Chapitre EM 1: Particules chargées dans \overrightarrow{E} et \overrightarrow{B}

I. Force de Lorentz

1. Expression de la force de Lorentz

Soit une particule de charge q animée d'une vitesse \overrightarrow{v} dans le référentiel d'étude supposée galiléen. Cette particule placée dans un champ électrique \overrightarrow{E} et un champ magnétique \overrightarrow{B} subit la force de Lorentz:

partie électrique de la fre de courts $\overrightarrow{F} = q\overrightarrow{E}$ $(q\overrightarrow{v}\Lambda\overrightarrow{B})$

partie magnetique de la

Remarque: la force magnétique n'agit que sur des particules undiles (v + o)

la force électrique agit sur des particules mobiles on mobiles

Ordres de grandeur: pour un électron de charge $-e=-1,6.10^{-19}~C$ et de masse $m=9.10^{-31}~kg$.

son poids: || P| = mg = 9.10-30 N

la force électrique pour $E=10^4\ V/m$: $||F_{\bullet}|| = eE = ko^{-15} N \gg |P|$

la force magnétique pour B=0,1 T et $V=10^5$ m/s:

Conclusion: Pour des partieles élémentaires on réglige le pries devant la fore de société

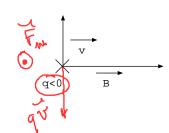
Représentation de la force de Lorentz:

iprice rinders

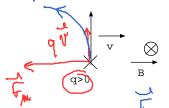
E=qE v

ici Fe deie la pationle

Fe q<0 E



Fe aculer la



B q<0 v

2. Aspect énergétique de la force de Lorentz

La force magnétique de Lorentz et 1 au monvement donc elle me trouvaille pas

La force électrique de Lorentz est constatuie ;

Ep= qV(M)

eneque prentièle d'une particule de change q place en M où le prentid est V(M)

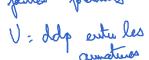
II. Action d'un champ électrique sur une particule chargée

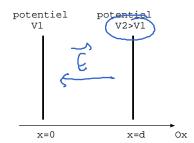
1. Créer un champ électrique uniforme et permanent

Le champ électrique créé entre le armatures d'un condensateur plan (en négligeant les effets de bord, soit en assimilant les armatures à deux plans infinis) est uniforme (le même en tout point) et permanent (indépendant du temps). Ce champ est:

- de direction 1 aux amatures

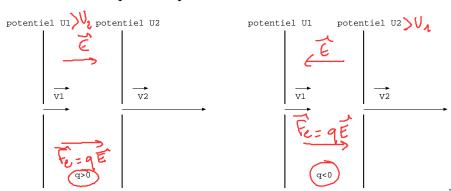
- orienté des fots vous les failles ptentiels - de norme $||\vec{E}|| = \frac{U}{d}$ U: dep entre les aunotires aunotires aunotires





potential potential
$$V1$$
 $V2 < V1$
 $E = \frac{\sqrt{1 - \sqrt{2}}}{d}$
 $V = 0$
 V

2. Rôle accélérateur du champ électrique



Application de la conservation de l'énergie mécanique: la charge quilit :

* son pris : reafigeable

* la foie durique converative

* la foie durique converative

 $f_{m} = \frac{\sqrt{V_{1}^{2}}}{2} + 9V_{1} = \frac{\sqrt{V_{2}^{2}}}{2} + 9V_{2}$ $f_{m} = \sqrt{V_{1}^{2}} + 29\frac{(V_{1} - V_{2})}{4}$

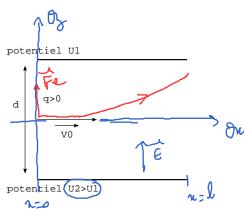
Rq: q>0 U,>V2 /pm auni U2>V1
q (0 U2>V1 "

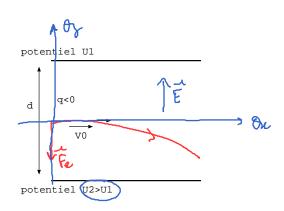
AN : calculer v_2 pour un électron avec $v_1 = 0$ m/s sous une ddp de 100 V: $v_2 = 5,36$. Let

Remarque : qu'est-ce qu'un électron non relativiste?

ritera de Ol election

dectuque 3. Rôle déviateur du duay





NO CE rétern de la lemère.

