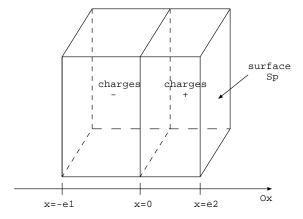
## DM 8 de physique

## I. Répartition non uniforme de charges

On étudie la répartition de charges neutre et non uniforme suivante: le parallélépipède de surface  $S_p$  compris entre les plans  $x=-e_1$  et x=0, comprend des charges négatives et le parallélépipède compris entre les plans x=0 et  $x=e_2$  de même surface  $S_p$ , comprend des charges positives.

La densité volumique de charges  $\rho(x)$  de cette répartition peut s'écrire:


$$\rho(x < -e_1) = 0$$

$$\rho(-e_1 < x < 0) = -\rho_1 < 0$$

$$\rho(0 < x < e_2) = \rho_2 > 0$$

$$\rho(x > e_2) = 0$$

 $\rho_1$  et  $\rho_2$  sont des constantes positives.



On se place dans le cas où les plans de surface  $S_p$  sont infinis, cela revient à dire que l'on néglige les phénomènes de bord.

- 1. Représenter la fonction  $\rho(x)$ . Déterminer la relation entre  $\rho_1$ ,  $\rho_2$ ,  $e_1$  et  $e_2$  sachant que la charge totale est nulle.
- 2. Déduire des propriétés de symétrie et d'invariance que le champ électrique s'écrit  $\overrightarrow{E}(M) = E(x)\overrightarrow{e_x}$ .
- 3. On suppose que le champ électrique en  $x \to -\infty$  est nul. On choisit pour surface de Gauss, un parallélépipède de section S (dans le plan parallèle à Oyz) compris entre les plans  $x_1 \to -\infty$  et x. Représenter ce parallélépipède et montrer que le flux sortant du champ électrique à travers ce cylindre est  $\phi = E(x)S$ .
- 4. On se place dans le cas où  $x < -e_1$ . Faire un schéma avec les charges et la surface de Gauss et en déduire la charge intérieure à la surface de Gauss. En déduire le champ électrique pour  $x < -e_1$ . Répondre à la même question dans les cas où  $-e_1 < x < 0$ ,  $0 < x < e_2$  et  $x > e_2$ .
- **5.** Représenter la fonction E(x). Exprimer le potentiel électrique en tout point de l'espace avec la convention V(x=0)=0. En déduire la tension  $U_0=V(x=e_2)-V(x=-e_1)$ .