

Programme de colle Semaine 9 Du 24/11 au 29/11

Révisions de première année :

- Chimie organique : toute la PCSI + toute la PC

Un exercice pourra vous être donné.

TP Allantoïne

- Savoir expliquer en quoi consiste la recristallisation. Discuter du solvant le plus adapté.
- Savoir expliquer la différence entre un essorage et une filtration.

TP calorimétrie

- Savoir expliquer le calcul de la masse équivalente en eau d'un calorimètre
- Savoir retrouver la valeur de l'enthalpie standard de réaction
- Être capable d'expliquer un programme Monte Carlo
- Zscore : utilité et façon de le calculer.

TM3: Exercices uniquement

Introduction	3
I- Critère d'évolution d'un système siège d'une réaction chimique	3
A. Le sens d'évolution est connu grâce à l'enthalpie libre de réaction ΔrG	3
1. G est un potentiel thermodynamique à T et P constants, $dG \le 0$	3
 dG= ΔrG d^g à T,P constants 	3
3. $\Delta rG d\xi \leq 0$: l'évolution d'un système dépend du signe de ΔrG car	4
4. Condition d'équilibre d'un système $\Delta rG = 0$	4
5. Approche graphique de $\Delta rG d\xi \leq 0$	4
B. Calcul de ΔrG (T) à T fixée	5
1. Formule générale : $\Delta rG = \Delta rG^{\circ} + RT \ln (Qr)$	5
2. On détermine $\Delta rG^{\circ} = \Delta rH^{\circ} - T \Delta rS^{\circ}$	5
3. On sait que : $\Delta r H^{\circ}(T) = \text{constante} = \sum_{i} \Delta f H^{\circ} i(T)$	6
 ΔrS° est calculée avec Σ vi S°m,i(T) 	6
C. Influence de la température sur ΔrG° (T)	7
 Signe de ΔrG°: réaction endergonique ou exergonique 	7
2. Approximation d'Ellingham : ΔrG° (T) = ΔrH° (298 K) - T ΔrS° (298 K)	7
 Température d'inversion Ti : changement de signe de ΔrG° 	8
 Lorsque le changement de température provoque un changement d'état 	8
D. Synthèse de la méthode pour prédire le sens d'évolution d'un système chimique	8
1. Calculer ΔrG° puis Qr pour connaître le signe de ΔrG dans ΔrG d ξ <0	8
 Lien avec la règle d'évolution en comparant Qr à K° 	9
II- Étude d'un équilibre physico-chimique	10
A. Détermination de la constante thermodynamique d'équilibre K°(T)	10
 Détermination de K°(T) à partir de calcul du ΔrG°(T) 	10
 Détermination de K°(T) à partir d'autres K°i(T) 	11
3. Détermination de K°(T1) à partir de K°(T2)	11
B. Distinction entre équilibre chimique et transformation totale	12
 Avancement à l'équilibre ξeq et avancement maximal ξmax 	12
2. Détermination de čeq par la loi de Guldberg et Waage	13
3. Détermination de çmax par d'un tableau d'avancement	13
 Comparer \(\xi\)eq et \(\xi\)max pour savoir si la transformation est totale ou si le système est à l'équi 13 	libre

Classe PC, M. Plantet

--

14
14
14
14

1

Transformations chimiques de la matière : Aspects Thermodynamique et Cinétique

Variation d'entropie	15
III- Paramètres influençant la position d'un équilibre	15
A. Variance d'un système physico-chimique à l'équilibre : v= X-Y	15
B. Cas de diminution de la variance	17
Par des conditions supplémentaires imposées au système	17
2. Par une variable de description qui n'est pas un facteur d'équilibre	17
IV- Optimisation d'un procédé physico-chimique : exemple du procédé Haber-Bosch	18
A. Méthode d'optimisation	18
Optimiser une synthèse industrielle : généralités	18
Optimiser le rendement en regardant l'influence d'un paramètre intensif	19
3. Synthèse du procédé Haber-Bosch : v =3	19
B. Influence de la température	19
Résultats expérimentaux et interprétation	19
2. Démonstration	20
Calcul de la température d'inversion	20
 Cas général pour l'influence de la température sur un réaction 	20
C. Influence de la pression	21
Résultats expérimentaux	21
Démonstration	21
3. Cas général pour l'influence de la pression sur un réaction : principe de Le Chatelier	21
D. Optimisation du mélange initial des réactifs	22
Influence des gaz inertes ou des impuretés	22
2. Influence des proportions initiales de réactifs	23