Expression du champ électrique entre les armatures:

Equation de la trajectoire: la particule draiger volit : e la lon destique: Fe = q = q (U2-4) ex

popular on (Ou): mi =0

$$\hat{g} = \frac{q(v_2 - v_1)t}{2}$$

m (va): N = 0 N

d'où $t = \frac{\pi}{V_0}$ et $\sqrt{3} = \frac{9(V_2 - V_1)}{2 \text{ m V}_0^2} x^2$ ép. de la trajectoire (paralole)

à la votre des amotres: 2= l=Votg = tg= 1

III. Action d'un champ magnétique sur une particule chargée

1. Créer un champ magnétique uniforme et permanent

quart en V

enter les dons sples le chang à est wifour Lings du ple word was le ple sont

2. Rôle accélérateur du champ magnétique

La fore magnétique me travaille pas can elle est I au monvement donc le champ magistique ne put pas modifier la nome de la intere de la patende.

3. Rôle déviateur du champ magnétique

On peut prévoir le sens et la direction de la force magnétique avec sa main droite:

FINE 9 VIB

qu': price B: inders For : vieigne de la mon

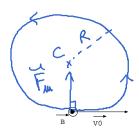
Cas où le champ magnétique est perpendiculaire à la vitesse initiale \overrightarrow{v}_0 :

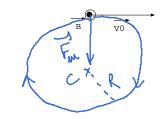
RFD appliquée à la particule de charge q:

M di = q VI B + ung midige

Fm=qUAB

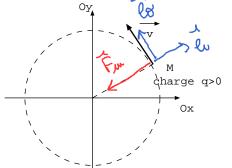
Cas où q < 0:





Expression du rayon du cercle:

Fr est I au un' direge vers le centre du cerde Fr = q V 18 doc B = - B Eg (B)0)



RFD: M dir = q v r B = q v er r (-B er) = -908 eu

ava a = - \frac{v^2}{0} \text{ \text{ei}} + \frac{dv}{dt} \text{ \text{eo}}

en popular ou la: Tr = 0 = 1 l= dte un informe

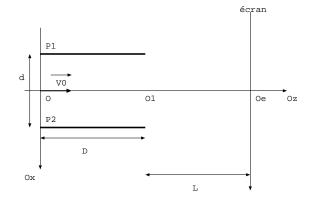
 $\frac{1}{R} = -\frac{1}{R} = -\frac{1}{R} = \frac{1}{R} = \frac{$

Minde: T= 2TK = 2T M qB

W= 9B Tet W re dépudent pas de la vitem

IV. Déflexion électrique dans un oscilloscope

On établit entre les plaques P_1 et P_2 une zone de champ électrique. La distance entre les plaques est d, la longueur des plaques est D et la différence de potentiel est $U=V_{P2}-V_{P1}>0$, on néglige les effets de bord. Des électrons de charge -e et de masse m accélérés pénètrent en O dans la zone de champ électrique uniforme avec une vitesse $\overrightarrow{v_0}=v_0\overrightarrow{e_z}$.

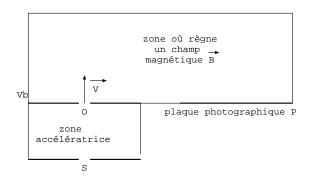


- 1. Etablir l'équation de la trajectoire des électrons dans la zone où règne le champ électrique.
- 2. Déterminer l'expression de l'instant t_f où l'électron quitte la zone où règne le champ électrique, en déduire ses coordonnées et sa vitesse à cet instant.
- 3. Décrire la trajectoire de l'électron en dehors de la zone où règne le champ électrique et montrer qu'au point d'impact I sur l'écran on a $x_I = \frac{e(V_{P2} V_{P1})}{mdv_o^2}(\frac{D^2}{2} + Dl)$.

$$R\'{e}ponses: \text{ 1- } x = \frac{eUz^2}{2mdv_0^2} \text{ 2- } \overrightarrow{v}(t_f) = \frac{eUd}{mdv_0} \overrightarrow{e_x} + v_0 \overrightarrow{e_z}$$

V. Spectromètre de masse

Un faisceau de particules chargées est constitué des ions de deux isotopes du mercure : $(Hg^{2+})_{80}^{200}$ et $(Hg^{2+})_{80}^{202}$ notés respectivement (1) et (2). Ce faisceau est émis par la source S avec une vitesse quasi nulle, puis accéléré par une tension U>0.



Les ions arrivent alors en O avec une vitesse \overrightarrow{v} et pénètrent avec dans une zone de champ magnétique \overrightarrow{B} uniforme, orthogonal au faisceau incident. Les ions viennent ensuite frapper la plaque photographique P.

Données : masse d'un nucléon $m_n=1,67.10^{-27}\ kg$ (la masse de l'électron sera négligée devant la masse d'un nucléon), $U=10\ kV,\ B=0,1\ T$ et $e=1,6.10^{-19}\ C$.

