Auto-évaluation

Q_1 : Modèle quantique de l'atome

Comment s'autoévaluer?

••	 Vous connaissez les notions sur le bout des doigts et vous en avez parfaitement compris la logique Vous êtes capable de faire les exercices associés
•••	 Vous avez des connaissances mais vous pensez avoir besoin de passer du temps supplémentaire pour améliorer votre compréhension des notions. Vous êtes capable de faire certaines questions dans les exercices
	 Vous ne connaissez pas les notions et vous présentez des difficultés dans leur compréhension. Vous vous engagez alors à rectifier le tir dès que possible.

Combien de temps pour réaliser l'autoévaluation ? Au maximum 10 minutes.

<u>Astuce</u>: Vous pouvez mettre la croix entre deux cases si vous pensez que vous n'êtes pas tout à fait dans une case ni dans l'autre

Auto-évaluez vous à plusieurs moments :

Temps t ₁	Vous avez réalisé une première révision et vous avez refait l'ensemble des exercices de l'activité et du TD
Temps t ₂	A la suite de votre première auto-évaluation, vous avez : - Retravaillé les connaissances/compétences sur lesquelles vous aviez des difficultés - Conforté les connaissances/compétences acquises
Temps t₃	A la suite de votre première auto-évaluation, vous avez : - Retravaillé les connaissances/compétences sur lesquelles vous aviez des difficultés - Conforté les connaissances/compétences acquises

Espacer de préférence vos autoévaluations d'au moins 24h

Compétences		Temps t₁		Pour pro- gresser	Temps t ₂			Temps t₃		
		<u></u>		gicssci	<u>·</u>	•••		<u>·</u>	••	
Savoir-faire A : Notion de fonction d'onde										
Citer quelques découvertes scientifiques qui ont conduit à l'introduction de la mécanique quantique				cours						
Connaître le principe d'incertitude de Heisenberg et savoir l'utiliser pour justifier la description quantique d'un système				cours						
Connaître la définition de fonction d'onde et de fonction d'onde stationnaire				cours						
Interpréter $\left \Psi\right ^2$ comme la densité de probabilité de présence d'un électron en un point				cours + Ex7						
La relier à la densité de charge				cours						
Connaître la condition de normalisation de la fonction d'onde				cours + Ex7						
Connaître la définition d'orbitale atomique				cours						
Savoir-faire B : Étudier un édifice monoélectronique (hydrogè	ne ou	ion	hydr	ogénoïde)						
Savoir que la fonction d'onde est le produit d'une partie radiale et d'une partie angulaire				cours						
Connaître pour les 4 nombres quantiques leur nom, leur symbole, leur définition et leur rôle sur l'OA				cours						
Connaître l'expression de l'énergie d'une OA et du rayon orbitalaire				cours + Ex 6						
Prévoir l'évolution du rayon et de l'énergie d'un électron avec le nombre quantique principal				cours						
Expliquer le spectre de raie obtenu lors de l'excitation d'atomes				cours + Ex 5						
Savoir représenter de manière conventionnelle des OA s et p et connaître leurs propriétés de symétrie				cours + Ex 1						
Savoir identifier des surfaces nodales à partir d'une représentation graphique d'une orbitale atomique				cours + Ex 1						
Savoir-faire C : Étudier un atome polyélectronique										
Connaître et expliquer l'approximation monoélectronique				cours						

Expliquer qualitativement le modèle de Slater et la notion de		cours +				
charge effective		Ex 6				
Exprimer l'énergie d'une OA et le rayon orbitalaire en faisant intervenir la charge effective		cours + Ex 6				
Savoir expliquer que l'énergie d'une OA et son rayon dépendent de la couche et de la sous-couche dans laquelle se trouve l'électron		cours				
Connaître l'évolution de la charge effective dans le tableau périodique		cours				
Citer les trois règles permettant d'établir la configuration électronique d'un atome dans son état fondamental		cours				
Établir la configuration électronique d'un atome ou d'un ion dans son état fondamental		cours + Ex 2				
Identifier les électrons de cœur ou de valence pour un atome		cours + Ex 2				
Déterminer le nombre d'électrons non appariés d'un atome dans son état fondamental		cours + Ex 3				
Savoir-faire D : Analyser la classification périodique des éléme	ents		-			
Connaître le principe de construction de la classification périodique et son allure générale		cours + Ex 2				
Citer les éléments des périodes 1 à 3 du tableau périodique (nom, symbole, numéro atomique)		cours				
Situer dans le tableau périodique : les métaux alcalins, les alcalino-terreux, les halogènes, les gaz nobles		cours				
Relier la position d'un élément dans le tableau périodique à la configuration électronique de l'atome associé dans son état fondamental		cours + Ex2				
Relier l'énergie associée à une orbitale atomique à la charge effective		cours				
Relier l'énergie associée à une orbitale atomique à l'électronégativité		cours + Ex 3				
Comparer les électronégativités de deux atomes à partir de leurs positions dans le tableau périodique		cours				
Relier le rayon associé à une OA à la charge effective		cours				
Relier le rayon atomique à la polarisabilité de l'atome		cours				
Lier la polarisabilité d'un atome à sa position dans le tableau périodique		cours				

Lier la position d'un élément dans le tableau périodique et le caractère oxydant ou réducteur du corps simple		cours			
correspondant					