<u>Correction TD</u>: TM_1 Application du premier principe de la thermodynamique

Exercice 1 : Caractériser un système physico-chimique en transformation (*)

- 1. Pour chacun des cas suivants :
 - Décrire le système étudié (Ouvert/fermé/isolé)
 - Caractériser la transformation (Quasistatique/Réversible/Isobare/Isotherme...)
 - Donner le signe du transfert thermique Q.
- **1.1.** On dissout dans un bécher rempli d'eau à l'air libre des pastilles de soude. La dissolution est exothermique.

Le système est fermé pendant la transformation car il n'y a pas d'échange de matière.

La transformation est monotherme, monobare, irréversible.

La transformation est exothermique donc Q < 0.

1.2. Même question que précédemment mais cette fois la réaction se passe dans un calorimètre refermé par un bouchon non étanche mais calorifugé.

Le système est isolé. Il n'y a pas d'échange de matière <u>au cours de la transformation</u> et, comme le bouchon est calorifugé, il n'y a pas de transfert de matière vers l'extérieur.

Comme le système est calorifugé, Q=0.

La transformation est monotherme, monobare, irréversible, adiabatique donc Q = 0.

1.3. On réalise la combustion de l'hexane dans un réacteur métallique scellé, indéformable et non calorifugé. La combustion prend 1 minute.

Le système en transformation est fermé (il n'est pas isolé car le système n'est pas calorifugé).

La transformation est isochore, irréversible et pourrait être considérée comme adiabatique (Q = 0), puisque très rapide. (Après transformation, on a Q < 0)

1.4. Une grenade explose (combustion très rapide). On étudie le système "matière contenue initialement dans la grenade" pendant la phase d'expansion rapide de l'explosion.

Il n'y a <u>pas d'échange de matière</u> avec la "matière contenue initialement dans la grenade" pendant l'explosion compte tenu de sa rapidité.

Compte tenu de la rapidité de la réaction, le système physico-chimique <u>en transformation</u> n'a pas réalisé de transfert thermique ou négligeable. On a donc Q=0.

On pourrait donc approximer le système lors de la transformation qui est de l'ordre de la seconde comme étant isolé.

Après transformation, le système a néanmoins réalisé un transfert thermique Q <0. Le système a apporté de l'énergie au milieu extérieur et un échange de matière a eu lieu. Il peut donc être considéré comme ouvert si on ne considère pas uniquement la transformation.

La transformation est irréversible et monobare.

2. On considère l'équilibre de dissociation suivant en phase gazeuse :

$$H_3C - O - CH_{3(g)} = CH_{4(g)} + CO_{(g)} + H_{2(g)}$$

Dans un réacteur indilatable de volume V=100 mL, à une température T=150 °C maintenue constante, on introduit du méthoxyméthane à la pression $P_0=3,80\times10^4$ Pa. Au bout de 510 s, $P_0=7,71\times10^4$ Pa.

- 2.1. Parmi les variables d'état mentionnées, quelles sont les variables intensives ? extensives ? Justifier.
 - Variable intensive: Tet P
 - Variable extensive : volume V
- 2.2. Calculer la quantité de matière de méthoxyméthane en début de réaction.

Initialement, la pression vaut $P_0 = 3,80 \times 10^4 Pa$. D'après la loi des gaz parfaits :

$$P_0V = n_0RT \Longrightarrow n_0 = \frac{P_0V}{RT} = \frac{3,80 \times 10^4 \times 100 \times 10^{-6}}{8,314 \times 423} = 1,08 \times 10^{-3} mol$$

2.3. Calculer le taux de dissociation τ du méthoxyméthane à t = 510 s.

Faisons un tableau d'avancement :

Le taux de dissociation est en réalité ici un taux de conversion. Il est défini comme : $\tau = \frac{\xi}{\xi_{max}} = \frac{\xi}{n_0}$.

Ainsi
$$n_{tot}^g=n_0(1+2\tau)$$
 et $n_{tot}^g=\frac{pV}{RT}$
$$1+2\tau=\frac{pV}{n_0RT}\Longrightarrow \tau=0,52$$

Le taux de conversion du méthoxyméthane est de 52 % à t = 510 s.

