

Programme de colle Semaine 8 Du 17/11 au 22/11

Révisions de première année :

- Chimie organique : toute la PCSI + toute la PC

Un exercice pourra vous être donné.

TP Vanilline:

- Être capable d'expliquer le fonctionnement d'un spectrophotomètre et la loi associée et la notion de dosage par étalonnage.
- Donner la définition des termes suivants : extraction liquide/liquide, relargage

TP Allantoïne

- Savoir expliquer en quoi consiste la recristallisation. Discuter du solvant le plus adapté.
- Savoir expliquer la différence entre un essorage et une filtration.

TP calorimétrie

- Savoir expliquer le calcul de la masse équivalente en eau d'un calorimètre
- Savoir retrouver la valeur de l'enthalpie standard de réaction
- Être capable d'expliquer un programme Monte Carlo
- Zscore : utilité et façon de le calculer.

Classe PC, M. Plantet

III- Enthalpie standard de réaction ΔrH°	12
A. État standard et enthalpie standard de réaction	12
1. État standard d'un constituant physico-chimique à la température T	12
2. Enthalpie molaire standard à la température T	13
a. Définition	13
b. Pour un mélange idéal : lien entre l'enthalpie et l'enthalpie molaire standard	13
c. Expression de l'enthalpie standard de réaction ΔrH° à la température T :	13
3. Pour un mélange idéal, ΔrH° = ΔrH	13
4. Approximation d'Ellingham : ΔrH° (T) = constante	13
5. Variation d'enthalpie dans le cas d'une transformation chimique $\Delta H = \Delta r H^{\circ} \xi$	14
6. Enthalpies standards de formation ΔfH°	15
a. Etat standard de référence d'un élément chimique : cas général	15
b. Etat standards de référence d'un éléments chimiques : exceptions	16
c. Règles spécifiques à la réaction de formation d'une espèce chimique A	16
d. Enthalpie standard de formation : définition	16
e. Enthalpie standard de formation d'un soluté ionique (limite programme)	17
7. Énergie de liaison : enthalpie standard de dissociation	17
8. Enthalpie standard de changement d'état d'un corps pur	17
9. Enthalpie standard de d'ionisation et d'attachement électronique	18
B. Détermination <u>d'une</u> enthalpie standard de réaction – Loi de Hess	18
1. Calcul des enthalpies standards de réaction à partir des enthalpies standards de formation des constituants	
physico-chimiques	18
2. Généralisation : Loi de Hess	19
V- Effet thermique d'une réaction chimique en réacteur monobare	20
A- Cas d'un réacteur non isolé thermiquement	20
1. Température finale du système	20
2. Calcul de l'énergie libérée par la combustion d'un kilogramme de combustible dans l'air	20
B- Cas d'un réacteur isolé thermiquement : température de flamme	21
C- Application à la mesure d'enthalnie standard de réaction	23

