## **DOSAGES**

Dosage A: 1 diacide, 2 sauts Veq₁=8.5 mL et Veq₂ = 17.0 mL⇒ TOUT VA BIEN !!!

En effet : Tous les pKa < 10 ⇒ toutes les acidités sont dosées.

 $\Delta$  pKa > 4  $\Rightarrow$  les acidités sont dosées successivement.

Reste à savoir quelle est l'acidité dosée en 1iere :

- La plus forte, on peut vérifier cela sur un axe de pKa

- > RP1:  $H_2SO_3 + HO^- \rightarrow HSO_3^- + H_2O$ ,  $K_1=10^{12.3}$
- ⇒ A la première équivalence HO- a neutralisé tous les H<sub>2</sub>SO<sub>3</sub>
- $\Rightarrow$  A Veq<sub>1</sub> n(OH<sup>-</sup>)=n(H<sub>2</sub>SO<sub>3</sub>) $\Rightarrow$  CVeq<sub>1</sub> = CaV<sub>0</sub>
- $\Rightarrow$  Ca = CVeq<sub>1</sub>/V<sub>0</sub> = 0.10×8.5/10 = 0.085 mol/L

On retrouve le pKa à la demi 1ière équivalence, cad au milieu du segment [0; Veq1]

- > RP2 :  $HSO_3$  + HO →  $SO_3$ <sup>2</sup> +  $H_2O$ ,  $K_2$ = $10^{6.4}$
- ⇒ entre la 1ière et la 2<sup>nde</sup> équivalence HO⁻ a neutralisé tous les HSO₃⁻ qui proviennent des H₂SO₃.
- $\Rightarrow$  Entre Veq<sub>1</sub> et Veq<sub>2</sub> n(OH<sup>-</sup>)=n(HSO<sub>3</sub><sup>-</sup>)=  $\Rightarrow$  C(Veq<sub>2</sub> Veq<sub>1</sub>) = CaV<sub>0</sub>
- $\Rightarrow$  Ca = C(Veq<sub>2</sub> Veq<sub>1</sub>) /V<sub>0</sub> = 0.10×(17-8.5)/10 = 0.085 mol/L

## Lors d'un dosage successif d'un diacide, on doit nécessairement avoir Veq2=2 Veq1.

On retrouve le pKa à la demi 2<sup>ième</sup> équivalence , cad au milieu du segment [Veq<sub>1</sub>; Veq<sub>2</sub>], cad à (Veq<sub>1</sub> + Veq<sub>2</sub>)/2

ightarrow Dosage B : 1 diacide, 1 saut Veq=22.0 mL  $\Rightarrow$  BIZARRE on aurait du avoir 2 sauts !!!

En effet : Tous les pKa < 10 ⇒ toutes les acidités sont dosées.

 $\Delta$  pKa < 4  $\Rightarrow$  les 2 acidités sont dosées simultanément.

- > 2 RP:  $AH_2 + HO^- \rightarrow AH^- + H_2O$ ,  $K_1=10^{11}$  et  $AH^- + HO^- \rightarrow A^{2-} + H_2O$   $K_2=10^{9.6}$
- ⇒ A l'équivalence HO⁻ a neutralisé tous les AH₂ et les AH⁻
- $\Rightarrow$  A Veq n(OH-)=n(AH<sub>2</sub>)+n(AH-)

Or il y a autant de AH $^{-}$  à doser que de AH $_{2}$  initialement  $\Rightarrow$  A Veq n(OH $^{-}$ )=2×n(AH $_{2}$ )

 $\Rightarrow$  CVeq = 2 CaV<sub>0</sub>  $\Rightarrow$  Ca = CVeq/2V<sub>0</sub> = 0.10×22.0/20 = 0.11 mol/L

Le dosage étant simultané impossible de trouver les pKa graphiquement.

➤ Dosage C : 1 diacide, 1 saut Veg=10.0 mL ⇒ BIZARRE on aurait du avoir 2 sauts !!!

En effet : pKa<sub>2</sub> > 10  $\Rightarrow$  la 2<sup>ième</sup> acidité n'est pas dosée.

 $\Delta$  pKa > 4  $\Rightarrow$  la 1<sup>ière</sup> acidité est dosée

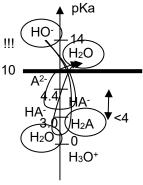
- > 1 RP :  $H_2S + HO^- \rightarrow HS^- + H_2O$ ,  $K_1=10^7$
- ⇒ A l'équivalence HO⁻ a neutralisé tous les H₂S
- $\Rightarrow$  A Veq n(OH-)=n(H<sub>2</sub>S) = CaV<sub>0</sub>
- $\Rightarrow$  Ca = CVeq/V<sub>0</sub> = 0.10×10.0/10 = 0.10 mol/L

On retrouve le pKa à la demi 1<sup>ière</sup> équivalence, la 2<sup>nde</sup> acidité n'étant pas dosée impossible de déterminent graphiquement son pKa<sub>2</sub>.

➤ Dosage D : 2 monoacides, 2 saut à 8.0 mL et 18.0 mL ⇒ ⇒ TOUT VA BIEN !!!

En effet : Tous les pKa < 10 ⇒ tous les acides sont dosés.

 $\Delta$  pKa > 4  $\Rightarrow$  les acides sont dosés successivement.