<u>Données</u>: Constante des gaz parfaits : $R = 8,314 \text{ J.K}^{-1}$.mol⁻¹

Exercice 2 : Réactions de formation (*)

Dans chaque cas, écrire l'équation de la réaction de formation du constituant proposé :

2. $H_2O_{(g)}$

5. CH₃OH₍₁₎

3. NH_{3(I)}

6. NO (g)

1.
$$C_{(gr)} + O_{2(g)} = CO_{2(s)}$$

2.
$$H_{2(g)} + \frac{1}{2} O_{2(g)} = H_2 O_{(g)}$$

3.
$$\frac{1}{2}$$
 $N_{2(g)} + \frac{3}{2}$ $H_{2(g)} = NH_{3(l)}$

4.
$$C_{(gr)} + \frac{1}{2} O_{2(g)} = CO_{(g)}$$

5.
$$C_{(gr)} + 2 H_{2(g)} + \frac{1}{2} O_{2(g)} = CH_3OH_{(l)}$$

6.
$$\frac{1}{2}$$
 $N_{2(g)} + \frac{1}{2}$ $O_{2(g)} = NO_{(g)}$

Exercice 3 : Loi de Hess (*)

Déterminer l'enthalpie standard des réactions suivantes à partir des enthalpies standards de formation des différents constituants à 298 K. Commenter les valeurs trouvées.

1.
$$NH_{3(g)} + HCI_{(g)} = NH_4CI_{(s)}$$

2.
$$N_{2(g)} + 3 H_{2(g)} = 2 NH_{3(g)}$$

3.
$$CH_{4(g)} + N_{2(g)} + 2 H_2O_{(g)} = 2 NH_{3(g)} + H_{2(g)} + CO_{2(g)}$$

Données: A 298 K,

Constituant	NH _{3 (a)}	HCl (a)	NH ₄ Cl _(s)	CH _{4 (a)}	H ₂ O _(a)	CO _{2 (a)}
Δ_f H° en kJ.mol ⁻¹	-46,0	-314	-92,0	-74,9	-242	-393

Dans tous les cas, on applique la loi de Hess:

$$\Delta_r H^\circ = \sum_i \nu_i \Delta_f H_i^\circ$$

1.
$$\Delta_r H^{\circ}_{1} = \Delta_f H^{\circ}_{NH_4Cl_{(s)}} - \Delta_f H^{\circ}_{HCl_{(a)}} - \Delta_f H^{\circ}_{NH_3} = 268 \, kJ/mo$$

$$\mathbf{1.} \, \Delta_r H^{\circ}_{1} = \Delta_f H^{\circ}_{NH_4Cl_{(s)}} - \Delta_f H^{\circ}_{HCl_{(g)}} - \Delta_f H^{\circ}_{NH_{3_{(g)}}} = 268 \, kJ/mol$$

$$\mathbf{2.} \, \Delta_r H^{\circ}_{2} = 2\Delta_f H^{\circ}_{NH_{3_{(g)}}} - \Delta_f H^{\circ}_{N_{2_{(g)}}} - 3\Delta_f H^{\circ}_{H_{2_{(g)}}} = 2\Delta_f H^{\circ}_{NH_{3_{(g)}}} = -92,0 \, kJ/mol$$

Les enthalpies standard de formation pour le diazote gazeux et le dihydrogène gazeux sont nulles puisque l'azote et l'hydrogène y sont dans leur état standard de référence à 298 K.

$$\mathbf{3.}\ \Delta_{r}H^{\circ}{}_{3}=\ 2\Delta_{f}H^{\circ}{}_{NH_{3_{(g)}}}+\Delta_{f}H^{\circ}{}_{H_{2_{(g)}}}+\Delta_{f}H^{\circ}{}_{CO_{2_{(g)}}}-\ 2\Delta_{f}H^{\circ}{}_{H_{2O_{(g)}}}-\Delta_{f}H^{\circ}{}_{N_{2_{(g)}}}-\Delta_{f}H^{\circ}{}_{CH_{4_{(g)}}}=\ 73,9\ kJ/mol$$

Exercice 4: Transfert thermique associé à une transformation chimique (**)

