Correction TD chap O-2 : création de liaisons CC

3. 2
$$\longrightarrow$$
 MgBr + \longrightarrow OH

1) 2 R-MgBr,
$$Et_2O$$
 R OH OH

Par identification R=CH₃, l'organomagnésien est donc le bromure de méthylmagnésium.

Ex 4: coté le plus encombré coté le moins encombré
$$(CH_3>H)$$
 H_3CCI
 H_3CI
 $H_$

On obtient donc le (3S,4R) 4-chloro3-méthylpentan-3-ol

Ex 5:

1. O
$$Mg$$
 Mg H_3C CH_3 CH H_3C CH_3 Mg H_3C CH_3 CH CH CH CH CH

2. $\Delta \Rightarrow$ élimination. Ici on est en milieu acide ce n'est donc pas la force de la base qui décide du type de mécanisme, mais le 2nd critère : la stabilité du C+ qui est tertiaire \Rightarrow le mécanisme est une E1.

HO étant un mauvais nucléofuge, il est nécessaire de faire une activation protonique en 1^{ere} étape.

$$H_3C$$
 CH_3
 H_3C
 H_3C

L'A_N de l'organomagnésien étant équiprobable des 2 cotés du plan de la fonction cétone, la réaction est non stéréosélective.

$$\begin{array}{c} H_3C \\ H_3C \\ \end{array}$$

$$\begin{array}{c} H_3C \\ \end{array}$$

7.a. cf. cours

7.b. Les RMgX acétyléniques sont obtenus par réaction A/B entre un RMgX et un alcyne vrai : $H-C\equiv C-H+CH_3-MgBr \rightarrow H-C\equiv C-Mg-Br+CH_4$

7.c. Le solvant doit être :

- Polaire pour stabiliser les espèces polaires
- Aprotique car les RMgX sont des bases très fortes
- **Basique de Lewis** pour stabiliser les R-Mg-X qui sont des acides de Lewis On choisit donc des **éthers oxyde**s comme éthoxyéthane ou le THF.

Ex 6:

PC Page 2 sur 6

2-

La forme énol est stabilisée par une liaison H intramoléculaire et par conjugaison

1, 2, 3, 4 : alkylation

5 : aldolisation

6 : aldolisation croisée

7 : condensation aldolique

Ex 8:

réaction	aldolisation	Condensation aldolique	Réaction de Michael	autre
motif	O OH 1 3	°=	$0 \qquad 0 \qquad 1 \qquad 1 \qquad 3 \qquad 4 \qquad 5$	
produit	1), 4)	2), 9), 10)	2), 3), 5), 8) 11)	6), 7), 12)

3) pour passer de B au butan-1-ol : on essaye d'écrire une « équation équilibrée avec des H^+ , des H_2O et des e- éventuellement » :

B (C_4H_6O) + 4 H⁺ + 4 e- \rightarrow butan-1-ol $(C_4H_{10}O)$

Ce n'est pas un simple échange de protons, il faut aussi des e- \Rightarrow ici on a une **réduction** !

Dans le chapitre O-3, vous verrez que ceci est possible avec l'ajout de H₂ souis une pression de 20 bar pour hydrogéner la fonction alcène (1bar suffirait) mais aussi la fonction carbonyle conjuguée (beaucoup plus dure à casser : donc on pousse à 20 bar).

La réaction est alors : B + 2 $H_2 \rightarrow$ butan-1-ol.

Ex 10:

est plus électropositif que Mg : donc le C de l'organolithien porte une plus grande charge négative \Rightarrow on sera sous contrôle de charge avec une organolithien \Rightarrow A_N 1,2.

Ex 11:

PC Page 4 sur 6

		7	2	3
		ald	méthylcétone	cétone
3,4)	test tollens	+	-	-
	test iodoforme	-	+	-
	identification	C"	С	C'

Ex 12:

Une condensation de Claisen intramoléculaire s'appelle une condensation de Dieckmann.

Ex 13:

Produit de l'addition de Michael

$$\Theta_{\underbrace{O}} = \underbrace{A/B} \qquad A/B \qquad A/$$

Ex 14:

1) Alkylation d'une cétone

PC Page 5 sur 6

Correction TD chap O-2 : création de liaisons CC

L'action de la LDA forme un énolate AB

2) La fonction formée est une fonction cétal. La réaction d'acétalisation sera revue au S-6

hémicétal

3) Cet époxyde : étheroxyde cyclique présente une **forte tension de cycle** (les angles sont d'environ 60° au lieu des 109.5°). Il ne demande donc qu'à s'ouvrir par A_N sur 1 des C (souvent le moins encombré car la réaction est sous contrôle stérique).

- 4) (a) $CH_3I + Mg \rightarrow CH_3MgI$
- (b) I'eau réagit très rapidement par réaction A/B sur la base forte qu'est un RMgX, selon la réaction : $H_2O + RMgX \rightarrow RH + \frac{1}{2}Mg(OH)_2 + \frac{1}{2}MgX_2$
- (c) cf. ci-avant
- 5) C'est une étape de déprotection. La protection de la cétone était nécessaire car sinon elle aurait réagit avec le RMgX selon une A_N.
- 6) cf. ci-avant

7) Condensation aldolique intramoléculaire.

COP: NaOH Δ

$$CH_3$$
 A/B
 H_2C
 H_3C
 A/B
 A

8) Sur la molécule G, il y a 4 C_{α} qui portent chacun des H.

On peut obtenir 4 produits dont \dot{H} . Les produits H_b et H_c seront minoritaire car peu stables (cycle très tendu), par contre le produit H_d a une stabilité comparable à H: la régiosélectivité ne peut être favorisée \Rightarrow perte de rendement.

PC Page 6 sur 6