Ex 1: encore des oxydes d'azote

- (R) n'est pas élémentaire car sa molécularité m=4 est trop grande. La probabilité qu'il y ait une collision entre 4 molécules au même instant est trop faible.
- IR: N₂O₂ et H₂O₂

On ne peut pas appliquer l'AEQS à N₂O₂ car il est rapidement formé et rapidement détruit (pré-équilibre rapide). L'AEQS est applicable aux IR difficilement formé et rapidement détruit.

3. On applique l'AECD $v=v_2 = k_2[H_2][N_2O_2]$

L'équilibre (1) étant rapide $v_1=v_{-1}$ alors $[N_2O_2] = \frac{k_1}{k_{-1}}[NO]^2$

Alors
$$v = \frac{k_1 k_2}{k_{-1}} [H_2] [NO]^2$$

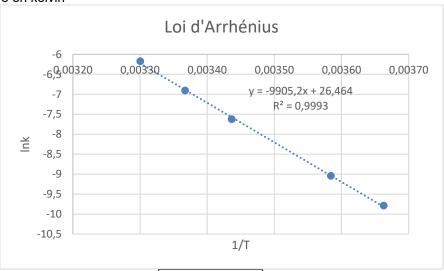
4.
$$k = \frac{k_1 k_2}{k_{-1}}$$
 soit $A \times exp\left(-\frac{Ea}{RT}\right) = \frac{A_1 A_2}{A_{-1}} \times exp\left(-\frac{Ea_1 + Ea_2 - Ea_{-1}}{RT}\right)$ grâce à la loi d'Arrhénius.

Alors par identification $Ea = Ea_1 + Ea_2$

Ex 2: Arrhénius

- 1. L'unité de k indique la réaction est d'ordre 2
- 2. D'après la loi d'Arrhénius : $k = A \times exp\left(-\frac{Ea}{RT}\right)$

Soit $lnk = lnA + \frac{1}{T} \times -\frac{Ea}{R}$, on trace donc lnk = f(1/T), lnA sera l'oo et -Ea/R la pente



D'où Ea = -pente×R = $+ 9.905 \cdot 10^3 \times 8.31 = 82.3 \text{ kJ/mol} = Ea$

Et A = $\exp(00) = 3.11 \cdot 10^{11} \cdot L.mol^{-1} \cdot s^{-1} = A$

Ex 3: Réaction avec dégagement gazeux

• • • • attention le volume varie !!! $v = \frac{1}{V} \frac{dn(O_2)}{dt} \neq \frac{d[O_2]}{dt}$

a) On est à T et P fixées et les gaz sont supposés parfaits alors $PV_{tot} = n_{tot} RT$ et $V(O_2) = n(O_2)RT/P$ Faisons un tableau d'avancement en mol !!!

Alors $n(H_2O_2) = n_0 - 2 \xi = n_0 - 2n(O_2) = 2(n(O_2)_{\infty} - n(O_2))$

Si on suppose un ordre 1 v=k[H₂O₂] = $2k \frac{(n(O_2)_{\infty} - n(O_2))}{V} = \frac{1}{V} \frac{dn(O_2)}{dt}$

A l'aide de la loi des GP on arrive à l'équa diff suivante $2k(V(O_2)_{\infty} - V(O_2)) = \frac{dV(O_2)}{dt}$ En intégrant, on trouve $\ln(V(O_2)_{\infty} - V(O_2)) = \ln(V(O_2)_{\infty}) - 2kt$ (1)

En intégrant, on trouve $ln(V(O_2)_{\infty} - V(O_2)) = ln(V(O_2)_{\infty}) - 2kt$

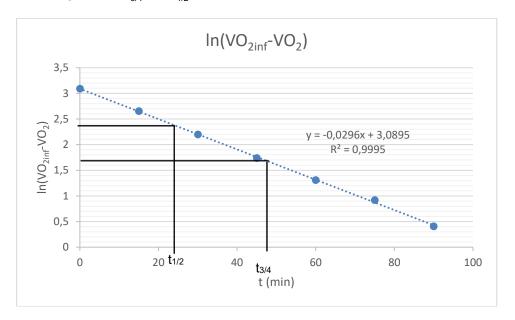
On propose donc de tracer $ln(V(O_2)_{\infty} - V(O_2)) = f(t)$