Le ciment Portland (catégorie la plus utilisée) est élaboré par réaction, dans un four chauffé à 1 700 K, d'un mélange de calcaire (CaCO₃) et d'argile (constitué de silice SiO₂ et d'alumine Al₂O₃). Le constituant principal de ce ciment non hydraté est le silicate de calcium Ca₃SiO₅ formé selon la réaction totale d'équation :

$$3 CaCO_{3(s)} + SiO_{2(s)} = Ca_3SiO_{5(s)} + 3 CO_{2(g)}$$

1. Calculer l'enthalpie standard Δ, H° de cette réaction à 298 K. D'après la loi de Hess,

$$\Delta_{r}\overset{\circ}{H}(298\ K) = \Delta_{f}\overset{\circ}{H_{Ca_{3}SiO_{5(s)}}} + 3\Delta_{f}\overset{\circ}{H_{CO_{2(q)}}} - \Delta_{f}\overset{\circ}{H_{SiO_{2(s)}}} - 3 * \Delta_{f}\overset{\circ}{H_{CacO_{3(s)}}} = 419\ kJ.\ mol^{-1}$$

- 2. On souhaite évaluer le transfert thermique Q à fournir pour transformer une tonne de calcaire selon la réaction précédente effectuée à 1700 K sous la pression P°: 1 bar.
- **2.1.** Énoncer l'approximation d'Ellingham. Dans ce cadre, que vaut l'enthalpie standard de réaction Δ_i H° à 1700 K?

L'enthalpie standard de réaction est indépendante de la température, sur des intervalles de température où les constituants ne changent pas d'état.

Ainsi:

$$\Delta_r H^{\circ}(1700 K) = \Delta_r H^{\circ}(298 K) = 419 kJ. mol^{-1}$$

2.2. Donner la relation liant le transfert thermique Q_{α} et l'enthalpie standard de réaction Δ_{α} H°.

Pour une transformation monobare, monotherme, et en l'absence de travaux utiles, le premier principe s'écrit:

$$\Delta H_{chim} = Q_p \Longrightarrow \Delta_r H^{\circ} \xi = Q_p$$

2.3. Calculer le transfert thermique Q_a à fournir pour transformer une tonne de calcaire.

On en déduit le transfert thermique à fournir pour transformer une tonne de calcaire :

$$Q_p = \Delta_r H^{\circ} \xi = \Delta_r H^{\circ} \frac{n_{CaCO_3}}{3} = \Delta_r H^{\circ} \frac{m_{CaCO_3}}{3M_{CaCO_3}} = 1,40 \times 10^6 \, kJ$$

Données:

Données thermodynamiques à 298 K:

,	CaCO _{3(s)}	SiO _{2(s)}	Ca ₃ SiO _{5(s)}	$CO_{2(g)}$
Δ _; H° en kJ.mol¹	-1206	-910	-2930	-393

Masses molaires atomiques : $C: 12 \text{ g.mol}^{1}$; $O: 16 \text{ g.mol}^{1}$; $Ca: 40 \text{ g.mol}^{1}$.

Exercice 5 : Calorimétrie (**)

On souhaite déterminer l'enthalpie standard Δ_r H° de la réaction rédox d'équation :

$$Cu^{2+}_{(aq)} + Zn_{(s)} = Cu_{(s)} + Zn^{2+}_{(aq)}$$

Pour cela on suit le protocole suivant :

Expérience 1 :

- On place 50 mL d'eau à 20,0°C dans le calorimètre et on attend que l'équilibre thermique soit atteint, à $\theta_i = 20$ °C.
- On ajoute ensuite 50 mL d'eau à 30,0°C et on attend que l'équilibre thermique soit atteint. On mesure alors $\theta_f = 23,1$ °C.

Expérience 2 :

- On place 150 mL d'une solution de sulfate de cuivre (Cu^{2+} , SO_4^{2-}) à la concentration $C = 0,200 \text{ mol.L}^{-1}$ dans le calorimètre, à température ambiante. On attend que l'équilibre thermique soit atteint et on mesure une température initiale $\theta_0 = 22,8^{\circ}C$.
- On ajoute ensuite, par un orifice, 20,0 mmol de zinc solide à la température ambiante θ_0 dans le calorimètre. En fin de réaction, quantitative, on mesure θ_1 = 27,4 °C.
- 1. A partir des résultats de l'expérience 1, déterminer la valeur en eau du calorimètre, notée μ.