- 1. Ajouter sur le schéma la trajectoire d'un cation, la tension U et le champ magnétique en justifiant leur sens.
- 2. Exprimer les vitesses v_1 et v_2 en O des isotopes (1) et (2) suite à l'accélération par la tension U.
- **3.** Les isotopes ne frappent pas la plaque photographique P au même point. Exprimer puis calculer la distance d entre les deux traces observées des impacts des isotopes sur la plaque P.

Réponses: 2-
$$v=\sqrt{\frac{2qU}{m}}$$
 3- $d=\frac{2}{B}\sqrt{\frac{Um_n}{e}}(\sqrt{202}-\sqrt{200})$

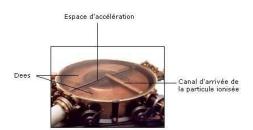
VI. Particule dans un champ magnétique

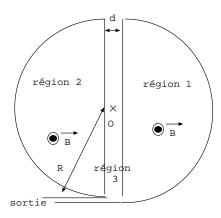
Soit une particule de masse m et de charge q qui à l'instant pris comme origine des temps se trouve en O avec une vitesse initiale $\overrightarrow{v_0} = v_0 \overrightarrow{e_x}$. Cette particule est plongée dans un champ magnétique uniforme et permanent $\overrightarrow{B} = B\overrightarrow{e_z}$. Au cours du temps on repère la particule par ses coordonnées cartésiennes.

- 1. Ecrire la RFD appliquée à la particule et la projeter selon Ox, Oy et Oz. En déduire que le mouvement est plan.
- **2.** On pose $\underline{v}(t) = \dot{x}(t) + i\dot{y}(t)$. Etablir l'équation différentielle vérifiée par $\underline{v}(t)$, la résoudre et en déduire x(t) et y(t) puis l'équation de la trajectoire.

$$R\'{e}ponses: \ 1-\ z(t) = 0 \ 2-\ \underline{\dot{v}} + \frac{iqB}{m}\underline{v} = 0, \ x(t) = \frac{mv_0}{qB}\sin(\frac{qB}{m}t) \ et \ y(t) = \frac{mv_0}{qB}(\cos(\frac{qB}{m}t) - 1)$$

VII. Cyclotron





Un cyclotron est formé de deux enceintes demi-cylindriques, D_1 (région (1)) et D_2 (région (2)), appelées dees en anglais, dans lesquelles règne un champ magnétique uniforme \overrightarrow{B} . On note R_c le rayon de ces dees.

Entre ces deux dees, une bande étroite de largeur $d << R_c$ (région (3)) est plongée dans un champ électrique alternatif. Ce champ électrique est créé par une tension sinusoïdale de fréquence f_c d'amplitude U_0 et telle que le proton, lorsqu'il se trouve dans la région (3) trouve toujours une tension accélératrice de valeur égale à sa valeur maximale U_0 .

1. Un proton est placé dans un champ magnétique. Le vecteur vitesse du proton est initialement perpendiculaire au champ magnétique, exprimer le rayon de la trajectoire et la période T_0 du mouvement.

On introduit au point O un proton de charge $e = 1, 6.10^{-19}$ C et de masse $m_p = 1, 67.10^{-27}$ kg, sans vitesse initiale. Il est accéléré en direction de la région (1).

- ${f 2.}$ Tracer la trajectoire de la particule depuis O jusqu'à sa sortie du cyclotron.
- 3. Exprimer la durée pendant laquelle le proton reste dans la région (1), puis dans la région (2), à chacun de ces passages dans ces régions. En déduire la fréquence f_c de la tension alternative nécessaire pour accélérer la particule à chacun de ses passages entre les dees, en négligeant le temps de passage de la particule dans la région (3).
- 4. Le cyclotron a un diamètre maximal utile $R_c = 52~cm$. Calculer, en Joule puis en MeV, l'énergie cinétique maximale des protons accélérés par ce cyclotron lorsque la fréquence de l'oscillateur électrique qui accélère les protons entre les dees est de 12~MHz. Quelle est alors la valeur du champ magnétique?
- 5. L'amplitude de la tension alternative appliquée entre les deux dees est de 200~kV. Calculer la variation d'énergie cinétique du proton à chaque tour. Calculer le nombre de tours effectués par les protons pour atteindre leur énergie cinétique maximale.

6

Réponses: 1-
$$T_0=\frac{2\pi m}{qB}$$
 3- $f_c=\frac{qB}{2\pi m_p}$ 4- $E_{cf}=2\pi^2 m_p f_c^2 R^2$