On a bien une droite : I'ordre 1 est confirmé

- b) $2k = 0.0296 \text{ min}^{-1} \Rightarrow k = 0.0148 \text{ min}^{-1}$
- Pour t=1/2, $\xi=n_0/4$ alors $V(O_2)_{t1/2} = n_0RT/(4P) = V(O_2)_{\infty}/2$
- ⇒ d'après (1) $t_{1/2} = \frac{ln2}{2k} = 23.4 \, min$ (en effet ln(VO_{2inf}-VO_{2,t1/2})=ln(VO_{2inf}/2) = ln(11) ≈ 2.4
 - Pour t=1/2, ξ =3n₀/8 alors V(O₂)_{t3/4} = 3n₀RT/(8P) = $V(O_2)_{\infty}3/4$

⇒ d'après (1)
$$t_{3/4} = \frac{ln4}{2k} = 46.8 \ min$$
 (en effet ln(VO_{2inf}-VO_{2,t3/4})=ln(VO_{2inf}/4) = ln(5.5)≈1.7

On trouve t_{3/4} = 2×t_{1/2}



Ex 4 : Etude de la dissociation du chlorure de sulfuryle

1. $P(SO_2Cl_2)_{t1/2} = P(SO_2Cl_2)_0/2$

P(SO ₂ Cl ₂) ₀	2	1.5	1	0.75	0.5
P(SO ₂ Cl ₂)t1/2	1	0.75	0.50	0.375	0.25
t _{1/2} (min)	35	35	35	35	35

Donc t_{1/2} ne dépend pas de P(SO₂Cl₂)₀ cad de [SO₂Cl₂]₀, on suppose donc un ordre 1.

On effet, si on suppose que V est constant $v = -\frac{d[SO_2Cl_2]}{dt} = k[SO_2Cl_2]$

Alors $\ln ([SO_2Cl_2]) = \ln ([SO_2Cl_2]_0) - kt$, et pour $t_{1/2} [SO_2Cl_2]_{t1/2} = [SO_2Cl_2]_0/2$

Alors $t_{1/2} = \frac{\ln{(2)}}{k}$ qui est indépendant de $[SO_2Cl_2]_0$ et donc de $P(SO_2Cl_2)_0$

2. alors $k=ln2/t_{1/2} = 1.98 \cdot 10^{-2} \cdot min^{-1}$

3. On cherche la loi de vitesse suivie par SO₂Cl₂ cad $v=-\frac{d[SO_2Cl_2]}{dt}=v_1+v_3$

Appliquons l'AEQS à chaque IR :

•
$${}^{\bullet}SO_2CI: v_1 + v_3 - v_2 - v_4 = 0$$

•
$$Cl^{\bullet}: v_1 + v_2 - v_3 - v_4 = 0$$

Soit $v_1 = v_4$ cad $k_1[SO_2Cl_2] = k_4[^{\circ}SO_2Cl][Cl^{\circ}]$ et $v_2 = v_3$ cad $k_2[^{\circ}SO_2Cl] = k_3[Cl^{\circ}][SO_2Cl_2]$

Alors k₁[80₂Cl₂]×k₂[*SO₂Cl]= k₄[*SO₂Cl][Cl*]× k₃[Cl*][SO₂Cl₂]

Enfin [Cl•] =
$$\sqrt{\frac{k_1k_2}{k_4k_2}}$$

Alors
$$v = k_1[SO_2Cl_2] + k_3\sqrt{\frac{k_1k_2}{k_4k_3}}[SO_2Cl_2] = \left(k_1 + \sqrt{\frac{k_1k_2k_3}{k_4}}\right)[SO_2Cl_2]$$
, on a bien une **cinétique d'ordre 1**.

4. si v₁ très faible alors
$$v = \sqrt{\frac{k_1 k_2 k_3}{k_4}} [SO_2 Cl_2]$$

$$k = \sqrt{\frac{k_1 k_2 k_3}{k_4}}$$
 soit $A \times exp\left(-\frac{Ea}{RT}\right) = \sqrt{\frac{A_1 A_2 A_3}{A_4}} \times exp\left(-\frac{\frac{1}{2}(Ea_1 + Ea_2 + Ea_3 - Ea_4)}{RT}\right)$ grâce à la loi d'Arrhénius.

Alors par identification $Ea = \frac{1}{2}(Ea_1 + Ea_2 + Ea_3 - Ea_4)$

Ex 5 : Détermination d'ordres initiaux

A $[NO_2]_0$ constant, quand on multiplie par 4 la concentration (exp 2/ exp 1), la vitesse est multipliée par 16, on suppose donc un ordre 2 p/r à CO

A [CO]₀ constant, quand on multiplie par 2 la concentration (exp 3/ exp 1), la vitesse reste inchangée, on suppose donc un ordre 0 p/r à NO₂.