Appliquons le premier principe de la thermodynamique, au système (eau+calorimètre) :

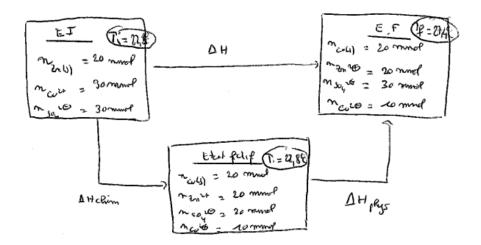
$$\Delta H = Q = 0$$
 puisque la transformation est adiabatique

L'enthalpie est une fonction d'état donc il est possible de décomposer la variation d'enthalpie comme une variation pour chacun des constituants du système :

$$\Delta H_{eau,1} + \Delta H_{eau,2} + \Delta H_{calorimètre} = 0$$

Chacune de ces variations d'enthalpie est liée à une variation de température (il n'y a pas de réaction chimique dans cette première expérience) d'où :

$$m_{eau,1}c_{p,eau}(\theta_f - \theta_1) + m_{eau,2}c_{p,eau}(\theta_f - \theta_2) + \mu c_{p,eau}(\theta_f - \theta_1) = 0$$


$$\mu = -\frac{m_{eau,1}(\theta_f - \theta_1) + m_{eau,2}(\theta_f - \theta_2)}{\theta_f - \theta_1} = 61,3 g$$

2. A partir des résultats de l'expérience 2, déterminer l'enthalpie standard de la réaction, notée Δ_r H°.

Le premier principe de la thermodynamique au système {mélange réactionnel+calorimètre}, pour une transformation monobare, adiabatique, donne :

$$\Delta H = Q = O$$

L'enthalpie est une fonction d'état. Il est donc possible d'imaginer un chemin fictif permettant de calculer

plus facilement ΔH .

Ainsi :
$$\Delta H = \Delta H_{chim} + \Delta H_{phys} = 0$$

La variation d'enthalpie liée à la transformation chimique s'écrit : $\Delta H_{chim} = \xi \Delta_r H^\circ$ Avec $\xi = 20 \ mmol$ en supposant la réaction étudiée totale.

La variation d'enthalpie liée à l'échauffement du système s'écrit :

$$\Delta H_{phys} = \sum_{k} n_{k} C^{\circ}_{p,m,k} \Delta T$$

Il est possible de négliger la capacité thermique des solides (du cuivre en l'occurrence) :

$$\Delta H_{phys} = (m_{eau} + \mu)c_{p,eau}(T_f - T_i)$$

A l'aide du bilan enthalpique, il est possible de trouver la température finale du système :

$$\Delta H_{chim} + \Delta H_{phys} = 0 = \xi \Delta_r H^{\circ} + (m_{eau} + \mu) c_{p,eau} \times (T_f - T_i)$$

$$\Delta_r H^{\circ} = -\frac{(m_{eau} + \mu) c_{p,eau} \times (T_f - T_i)}{\xi} = -203 \text{ kJ. mol}^{-1}$$

Données:

On considèrera que la capacité massique à pression constante d'une solution aqueuse est environ égale à celle de l'eau pure, soit c_n (eau) = 4,18 J. K^1 . g^{-1} . La densité des solutions aqueuses sera prise égale à 1.

Exercice 6 : Température de flamme (**)

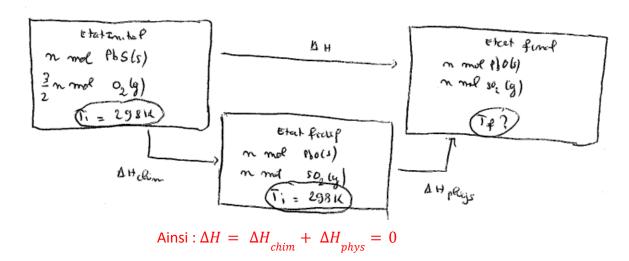
On étudie dans cet exercice la réaction de grillage du sulfure de plomb $PbS_{(s)}$. Il s'agit de la réaction de combustion de $PbS_{(s)}$ en présence de dioxygène $O_{2(g)}$ qui fournit $PbO_{(s)}$ et $SO_{2(g)}$. La réaction sera supposée totale.