Cours TM4: Cours + Exercices

Introduction		3
I - D'un procédé de laboratoire à un procédé industriel		4
A- Opérations unitaires		4
B- Réacteurs continus et discontinus		5
1. Réacteurs fermés		5
a. Définition		5
b. Avancement et taux de conversion		5
2. Réacteurs ouverts		5
a. Réacteur continu parfaitement agité (RCPA)		5
b. Réacteur Piston (RP)		5
3. Etude des flux de matières dans les réacteurs ouverts		6
a. Débit massique Dm,A et débit molaire DA associée à l'espèce A		6
b. Débit massique global Dm et débit molaire global D		6
c. Conservation du débit massique (global) Dm		6
d. Pas de conservation du débit molaire (global) D		7
e. Débit volumique Dv : définition et hypothèse d'étude nécessaires à son utilisation		7
f. Lien entre débit volumique et débit massique :		7
g. Lien entre débit volumique Dv et débit molaire d'une espèce DA		8
h. Tableau d'avancement en débit molaire		8
II- Cinétique des transformations en réacteur ouvert		10
A- Réacteur continu parfaitement agité (RCPA)		10
1. Rappel des hypothèses du modèle		10
2. Bilan de matière pour un réacteur RCPA		10
a. En régime stationnaire : dn(entrée) - dn(sortie) + dn(réaction) =0		10
 b. Autre expression du bilan de matière : [Réactif](entrée) = [Réactif](sortie) + r V/Débit-volumique 		11
c. Temps de passage τ= V/ <u>Debit</u> -volumique		11
d. Pour une loi de vitesse d'ordre 1 par rapport au réactif A : [A](sortie) = [A](entrée)/(1+	+ k τ)	11
3. Dimensionnement du réacteur RCPA	110)	12
a. Relier le taux de conversion du réactif au temps de passage $\alpha = k\tau/(1+k\tau)$		12
b. Estimer le volume du réacteur pour un débit volumique donné		13
4. Effet de la température		13
B- Réacteur piston (RP)		14
1. Réacteur Piston		14
Dimensionnement du réacteur piston		16
a. Relier le taux de conversion du réactif au temps de passage		16
папагоннами а поницае а ста пакаса с гараска посточуваницае с с оп	que	
b. Estimer le volume du réacteur pour un débit volumique donné	16	
C- Comparaison des deux réacteurs	17	
III- Étude thermique d'un réacteur continu parfaitement agité	18	
A- Premier principe de la thermodynamique en système ouvert – Bilan énergétique	18	
B- Point de fonctionnement lors d'une transformation adiabatique	20	
C- Fonctionnement en présence d'un flux thermique	23	

Quantique Q1 : Cours + Exercices proches du cours

Introduction	2
I- Description quantique de l'électron	2
A- Introduction à la mécanique quantique	2
1. La catastrophe ultraviolette	2
2. La nature ondulatoire de la lumière	2
3. Modèle de l'atome	3
B- Principe d'incertitude de Heisenberg	4
C- Notion de fonction d'onde	4
1. Définition	4
2. Interprétation physique de la fonction d'onde	5
3. Condition de normalisation pour la fonction d'onde :	
4. Equation de schrödinger	5
II- Étude quantique de l'atome d'hydrogène et des ions hydrogénoïdes	
A- Orbitales atomiques	
B- Nombres quantiques	
Nombre quantique principal n	
2. Nombre quantique secondaire (ou azimutal) l	
3. Nombre quantique magnétique orbital ml	
4. Nombre quantique magnétique de spin ms	9
C- Partie radiale de la fonction d'onde et rayon orbitalaire	10
D- Représentation standard de la partie angulaire de la fonction d'onde	10
III- Orbitales atomiques des atomes polyélectroniques	12
A- Complexité du problème et approximations	13
1. Prendre en compte l'ensemble des interactions rend impossible la résolution de l'équation de	е
schrödinger	
2. Approximation monoélectronique	
3. Approximation de Slater	
4. Évolution de la charge effective dans la classification périodique :	
B- Orbitales de Slater.	
C- Configuration électronique fondamental d'un atome et d'un ion	
1. Principe d'exclusion de Pauli :	
2. Règle de Klechkowski :	
3. Méthode pour établir la configuration d'un atome ou d'un ion à l'état fondamental	
4. Électron de coeur et de valence	
5. Règle de Hund	17