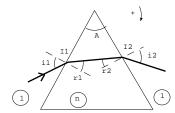
Révisions d'optique

I. Mesure de l'indice du verre d'un prisme

Soit un prisme d'angle A, transparent, homogène et isotrope d'indice n plongé dans l'air d'indice 1. On adopte les notations suivantes:



1. Ecrire les lois de Descartes en I_1 et en I_2 . Sur quel dioptre peut-il y avoir réflexion totale?

2. Ecrire la relation entre A, r_1 et r_2 . Définir et exprimer l'angle de déviation D en fonction de A, i_1 et i_2 (convention : le sens positif est le sens horaire).

3. Calculer r_1 , r_2 , i_2 et D pour n = 1, 60, $A = 60, 0^0$ et $i_1 = 50, 0^0$.

4. On constate expérimentalement que l'angle de déviation D prend une valeur minimale D_m lorsqu'on $i_1 = i_2 = i_m$. Montrer qu'au minimum de déviation $r_1 = r_2$ et en déduire que l'indice n vérifie la relation:

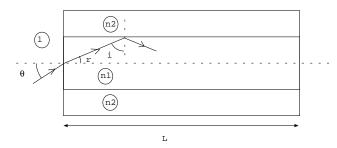
$$n = \frac{\sin(\frac{A + D_m}{2})}{\sin(\frac{A}{2})}$$

Réponses: 3- $r_1 = 28, 6^0, r_2 = 31, 4^0, D = 46, 5^0$

II. Fibre optique

1. Décrire le phénomène de réflexion totale sur un dioptre séparant les milieux d'indice n_1 et n_2 où n_1 est l'indice du milieu du rayon incident. Quelle inégalité doivent vérifier n_1 et n_2 ? Définir et exprimer un angle limite.

2. Une fibre optique est composée d'un milieu d'indice n_1 (coeur de la fibre) inséré dans un milieu d'indice n_2 (gaine de la fibre). L'ensemble est placé dans l'air d'indice 1.



Données: $n_1 = 1,5227, n_2 = 1,5200, \text{ et } L = 10 \text{ cm}.$

2.a. Tracer le trajet du rayon lumineux qui sort rasant au dioptre qui sépare les milieux d'indices n_1 et n_2 . Exprimer les angles limites correspondants i_l et θ_l . Montrer que $\theta_l = \arcsin(\sqrt{n_1^2 - n_2^2})$.

La lumière arrive dans un cone d'angle au sommet θ_0 (soit θ prend toutes les valeurs entre $-\theta_0$ et $+\theta_0$ avec $\theta_0 < \theta_l$) sous forme d'une impulsion de durée négligeable.

2.b. Montrer que la lumière est piégée dans le coeur de la fibre grâce au phénomène de réflexion totale.

2.c. Calculer le temps t_{min} mis par le rayon suivant le chemin le plus court pour traverser la fibre.

2.d. Calculer le temps t_{max} mis par le rayon suivant le chemin le plus long pour traverser la fibre. En déduire l'allongement temporel $\Delta t = t_{max} - t_{min}$ de ces impulsions en sortie de la fibre. On envoie des impulsions à un fréquence f, montrer que $f < \frac{1}{\Delta t}$ pour que les impulsions ne se superposent pas à la sortie de la fibre.

Réponses:
$$t_{min} = \frac{n_1 L}{c}$$
, $t_{max} = \frac{n_1 L}{c\sqrt{1 - \frac{\sin^2 \theta_0}{n_1^2}}}$

III. Microscope

Soit un objet AB de taille 30 μm . La résolution de l'oeil est $\beta = 1'$ d'angle (avec $60' = 1^0$).

- 1. Convertir β en radian.
- 2. Calculer α_{ref} , l'angle sous lequel l'observateur verrait l'objet AB à l'oeil nu en se plaçant à la distance conventionnelle $d_m = 25~cm$ de celui-ci. Cet objet est-il vu par l'oeil?

On observe cet objet à travers un microscope. Il est modélisé par l'association de deux lentilles L_1 et L_2 convergentes de centres respectifs O_1 et O_2 , et de distances focales respectives f'_1 et f'_2 . On note $AB-L_1->A_1B_1-L_2->A_2B_2$.

Données : $f'_1 = 10,0$ cm, $f'_2 = 4,00$ cm, l'objet est placé à la distance $O_1A = 14$ cm devant la lentille L_1 .