1. Écrire l'équation bilan de cette réaction avec un coefficient stœchiométrique algébrique égal à -1 pour PbS_(s).

$$PbS_{(s)} + 3/2 O_{2(g)} = PbO_{(s)} + SO_{2(g)}$$

2. Calculer l'enthalpie standard de réaction Δ_i H° à 298 K pour la réaction écrite à la question 1. D'après la loi de Hess,

$$\Delta_{r}H^{\circ}(298 K) = \Delta_{f}H^{\circ}_{PbO_{(s)}} + \Delta_{f}H^{\circ}_{SO_{2_{(a)}}} - \frac{3}{2}\Delta_{f}H^{\circ}_{O_{2_{(a)}}} - \Delta_{f}H^{\circ}_{PbS_{(s)}} = -414,4 kJ. mol^{-1}$$


L'enthalpie standard de formation du dioxygène est nulle puisque cet état correspond à l'état standard de référence de l'oxygène à toute température.

3. On part d'un mélange $PbS_{(s)}$ / $O_{2(g)}$ dans les proportions stœchiométriques, à la température initiale Ti = 298 K. La réaction est menée de façon isobare adiabatique. Calculer la température de flamme.

Le premier principe de la thermodynamique au système {mélange réactionnel}, pour une transformation monobare, adiabatique, donne :

$$\Delta H = Q = O$$

L'enthalpie est une fonction d'état. Il est donc possible d'imaginer un chemin fictif permettant de calculer plus facilement ΔH .

La variation d'enthalpie liée à la transformation chimique s'écrit : $\Delta H_{chim} = \xi \Delta_r H^\circ$

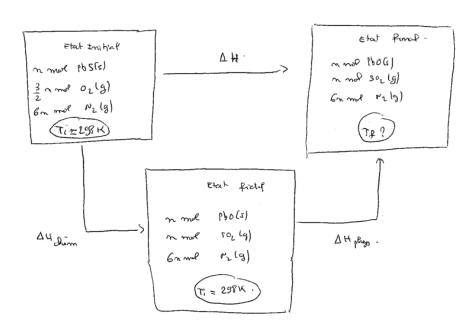
La réaction est supposée totale : $\xi=n$ car on les réactifs ont été introduits en quantités stoechiométriques et que la réaction est totale.

$$\operatorname{donc} \Delta H_{chim} = n \, \Delta_r H^{\circ}$$

La variation d'enthalpie liée à l'échauffement du système s'écrit :

$$\Delta H_{phys} = \sum_{k} n_{k} C^{\circ}_{p,m,k} \Delta T = \left(n \times C^{\circ}_{p,m,Pb0} + n \times C^{\circ}_{p,m,SO_{2}} \right) \times (T_{f} - T_{i})$$

A l'aide du bilan enthalpique, il est possible de trouver la température finale du système :


$$\Delta H_{chim} + \Delta H_{phys} = 0 = \xi \Delta_r H^{\circ} + \left(n \times C^{\circ}_{p,m,Pb0} + n \times C^{\circ}_{p,m,SO_2} \right) \times (T_f - T_i)$$

$$T_f = T_i - \frac{n \Delta_r H^{\circ}}{\left(n \times C^{\circ}_{p,m,Pb0} + n \times C^{\circ}_{p,m,SO_2} \right)} = T_i - \frac{\Delta_r H^{\circ}}{\left(C^{\circ}_{p,m,Pb0} + C^{\circ}_{p,m,SO_2} \right)} = 5772 K$$

Cette valeur est extrêmement élevée...

4. Reprendre le calcul de la question précédente, en supposant que le mélange initial est constitué d'air (80% de diazote, 20% de dioxygène). La quantité d'air ajoutée est juste suffisante pour provoquer la disparition de la totalité de PbS_(s).

