
<u>1)</u>

molécule	Configuration électronique	Para/dia	i
Li ₂	σ_{2s}^{2}	Dia	1
Be ₂	$\sigma_{2s}^2 \sigma_{2s}^{*2}$	Dia	0
B ₂	$\sigma_{2s}^2 \sigma_{2s}^{*2} \pi_x^1 \pi_y^1$	Para	1
C ₂	$\sigma_{2s}^2 \sigma_{2s}^{*2} \pi_x^2 \pi_y^2$	Dia	2
N ₂	$\sigma_{2s}^2 \sigma_{2s}^{*2} \pi_x^2 \pi_y^2 \sigma_{2pz}^2$	Dia	3
O ₂	$\sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2pz}^2 \pi_x^2 \pi_y^2 \pi_x^{*1} \pi_y^{*1}$	Para	2
F ₂	$\sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2pz}^2 \pi_x^2 \pi_y^2 \pi_x^{*2} \pi_y^{*2}$	Dia	1
Ne ₂	$\sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2pz}^2 \pi_x^2 \pi_y^2 \pi_x^{*2} \pi_y^{*2} \sigma_{2pz}^{*2}$	dia	0

Seules les molécules Ne_2 et Be_2 n'existent pas puisque leur indices de liaisons valent 0.

2) On remarque que plus l'indice de liaison plus la liaison est forte (D grand) et courte.

Rmq: si on regarde les espèces qui possèdent i=1. On observe que $Re(F_2) < Re(Li_2)$. En effet l'expansion spatiale des OA de Li est plus importante (OA plus diffuses) que celle de F. Le recouvrement est donc meilleur avec F qu'avec Li.


Exercice 2:

molécule	Configuration électronique	i
O ₂ +	$\sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2pz}^2 \pi_x^2 \pi_y^2 \pi_x^{*1} \pi_y^{*0}$	2.5
O ₂	$\sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2pz}^2 \pi_x^2 \pi_y^2 \pi_x^{*1} \pi_y^{*1}$	2
O ₂ -	$\sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2pz}^2 \pi_x^2 \pi_y^2 \pi_x^{*2} \pi_y^{*1}$	1.5
O ₂ ² -	$\sigma_{2s}^2\sigma_{2s}^{*2}\sigma_{2pz}^2\pi_x^2\pi_y^2\pi_x^{*2}\pi_y^{*2}$	1

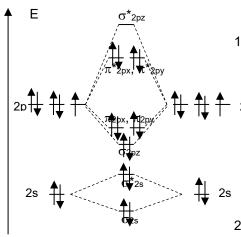
On remarque que plus l'indice de liaison plus la liaison est forte (D grand) et courte.

Exercice 3:

- 1) NO N_V =5+6=11, cette molécule est nécessairement paramagnétique puisqu'elle possède un nombre impair d'e-. Il y a donc au moins 1 e- non apparié.
- 2) NO : $\sigma_{2s}^2 \sigma_{2s}^{*2} \pi_x^2 \pi_y^2 \sigma_{2pz}^2 \pi_x^{*1}$
- 3) La dernière sous couche est antiliante, si on ajoute 1 e- on affaiblit la liaison, si on en enlève 1 on renforce le caractère liant : la liaison est plus forte \Rightarrow il faut en enlever 1 électron.
- 4) i(NO)=5/2=2.5
- d'où $i(N_2)>i(NO)>i(O_2)$
- soit $D(N_2)>D(NO)>D(O_2)$
- et $Re(N_2)$ <Re(NO)< $Re(O_2)$
- 5) L'e- se trouve sur une π^* . Elle est la combinaison antiliante des 2px de N et O. Or O étant plus électronégatif que N, les OA de O sont plus basses en énergie. Donc la π sera plus développée sur O et la π^* sur N.

Donc l'électron célibataire est plus localisé sur N.

- 6) Les formes de Lewis les plus probables sont celles pour lesquelles les règles suivantes sont respectées par ordre décroissant :
- 1. La règle de l'octet est au maximum respectée pour les atomes de la deuxième période (ex CO), et en particulier pour les atomes les plus électronégatifs.
- 2. Les charges négatives sont davantage attribuées aux atomes les plus électronégatifs.
- 3. La séparation des charges est minimale (la somme des valeurs absolues des charges est minimale), en particulier les atomes de la troisième période préfèrent une hypervalence à une séparation de charge entre eux et l'atome attaché.