La loi de vitesse serait alors v=k[CO₂]²

Alors
$$k = \frac{v_{0,exp2} - v_{0,exp1}}{[co]_{0,exp2}^2 - co_{0,exp1}^2} = \frac{0.5 \text{ L.mol-1.s-1} = \text{k}}{}$$

Rmq : ces expériences nous permettent seulement de déterminer les ordres initiaux. Cela ne garantit pas l'existence d'un ordre courant

Ex	6
	O

	$4 \text{ PH}_3(g) \rightarrow P_4(s) + 6 \text{ H}_2(g)$			n _{tot} gaz	Р
EI	n_0	0	0	n ₀	$P_0 = n_0 RT/V$
Eàt	n ₀ – 4 ξ	ξ	6ξ	n ₀ + 2ξ	$P = (n_0 + 2\xi)RT/V$
EF	0	n ₀ /4	6/4 × n ₀	1.5 n ₀	P _∞ = 1.5 n ₀ RT/V

Or on a
$$v=-\frac{d[PH_3]}{dt}=k[PH_3]$$
 soit en intégrant $\ln\left(\frac{[PH_3]}{[PH_3]_0}\right)=-kt$

Et
$$[PH_3] = \frac{(n_0 - 4\xi)}{V}$$
 et Et $P_0 = \frac{n_0}{V}RT$ et $P = \frac{(n_0 + 2\xi)}{V}RT$ \Rightarrow Et $\xi = \frac{P}{2k}$

Ou $\ln((3P_0 - 2P)) = f(t)$, fonction affine qui aura -k comme pente et $\ln(P_0)$ comme oo.

B/

	CH₃COOC	$52H_5 + HO^- \rightarrow CH$	3COO- +	- C ₂ H ₅ OH	Na⁺	σ
EI	C ₀	C_0	0	0	C ₀	$\sigma_0 = C_0(\lambda_{HO^-} + \lambda_{Na^+})$
Eàt	$C_0 - x$	$C_0 - x$	Х	Х	C ₀	$\sigma = (C_0 - x)\lambda_{HO^-} + x\lambda_{CH_3COO^-} + C_0\lambda_{Na^+}$
						$\sigma = C_0(\lambda_{HO^-} + \lambda_{Na^+}) + x(\lambda_{CH_3COO^-} - \lambda_{HO^-})$
EF	0	0	C ₀	C ₀	C ₀	$\sigma_{\infty} = C_0 (\lambda_{CH_2COO} + \lambda_{Na})$

Or on a
$$v = -\frac{d[HO^-]}{dt} = k[HO^-]^2$$
 soit en intégrant $\frac{1}{[HO^-]} = \frac{1}{C_0} + kt$

Or on a
$$v = -\frac{d[HO^-]}{dt} = k[HO^-]^2$$
 soit en intégrant $\frac{1}{[HO^-]} = \frac{1}{c_0} + kt$
Or $[HO^-] = C_0 - x$ et $\sigma = C_0(\lambda_{HO^-} + \lambda_{Na^+}) + x(\lambda_{CH_3COO^-} - \lambda_{HO^-}) = \sigma_0 + x\frac{\sigma_\infty - \sigma_0}{c_0}$ $\Rightarrow x = C_0\frac{\sigma - \sigma_0}{\sigma_\infty - \sigma_0}$
Alors $[HO^-] = C_0 - x = C_0\frac{\sigma_\infty - \sigma}{\sigma_\infty - \sigma_0}$
Alors $\frac{1}{c_0}\frac{\sigma_\infty - \sigma_0}{\sigma_\infty - \sigma} = \frac{1}{c_0} + kt$, soit $\frac{\sigma_\infty - \sigma_0}{\sigma_\infty - \sigma} = 1 + C_0kt$
On propose de tracer $\frac{\sigma_\infty - \sigma_0}{\sigma_\infty - \sigma} = f(t)$, fonction affine de pente k**C₀ et d'oo 1.

Alors
$$[HO^-] = C_0 - x = C_0 \frac{\sigma_{\infty} - \sigma}{\sigma_{\infty} - \sigma_0}$$

Alors
$$\frac{1}{C_0} \frac{\sigma_{\infty} - \sigma_0}{\sigma_{\infty} - \sigma} = \frac{1}{C_0} + kt$$
, soit $\frac{\sigma_{\infty} - \sigma_0}{\sigma_{\infty} - \sigma} = 1 + C_0 kt$

(ou
$$\frac{\sigma - \sigma_0}{\sigma_{\infty} - \sigma} = f(t)$$
, fonction linéaire de pente kC₀)