Reprenons le résultat précédent, mais en considérant cette fois la présence de diazote. Dans l'air, il y a 4 fois plus de diazote que de dioxygène. S'il y a 3/2 n moles de dioxygène, il a 6 moles de diazote.

$$\Delta H = Q = 0 = \Delta H_{chim} + \Delta H_{phys}$$

A l'aide du bilan enthalpique, il est possible de trouver la température finale du système :

$$\Delta H_{chim} + \Delta H_{phys} = 0 = \xi \Delta_r H^{\circ} + \left(n \times C_{p,m,Pb0}^{\circ} + n \times C_{p,m,SO_2}^{\circ} + 6n \times C_{p,m,N_2}^{\circ} \right) \times (T_f - T_i)$$

$$T_f = T_i - \frac{\Delta_r H^{\circ}}{\left(C_{p,m,Pb0}^{\circ} + C_{p,m,SO_2}^{\circ} + 6C_{p,m,N_2}^{\circ} \right)} = 1952 K$$

Cette température reste élevée mais est plus raisonnable.

Données: A 298 K:

	PbS _(s)	$O_{2(g)}$	$N_{2(g)}$	PbO _(s)	$SO_{2(g)}$
Δ _f H° en kJ.mol¹	-100,4	0	0	-217,9	-296.9
C° _{p,m} en J.K ⁻¹ .mol ⁻¹	49.5	29.4	29.1	45.8	29.9

On supposera que les capacités thermiques massiques à pression constante sont indépendantes de la température.

Exercice 7: Cycles thermodynamiques (***)

1. A 298 K, l'enthalpie standard de la réaction suivante vaut : $\Delta_r H^{\circ} = -2$, 84 kJ. mol^{-1} .

$$CO_{2(g)} + H_{2(g)} = CO_{(g)} + H_2O_{(g)}$$

L'enthalpie standard de vaporisation de l'eau à 298 K vaut $L_{vap} = 44,27 \ kJ. \ mol^{-1}$. Calculer l'enthalpie standard de formation de CO (g).

Constituant	H ₂ O (1)	CO _{2 (q)}
Δ _f H° en kJ.mol⁻¹	-286	-393

Il est possible d'imaginer le cycle thermodynamique suivant :

H est une fonction d'état donc :
$$\Delta_r H^\circ = \Delta_r H^\circ_2 + L_{vap} \Big(H_2 O \Big)$$

$$\mathsf{D'après \ la \ loi \ de \ Hess,} \ \Delta_r H^\circ_2 = \Delta_f \overset{\circ}{H_{CO_{(g)}}} + \Delta_f \overset{\circ}{H_{H_2O_{(l)}}} - \Delta_f \overset{\circ}{H_{CO_{2_{(g)}}}} - \Delta_f \overset{\circ}{H_{H_2_{(g)}}}$$

$$\mathsf{Ainsi} : \Delta_f \overset{\circ}{H_{CO_{(g)}}} = \Delta_r H^\circ - L_{vap} \Big(H_2 O \Big) - \Delta_f \overset{\circ}{H_{H_2O_{(l)}}} + \Delta_f \overset{\circ}{H_{CO_{2_{(g)}}}} = -155 \ kJ. \ mol^{-1}$$

- **2.** L'acide sulfurique est un constituant chimique de formule H_2SO_4 . Calculer l'enthalpie standard de formation de l'acide sulfurique en solution aqueuse H_2SO_4 (aq) à partir des enthalpies standards de réaction suivantes :
- (1) $\frac{1}{2} S_{2(g)} + O_{2(g)} = SO_{2(g)}$ $\Delta_{H^{\circ}} = -297, 0 \text{ kJ. mol}^{-1}$
- (2) $SO_{2 (aq)} = SO_{2 (g)}$ $\Delta_{J}H^{\circ}_{2} = +32,2 \, kJ. \, mol^{-1}$
- (3) $SO_{2 \text{ (aq)}} + CI_{2 \text{ (g)}} + 2 H_2O_{\text{ (I)}} = H_2SO_{4 \text{ (aq)}} + 2 HCI_{\text{ (aq)}} \Delta_y H_3^{\circ} = -308,9 \text{ kJ. mol}^{-1}$
- (4) $\frac{1}{2} \text{Cl}_{2 \text{ (g)}} + \frac{1}{2} \text{H}_{2 \text{ (g)}} = \text{HCl}_{\text{ (g)}}$ $\Delta_{r}H^{\circ}_{4} = -91.9 \text{ kJ. mol}^{-1}$
- (5) $\text{HCl}_{(g)} = \text{HCl}_{(aq)}$ $\Delta_r H^{\circ}_{5} = -72, 3 \text{ kJ. mol}^{-1}$
- (6) $2 H_{2(g)} + O_{2(g)} = 2 H_{2}O_{(l)}$ $\Delta_r H_6^{\circ} = -285, 6 \text{ kJ. mol}^{-1}$