TM2 : Exercices uniquement

I. Second principe de la thermodynamique	3
A. Énoncé du seconde principe	3
B. L'entropie exprimée par la thermodynamique statistique	4
1. S = kB ln(Ω)	4
2. L'entropie de ne peut qu'augmenter dans un système isolé	4
3. Le système ne revient jamais à son état initial	4
4. L'entropie de la phase gaz est plus élevée que celles des phases condensées	5
C. Troisième principe de la thermodynamique : S(T=0K) =0	5
D. Identités thermodynamiques	5
1. $dU = -PdV + TdS$	5
2. dH = TdS + VdP	6
II- L'enthalpie libre : la fonction du chimiste	7
A- Notion de potentiel thermodynamique	7
B- Enthalpie libre G comme potentiel thermodynamique à température et pression fixées	7
Introduction à l'enthalpie libre G = H-TS	7
G potentiel thermodynamique à T,P fixés : dG ≤ 0	7
3. Identité thermodynamique : dG= VdP-SdT	8
 Le théorème de Schwartz pour démontrer certaines relations 	8
C- Le potentiel chimique µi	9
 Enthalpie libre molaire partielle ou potentiel chimique μi 	9
 Identité thermodynamique dG = VdP -SdT + ∑µi dni 	10
 Théorème d'Euler : G = ∑ ni μi 	10
D- Pour un système polyphasé, le transfert de matière se fait vers la phase où μ est le plus bas	10
III- Étude du Potentiel chimique	12
A- Influence de différents paramètres sur le potentiel chimique	12
1. Variation de μ avec la pression	12
 Variation de μ avec la température 	13
B- Expression de μ dans le cas d'un gaz parfait pur μ i* (T,P) = μ °i(T) +RT ln (P/P°)	13
 Potentiel chimique standard μi°(T) 	13
 Lien entre μi*(T, P), potentiel chimique d'un corps pur, et μi°(T) pour un gaz parfait 	14
C-Expressions du potentiel chimique µi (T,P,xi) en fonction du modèle d'étude	14
IV- Phénomène d'osmose	16
A. Expérience introductive : expérience de la pomme de terre	16
B. Définitions	16
Le phénomène d'osmose	16
2. La pression osmotique Π	17
C. Influence de la pression sur le potentiel chimique d'une phase condensée	17
D. Démonstration de la loi de Van't Hoff Π= RT Csoluté	17
E. Intérêt de l'osmose	19
Fonctionnement des cellules du monde vivant	19
Dessaler l'eau de mer par osmose inverse	19

TM3 : Cours + exercices

Introduction	3
I- Critère d'évolution d'un système siège d'une réaction chimique	3
A. Le sens d'évolution est connu grâce à l'enthalpie libre de réaction ΔrG	3
1. G est un potentiel thermodynamique à T et P constants, $dG \le 0$	3
2. dG= ΔrG d ^g à T,P constants	3
3. $\Delta rG d\xi \leq 0$: l'évolution d'un système dépend du signe de ΔrG car	4
4. Condition d'équilibre d'un système $\Delta rG = 0$	4
5. Approche graphique de $\Delta rG d\xi \leq 0$	4
B. Calcul de ΔrG (T) à T fixée	5
1. Formule générale : $\Delta rG = \Delta rG^{\circ} + RT \ln (Qr)$	5
2. On détermine $\Delta rG^{\circ} = \Delta rH^{\circ} - T \Delta rS^{\circ}$	5
3. On sait que : $\Delta r H^{\circ}(T) = \text{constante} = \sum_{i} \Delta f H^{\circ} i(T)$	6
 ΔrS° est calculée avec Σ vi S°m,i(T) 	6
C. Influence de la température sur ΔrG° (T)	7
 Signe de ΔrG°: réaction endergonique ou exergonique 	7
2. Approximation d'Ellingham : ΔrG° (T) = ΔrH° (298 K) - T ΔrS° (298 K)	7
 Température d'inversion Ti : changement de signe de ΔrG° 	8
 Lorsque le changement de température provoque un changement d'état 	8
D. Synthèse de la méthode pour prédire le sens d'évolution d'un système chimique	8
1. Calculer ΔrG° puis Qr pour connaître le signe de ΔrG dans ΔrG d ξ <0	8
 Lien avec la règle d'évolution en comparant Qr à K° 	9
II- Étude d'un équilibre physico-chimique	10
A. Détermination de la constante thermodynamique d'équilibre K°(T)	10
 Détermination de K°(T) à partir de calcul du ΔrG°(T) 	10
 Détermination de K°(T) à partir d'autres K°i(T) 	11
3. Détermination de K°(T1) à partir de K°(T2)	11
B. Distinction entre équilibre chimique et transformation totale	12
 Avancement à l'équilibre \(\xi\)eq et avancement maximal \(\xi\)max 	12
2. Détermination de čeq par la loi de Guldberg et Waage	13
3. Détermination de çmax par d'un tableau d'avancement	13
 Comparer \(\xi\)eq et \(\xi\)max pour savoir si la transformation est totale ou si le système est à l'éque 13 	ilibre

