Sujet CCINP TPC 2020

Modélisation sans champ magnétique

- 1. L'inégalité de Heisenberg s'écrit $\Delta x \Delta p_x \geq \frac{\hbar}{2}$ ou encore $\Delta x \Delta v_x \geq \frac{\hbar}{2m}$ avec $\Delta x = l_x$, l'incertitude sur la position de la particule, donc l'incertitude sur la vitesse est telle que $\Delta v_x \geq \frac{\hbar}{2ml_x}$. On a $E = \frac{mv_x^2}{2}$ dans le puits puisque l'énergie potentielle y est nulle soit $\Delta E = \frac{m\Delta v_x^2}{2} \geq \frac{\hbar^2}{8ml_x^2}$.
- 2. $|\underline{\psi}_{1D}(x,t)|^2$ représente la densité de probabilité de trouver la particule en x. Ici $|\underline{\psi}_{1D}(x,t)|^2 = |\underline{\phi}(x)|^2$ Cette densité ne dépend pas du temps, l'état est dit stationnaire.
- 3. La condition de normalisation portant sur l'axe Ox est $\int_0^{l_x} |\underline{\psi}_{1D}(x,t)|^2 dx = 1$ ou encore $\int_0^{l_x} |\underline{\phi}(x)|^2 dx = 1$
- 1. Cette relation traduit que la probabilité de trouver la particule entre x = 0 et $x = l_x$ est de 1.

La particule ne peut pas se trouver dans les zones où le potentiel est infini, donc la fonction d'onde est nulle pour x < 0 et $x > l_x$. La fonction d'onde est continue soit $\underline{\phi}(x = 0) = 0$ et $\underline{\phi}(x = l_x) = 0$.

- 4. La particule est piégée entre x=0 et $x=l_x$ et on a des noeuds de probabilité de présence aux extrémités du puits. Le système analogue est la corde de Melde sur laquelle se forment des ondes stationnaires avec deux noeuds aux extrémités.
- 5. On a $\Delta \underline{\psi} = \frac{\partial^2 \underline{\psi}}{\partial x^2} = \underline{\phi}''(x)e^{-iE_x t/\hbar}$ et $\frac{\partial \underline{\psi}}{\partial t} = -\frac{iE_x}{\hbar}\underline{\phi}(x)e^{-iE_x t/\hbar}$.

En remplaçant dans l'équation de Schrödinger on trouve $-\frac{\hbar^2}{2m}\underline{\phi}''+0=i\hbar(-\frac{iE_x}{\hbar})\underline{\phi}(x)=E_x\underline{\phi}(x)$ soit $\underline{\ddot{\phi}}+\frac{2mE_x}{\hbar^2}\underline{\phi}=0$. On reconnaît un OH de pulsation spatiale $k_x=\sqrt{\frac{2mE_x}{\hbar^2}}$.

6. Dans le puits infini on peut prendre des solutions réelles de la forme $\phi(x) = A\cos(k_x x) + B\sin(k_x x)$. On applique les équations de continuité soit $\phi(x=0) = 0 = A$ et $\phi(x=l_x) = 0 = B\sin(k_x l_x)$ soit $k_x l_x = n_x \pi$ et $k_x = \frac{n_x \pi}{l_x}$.

On utilise la relation $k_x = \sqrt{\frac{2mE_x}{\hbar^2}}$ soit $E_x = \frac{\hbar^2 k_x^2}{2m} = \frac{n_x^2 \pi^2 \hbar^2}{2ml_x^2}$.

Le résultat de l'inégalité de Heisenberg qui donne l'incertitude sur l'énergie correspond (en ordre de grandeur) à l'énergie de l'état fondamentale pour n=1 soit l'énergie minimale de l'électron.

7. Par analogie on a $k_y = \frac{n_y \pi}{l_{\cdots}}$

Modélisation en présence d'un champ magnétique

- 8. L'énergie potentielle est celle d'un oscillateur harmonique de masse m, de pulsation propre ω_0 et de position d'équilibre x_0 .
- 9. On doit avoir $0 \le x_0 \le l_x$. En remplaçant x_0 par son expression on a $0 \le \frac{\hbar k_y}{eB} \le l_x$ d'où $k_y \le \frac{eBl_x}{\hbar}$ avec $k_y = \frac{n_y \pi}{l_y}$ on en déduit $n_y \le \frac{eBl_x l_y}{\pi \hbar} = \frac{2eBl_x l_y}{\hbar}$.
- 10. L'entier n_y peut donc prendre $\frac{2eBl_xl_y}{h}$ valeurs ce qui correspond à $\frac{2eBl_xl_y}{h}$ niveaux d'énergie E. Or chaque niveau peut être occupé par deux électrons de spin différents donc il peut y avoir $g=2\frac{2eBl_xl_y}{h}$ électrons sur un niveau d'énergie E.
- 11. On a $N_e = n_v b l_x l_y$.
- 12. Il n'y a qu'un niveau d'énergie possible E, c'est le niveau fondamental, ce niveau ne peut être occupé qu'au plus par g électrons, on doit donc avoir $N_e \leq g$ soit $n_v b l_x l_y \leq 4 \frac{eB l_x l_y}{h}$ soit $B \geq \frac{n_v b h}{4e} = B_{min}$.