L'enthapie standard de formation de l'acide sulfurique en solution aqueuse H₂SO_{4 (aq)} est l'enthalpie standard de la réaction suivante :

$$\frac{1}{2} S_{2(g)} + H_{2(g)} + 2 O_{2(g)} = H_2 SO_{4(aq)}$$

On remarque que cette réaction correspond à (1) - (2) + (3) - 2x(4) - 2x(5) + (6). Ainsi,

$$\Delta_r H^{\circ} = \Delta_r H^{\circ}_{1} - \Delta_r H^{\circ}_{2} + \Delta_r H^{\circ}_{3} - 2 \Delta_r H^{\circ}_{4} - 2 \Delta_r H^{\circ}_{5} + \Delta_r H^{\circ}_{6} = -595 \, kJ. \, mol^{-1}$$

- **3.** La silice est un oxyde de silicium ayant pour formule SiO₂. C'est un minéral dur, que l'on trouve dans les roches sédimentaires, métamorphiques et magmatiques.
- **3.1.** Pourquoi les enthalpies standard de formation de Si $_{(s)}$ et $O_{2(g)}$ sont-elles nulles à 298 K? Si $_{(s)}$ et $O_{2(g)}$ sont les états standards de référence des éléments silicium et oxygène à 298 K. Leur enthalpie standard de formation sont donc nulles.
- 3.2. Écrire l'équation de la réaction de formation de la silice solide à 298 K.

$$Si_{(s)} + O_{2(g)} = SiO_{2(s)}$$

3.3. Rappeler ce qu'est l'énergie d'une liaison. Écrire la réaction associée pour la liaison Si=O.

L'énergie de liaison (ou enthalpie standard de dissociation entre 2 atomes A et B) est l'enthalpie standard de dissociation $\Delta_{diss}H^{\circ}(A-B)$ entre 2 atomes A et B : A-B(g) = A(g) + B(g). Les constituants sont en phase gaz pour exclure tout autre forme d'interaction et pour se concentrer sur la force de la liaison entre deux atomes. gv

$$SiO_{(g)} = Si_{(g)} + O_{(g)}$$

3.4. A l'aide d'un cycle thermodynamique, donner l'expression littérale et la valeur numérique de l'enthalpie de sublimation de la silice.

$$Sio_{2}(s)$$

$$- \Delta \rho H^{o}(sio_{2}ti)$$

$$Sio_{2}(s)$$

$$Sio_{2}(s)$$

$$Sio_{2}(s)$$

$$T - 2 \Delta eis H^{o}(sio_{2})$$

$$Si(g) + 2 o(g)$$

$$\Delta sibH^{o}(sib)$$

$$Si(g) + 2 o(g)$$

$$\Delta sibH^{o}(sib)$$

$$Si(g) + o_{2}(g)$$

$$\Delta sibH^{o}(sio_{2}ti)$$

$$Si(g) + o_{2}(g)$$

Ainsi:

$$\Delta_{sub}H^{\circ}(SiO_{2}) = -\Delta_{f}H^{\circ}(SiO_{2(s)}) + \Delta_{sub}H^{\circ}(Si) + \Delta_{diss}H^{\circ}(O = O) - 2\Delta_{diss}H^{\circ}(Si = O) = 216 \text{ kJ. mol}^{-1}$$

Données: A 298 K,

- Enthalpie standard de formation de SiO_{2 (s)}: 911 kJ/mol
- Enthalpie standard de sublimation du silicium : 399 kJ/mol
- Enthalpie standard de dissociation de liaison :

Liaison	Si=O	0=0	
Δ_{diss} H° en kJ.mol ⁻¹	796	498	