Classe PC, M. Plantet

--

14
14
14
14

1


Transformations chimiques de la matière : Aspects Thermodynamique et Cinétique

Variation d'entropie	15
III- Paramètres influençant la position d'un équilibre	15
A. Variance d'un système physico-chimique à l'équilibre : v= X-Y	15
B. Cas de diminution de la variance	17
Par des conditions supplémentaires imposées au système	17
Par une variable de description qui n'est pas un facteur d'équilibre	17
IV- Optimisation d'un procédé physico-chimique : exemple du procédé Haber-Bosch	18
A. Méthode d'optimisation	18
Optimiser une synthèse industrielle : généralités	18
Optimiser le rendement en regardant l'influence d'un paramètre intensif	19
3. Synthèse du procédé Haber-Bosch : v =3	19
B. Influence de la température	19
Résultats expérimentaux et interprétation	19
2. Démonstration	20
Calcul de la température d'inversion	20
 Cas général pour l'influence de la température sur un réaction 	20
C. Influence de la pression	21
Résultats expérimentaux	21
2. Démonstration	21
 Cas général pour l'influence de la pression sur un réaction : principe de Le Chatelier 	21
D. Optimisation du mélange initial des réactifs	22
Influence des gaz inertes ou des impuretés	22
Influence des proportions initiales de réactifs	23

Cours TM4: Cours + Exercices

Introduction		3
I - D'un procédé de laboratoire à un procédé industriel		4
A- Opérations unitaires		4
B- Réacteurs continus et discontinus		5
1. Réacteurs fermés		5
a. Définition		5
b. Avancement et taux de conversion		5
2. Réacteurs ouverts		5
a. Réacteur continu parfaitement agité (RCPA)		5
b. Réacteur Piston (RP)		5
3. Etude des flux de matières dans les réacteurs ouverts		6
a. Débit massique Dm,A et débit molaire DA associée à l'espèce A		6
b. Débit massique global Dm et débit molaire global D		6
c. Conservation du débit massique (global) Dm		6
d. Pas de conservation du débit molaire (global) D		7
e. Débit volumique Dv : définition et hypothèse d'étude nécessaires à son utilisation		7
f. Lien entre débit volumique et débit massique :		7
g. Lien entre débit volumique Dv et débit molaire d'une espèce DA		8
h. Tableau d'avancement en débit molaire		8
II- Cinétique des transformations en réacteur ouvert		10
A- Réacteur continu parfaitement agité (RCPA)		10
1. Rappel des hypothèses du modèle		10
2. Bilan de matière pour un réacteur RCPA		10
a. En régime stationnaire : dn(entrée) - dn(sortie) + dn(réaction) =0		10
 b. Autre expression du bilan de matière : [Réactif](entrée) = [Réactif](sortie) + r V/Débit-volumique 		11
c. Temps de passage τ= V/ <u>Debit</u> -volumique		11
d. Pour une loi de vitesse d'ordre 1 par rapport au réactif A : [A](sortie) = [A](entrée)/(1+	+ k τ)	11
3. Dimensionnement du réacteur RCPA	110)	12
a. Relier le taux de conversion du réactif au temps de passage $\alpha = k\tau/(1+k\tau)$		12
b. Estimer le volume du réacteur pour un débit volumique donné		13
4. Effet de la température		13
B- Réacteur piston (RP)		14
1. Réacteur Piston		14
Dimensionnement du réacteur piston		16
a. Relier le taux de conversion du réactif au temps de passage		16
папагоннами а поницае а ста пакаса с гараска посточуваницае с с оп	que	
b. Estimer le volume du réacteur pour un débit volumique donné	16	
C- Comparaison des deux réacteurs	17	
III- Étude thermique d'un réacteur continu parfaitement agité	18	
A- Premier principe de la thermodynamique en système ouvert – Bilan énergétique	18	
B- Point de fonctionnement lors d'une transformation adiabatique	20	
C- Fonctionnement en présence d'un flux thermique	23	

Quantique Q1:

- Etre capable d'expliquer pourquoi il n'est pas possible de connaître avec précision la position d'un électron (incertitude d'Heisenberg)

_