Reste à savoir quel est l'acide dosé en 1ier :

- Le plus fort , on peut vérifier cela sur un axe de pKa
- > RP1 : CH<sub>3</sub>COOH + HO<sup>-</sup> → CH<sub>3</sub>COO<sup>-</sup> + H<sub>2</sub>O, K<sub>1</sub>=10<sup>9.2</sup>
- ⇒ A la première équivalence HO⁻ a neutralisé tous les CH₃COOH
- $\Rightarrow$  A Veq<sub>1</sub> n(OH<sup>-</sup>)=n(CH<sub>3</sub>COOH) $\Rightarrow$  CVeq<sub>1</sub> = Ca<sub>1</sub>V<sub>0</sub>
- $\Rightarrow$  Ca<sub>1</sub> = CVeq<sub>1</sub>/V<sub>0</sub> = 0.10×8.0/10 = 0.080 mol/L

On retrouve le pKa à la demi 1ière équivalence, cad au milieu du segment [0; Veq1]

- ightharpoonup RP2: NH<sub>4</sub><sup>+</sup> + HO<sup>-</sup>  $\rightarrow$  NH<sub>3</sub> + H<sub>2</sub>O, K<sub>2=</sub>10<sup>4.8</sup>
- ⇒ entre la 1<sup>ière</sup> et la 2<sup>nde</sup> équivalence HO<sup>-</sup> a neutralisé tous les NH<sub>4</sub><sup>+</sup>.
- $\Rightarrow$  Entre Veq<sub>1</sub> et Veq<sub>2</sub> n(OH-)=n(NH<sub>4</sub>+)=  $\Rightarrow$  C(Veq<sub>2</sub> Veq<sub>1</sub>) = Ca<sub>2</sub>V<sub>0</sub>
- $\Rightarrow$  Ca<sub>2</sub> = C(Veq<sub>2</sub> Veq<sub>1</sub>) /V<sub>0</sub> = 0.10×(18.0-8.0)/10 = 0.10 mol/L

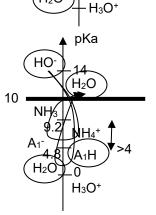
On retrouve le pKa à la demi  $2^{ieme}$  équivalence , cad au milieu du segment [Veq<sub>1</sub>; Veq<sub>2</sub>], cad à (Veq<sub>1</sub> + Veq<sub>2</sub>)/2



pKa

 $H_2O$ 

HO-


pKa

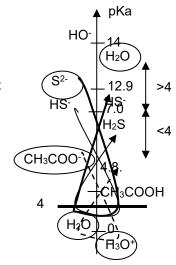
H<sub>2</sub>O

 $H_3O^+$ 

HO

10




Dosage E : 1 dibase + 1 monobase, 2 sauts Veq₁=7.5 mL; Veq₂=25.0mL ⇒ BIZARRE on aurait du avoir 3 sauts !!!

En effet : Tous les pKa > 4 ⇒ toutes les bases sont dosées.

pKa<sub>2</sub>-pKa<sub>1</sub> > 4  $\Rightarrow$  les 2 basicités de S<sup>2</sup>- sont dosées séparément

pKa<sub>1</sub> – pKa < 4 : la  $2^{i\grave{e}me}$  basicité de S²- et CH<sub>3</sub>COO- sont dosés en même temps  $\Rightarrow$  1 saut en moins.

- RP1 :  $H^+ + S^{2-} \rightarrow HS^-, K_1=10^{12.9}$
- ⇒ A la 1iere équivalence, H<sup>+</sup> a neutralisé tous les S<sup>2-</sup>
- $\Rightarrow$  A Veq<sub>1</sub>, n(H<sup>+</sup>)=n(S<sup>2-</sup>)<sub>0</sub>
- $\Rightarrow$  CVeq<sub>1</sub>=(Ca<sub>1</sub>)V<sub>0</sub>  $\Rightarrow$  Ca<sub>1</sub> = CVeq<sub>1</sub>/V<sub>0</sub> = 0.075 mol/L
- $Veq_1=(Ca_1)V_0 \Rightarrow Ca_1 = CVeq_1/V_0 = 0.075 \text{ mol/L}$  (1) 2 RP : H<sup>+</sup> + HS<sup>-</sup>  $\rightarrow$  H<sub>2</sub>S, K<sub>2</sub>=10<sup>7.0</sup> et CH<sub>3</sub>COO<sup>-</sup> + H<sup>+</sup>  $\rightarrow$  CH<sub>3</sub>COOH, K<sub>3</sub>=10<sup>4.8</sup>
- ⇒ entre la 1<sup>ière</sup> et la 2<sup>nde</sup> équivalence H⁺ a neutralisé tous les HS⁻ qui proviennent des S2- et tous les CH3COO-.
- $\Rightarrow$  Entre Veq<sub>1</sub> et Veq<sub>2</sub> n(H<sup>+</sup>)=n(HS<sup>-</sup>)<sub>0</sub> + n(CH<sub>3</sub>COO<sup>-</sup>)<sub>0</sub>= n(S<sup>2-</sup>)<sub>0</sub> + n(CH<sub>3</sub>COO<sup>-</sup>)<sub>0</sub>
- $\Rightarrow$  C(Veq<sub>2</sub> Veq<sub>1</sub>) =(Ca<sub>1</sub>+ Ca<sub>2</sub>)V<sub>0</sub>
- $\Rightarrow$  Ca<sub>1</sub> + Ca<sub>2</sub> = C(Veq<sub>2</sub> Veq<sub>1</sub>) /V<sub>0</sub> = 0.10×(25.0-7.5)/10 = 0.175 mol/L
- $\Rightarrow$  Ca<sub>2</sub> = 0.10 mol/L