La plus probable est donc la **forme 1**.

La forme 2 ne vérifie pas la règle 1. règle de l'octet non respectée pour O (9 e- autour de O)

La forme 3 ne vérifie pas la règle 3. trop de séparation de charge.

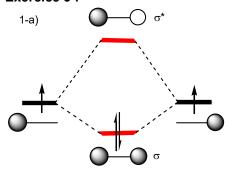
7) D'après 4 : la liaison a pour indice 2.5, il est impossible d'avoir une représentation de Lewis de cette liaison qui est donc en désaccord avec la description orbitalaire.

D'après 5 : l'e- célibataire est sur le N, ce qui est bien en accord avec la forme 1.

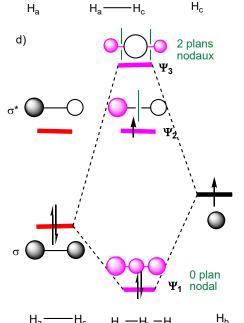
Exercice 4:

1) Configuration e-nique de F : 1s²2s²2p⁵

Configuration e-nique de F : $\sigma_s^2 \sigma_s^{*2} \sigma_z^2 \pi_x^2 \pi_v^2 \pi_v^{*2} \pi_v^{*2}$


 $_{0}$ L'énergie d'ionisation consiste à arracher l'e- le plus accessible, soit un 2p pour F ou un π* pour F₂.

Or d'après le diagramme ci-contre, on voit que les e- π^* sont plus haut en énergie que les 2p, ils sont donc plus facilement arrachables d'où un PI plus faible pour F_2 .


2) N: $1s^22s^22p^3$ et N₂: $\sigma_{2s}{}^2\sigma_{2s}{}^{*2}$ $\pi_x{}^2\pi_y{}^2\sigma_{2pz}{}^2$

Or d'après le diagramme de l'ex 1 (corrélé) $E(\sigma_{2pz}) < E(2p_N)$ Donc les e- les plus faciles à arracher sont les $2p: PI(N) < PI(N_2)$ 3) O : $1s^22s^22p^4$ et O_2 : $\sigma_{2s}^2\sigma_{2s}^{*2}\sigma_{2pz}^2\pi_x^2\pi_y^2\pi_x^{*1}\pi_y^{*1}$ Or d'après le diagramme de l'ex 1 (NON corrélé) $E(\pi^*) > E(2p_0)$ Donc les e- les plus faciles à arracher sont les π^* : **PI(O)** > **PI(O₂)**

Exercice 5:

- b) Pour H_b on considère son OA de valence : 1s
- c) seule la σ possède un recouvrement non nul avec la $1s(H_b)$

- e) Ψ_1 est liante; Ψ_2 est NON-liante: Ψ_3 est antiliante
- f) Plus l'OM possède de plans nodaux moins elle est stable, l'ordre est donc bien cohérent.
- g) $\Psi_1^2 \Psi_2^1$

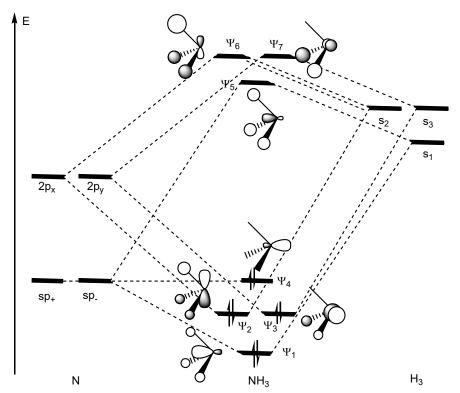
a) Ψ'2 possède 1 gros recouvrement antiliant

PC Page 2 sur 4

 $\Psi^{\prime}{}_3$ possède 2 recouvrements antiliants moyens + 1 recouvrement liant faible qui compense une partie des antiliants. Donc on peut comprendre que ces 2 OM soient dégénérées.

b)

