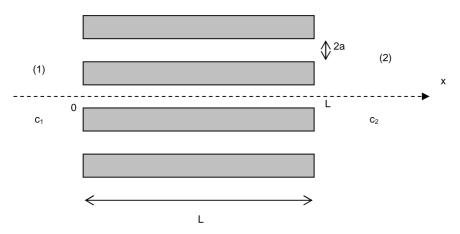

Enoncé:

On considère une membrane poreuse, constituée de pores cylindriques identiques : rayon a ; longueur L ; on pose : n le nombre de pores par unité de surface.

Cette membrane sépare deux milieux aqueux contenant un soluté neutre aux concentrations molaires : c_1 et c_2 différentes et constantes.

On pose D le coefficient de diffusion du soluté dans le milieu aqueux.

- 1- Déterminer l'équation de diffusion vérifiée par la concentration molaire en soluté : c(x,t) dans un pore en supposant le phénomène unidimensionnel de direction (Ox) puis donner l'expression de c(x) en fonction de c₁;c₂;L et x en régime stationnaire.
- 2- Exprimer le flux surfacique molaire de soluté à travers **la membrane** : J_D en fonction de n ; c_1 ; c_2 ;D;L et a et en déduire la perméabilité diffusionnelle de la membrane : P_{diff} en fonction de n; D;L et a . Quelle est la dimension de P_{diff} ?


On définit : P_{diff} comme le rapport du flux surfacique molaire de soluté : J_D sur la différence de concentration molaire : $\Delta c = c_1 - c_2$.

Enoncé + corrigé :

On considère une membrane poreuse, constituée de pores cylindriques identiques : rayon a ; longueur L; on pose : n le nombre de pores par unité de surface.

Cette membrane sépare deux milieux aqueux contenant un soluté neutre aux concentrations molaires : c_1 et c_2 différentes et constantes.

On pose D le coefficient de diffusion du soluté dans le milieu aqueux.

- 1- Déterminer l'équation de diffusion vérifiée par la concentration molaire en soluté : c(x,t) dans **un pore** en supposant le phénomène unidimensionnel de direction (Ox) puis donner l'expression de c(x) en fonction de c₁;c₂;L et x en régime stationnaire.
- 2- Exprimer le flux surfacique molaire de soluté à travers **la membrane** : J_D en fonction de n; c_1 ; c_2 ; D; L et a et en déduire la perméabilité diffusionnelle de la membrane : P_{diff} en fonction de n; D; L et a . Quelle est la dimension de P_{diff} ?

On définit : P_{diff} comme le rapport du flux surfacique molaire de soluté : J_D sur la différence de concentration molaire : $\Delta c = c_1 - c_2$.

- 1- On obtient : $\left[\frac{\partial c(x,t)}{\partial t} = D \frac{\partial^2 c(x,t)}{\partial x^2}\right]$ et en régime stationnaire : $\left[c(x) = \frac{c_2 c_1}{L}x + c_1\right]$
- 2- Sur une surface S de membrane : $J_DS = -D\frac{dc(x)}{dx}\pi a^2 nS$ (quantité de soluté traversant S par unité de temps)
- d'où : $I_{D} = n\pi a^2 D \frac{(c_1 c_2)}{L}$ puis : $P_{diff} = \frac{n\pi a^2 D}{L}$ qui a la dimension d'une vitesse en ms⁻¹.