OM H ₃	Ψ'1	Ψ'2	Ψ'3
OM fragment	σ + 1s	σ*	σ – 1s


c) Ψ'₁² Ψ'₂¹

Si H_3 perd 1 e- ce sera celui de Ψ'_2 qui est antiliante $\Rightarrow H_3^+$ est stabilisé Si H_3 gagne 1 e- ce sera dans Ψ'_3 qui est antiliante $\Rightarrow H_3^-$ est déstabilisé $\Rightarrow H_3$ a tendance à perdre 1 e-

Exercice 6:

- 1. H (Z = 1): 1s¹ N (Z = 7): 1s² 2s² 2p³
- 2. On prend en compte les OA de valence : 1sH (1), 2sN (1) et 2pN (3).
- 3. 5 OA donnent 5 OM.
- **4.** Les orbitales hybrides sp+ et sp- proviennent de la combinaison entre **l'OA 2s et l'OA 2pz**.
- **5. L'énergie d'une OA ne dépend que de n et l** (mais pas de ml) donc les OA 2py et 2px ont même énergie.
- **6.** sp+ possède un tout petit lobe dirige vers les 3 H, on néglige l'interaction avec s1. sp+ n'interagit pas. Cela donne l'OM **non liante.**

4400 51. 5p+111	moragic pac. o	CIG GOITHO I OIL		
·	sp+	sp. avec s1	2p _x avec s ₂	2py avec s ₃
type	NON liante	σ(NH)	σ(NH)	σ(NH)
CL liante				
CL antiliante				0,110

8. On ne place que les e- de valence : soit 5+3 = 8 e- La configuration est donc $\Psi_1{}^2\Psi_2{}^2\Psi_3{}^2\Psi_4{}^2.$ Or les OM Ψ_1,Ψ_2,Ψ_3 sont de type $\sigma(NH)$ et correspondent dont aux 3 liaisons NH de la formule de Lewis et Ψ_4 est nl, ce qui correspond au dnl sur le N de la formule de Lewis. Il y a donc bien cohérence entre les descriptions de Lewis et orbitalaire.

Exercice 7:

1)

	liante	Anti-liante	Non-liante
orbitales	1a₁, 1e	2e, 3a₁	2a₁

2) Lors de la pyramidalisation, l'angle HAH devient plus fermé : il passe de 120° pour AX_3 à $109,5^{\circ}$ pour la pyramide du type tétraédrique Le recouvrement donc les interactions entre les H sont donc plus forts dans la forme pyramidale.

PC Page 3 sur 4

- Dans 1a₁, le recouvrement est positif : l'OM devient plus liante, son énergie est plus faible dans la forme pyramidale.
- Dans 2e, le recouvrement est négatif : l'OM devient plus antiliante, son énergie est plus haute dans la forme pyramidale.
- Dans 2 a₁, on passe d'une OM purement non-liante dans la forme plane, à une OM non-liante avec un léger caractère liant dans la forme pyramidale : son énergie est plus basse dans la forme pyramidale.

3)	,				
	Nv	Plus haute occupée : HO	Géométrie attendue	Structure de Lewis	Géométrie attendue en VSEPR
BH ₃	6	1e	Linéaire	H H B H	AX ₃ : linéaire
NH ₃	8	2a ₁	Pyramidale	H H	AX ₃ E ₁ : Pyramidale
CH₃ ⁺	6	1e	Linéaire	H H H	AX ₃ : linéaire
CH ₃ -	8	2a₁	Pyramidale	C "H	AX₃E₁ : Pyramidale

Les 2 modèles sont bien compatibles.

Ex 8:

1) On peut envisager 2 fragments CH_3 (éventuellement H_6 + C_2 , mais il faudrait construire $H_6...$)

,	ФА	ΦВ	ФС
Liaison CC	π liante	σ liante	σ antiliante
Liaison CH	σ antiliante	σ liante	σ antiliante

³⁾ Plus le caractère antiliant est prononcé, moins l'OM est stable, plus elle est haute en énergie :

Page 4 sur 4

 \Rightarrow E(ϕ C) > E(ϕ A) > E(ϕ B)

4)		
ОМ	Représentation shématique	Orbitales fragments
ФА		2e
фв		2a ₁
фс		3a ₁

PC