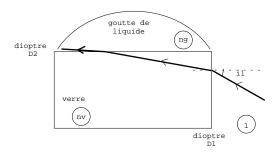
- **3.** Calculer la position et la taille de A_1B_1 .
- 4. Le système est réglé pour qu'un oeil normal n'ait pas besoin d'accomoder lorsqu'il observe l'objet à travers le microscope. Où se forme l'image A_2B_2 ? Avec quel point particulier A_1 est-il confondu? en déduire la distance $\overline{O_1O_2}$.
- 5. Calculer l'angle α sous lequel l'observateur voit l'objet AB à travers le microscope. Conclure.
- **6.** Faire une construction avec trois rayons lumineux issus de B (ne pas tenir compte de l'échelle).

Rappel:
$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$
 et $\gamma = \frac{\overline{OA'}}{\overline{OA}} = \frac{\overline{A'B'}}{\overline{AB}}$.

<u>Réponses:</u> 1- $\alpha_{ref} = 2,91.10^{-4}$ rad 2- objet non visible à l'oeil nu 3- $\overline{O_1A_1} = 35$ cm et $A_1B_1 = 75$ mum 4- $\overline{O_1O_2} = 39$ cm 5- $\alpha = 1,9.10^{-3}$ rad

IV. Détermination d'un indice optique

Sur la face horizontale (D2) d'un parallélépipède de verre, d'indice n_v , on dépose une goutte de liquide dont on veut déterminer l'indice n_g . La face verticale (D1) du parallélépipède de verre est éclairée par un faisceau cylindrique de lumière monochromatique sous l'incidence i.



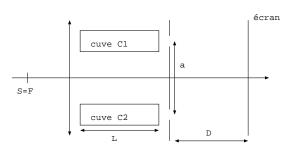
Sur le schéma, on a représenté le rayon limite qui sort rasant au dioptre (D1). Déduire du schéma, l'inégalité entre n_g et n_v . Montrer que l'on a sin $i_i = \sqrt{n_v^2 - n_g^2}$.

Montrer que seuls les rayons ayant une incidence supérieure à i_l peuvent traverser le dioptre verre-liquide. Déterminer n_g pour $i_l = 48,71^0$. On donne $n_v = 1,607$.

Réponse: $n_g = 1,42$

V. Indice d'un gaz

Une lumière monochromatique avec $\lambda=0,6~\mu m$ issue d'une source ponctuelle S_0 placée au foyer d'une lentille traverse deux cuves C_1 et C_2 de longueur L, puis deux trous distants de a. La cuve C_1 contient de l'air d'indice $n_1=1,0002926$. La cuve C_2 contient initialement de l'air dans les mêmes conditions. On observe sur un écran placé à une distance D des trous.

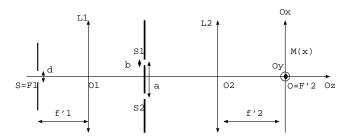


- 1. Décrire la figure d'interférences et déterminer l'expression puis la valeur de l'interfrange i avec $a = 1 \ mm$ et $D = 1 \ m$.
- 2. On remplace l'air de C_2 par un gaz G2 d'indice n_2 . On constate que le système de franges s'est translaté vers le bas de 70 franges. Prévoir le signe de $n_2 n_1$ et calculer la valeur de $n_2 n_1$ pour L = 10 cm.

Réponses: 1- i = 0,6 mm 2- $n_2 - n_1 = 4,6.10^{-3}$

VI. Fentes d'Young

Un écran opaque percé de deux fentes d'Young identiques de largeur $b=17~\mu m$ et dont les centres sont distants de a, est éclairé par une fente source fine placée dans le plan focale objet d'une lentille L_1 de focale $f_1'=20~cm$. On observe la figure de diffraction dans le plan focal image d'une lentille convergente de focale L_2 de focale $f_2'=50~cm$.



1. Représenter les deux rayons lumineux qui interfèrent en M et exprimer la différence de marche entre ces deux rayons en fonction des données et de x, position de M sur Ox. En déduire l'expression de l'interfrange. On donne la photo de l'écran (Ox est la direction horizontale et Oy la direction verticale):

2. Mesurer la largeur de la tache centrale de diffraction et en déduire une estimation la longueur d'onde de la source. Donnée: la demi largeur angulaire de la tache centrale de diffraction par une fente de largeur b est $\theta_{1/2} = \frac{\lambda}{b}$.

 $\bf 3.$ Estimer l'interfrange et donc la valeur de a le plus précisément possible.

4. Soit un objet AB placé dans le plan focal objet de L_1 . Sur un schéma, construire l'image A'B' de cet objet par l'association $L_1 - L_2$. En déduire l'expression de $\frac{A'B'}{AB}$. Déduire de la photo, la hauteur h de la fente source (dimension de la fente selon Oy).

5. Lorsqu'on augmente la largeur de la fente source S, le contraste des franges diminue à l'écran. On rappelle le critère semi-quantitatif $|p_{S_{1/2}}-p_{S_0}|<\frac{1}{2}$ où S_0 est le point au centre de la fente source et $S_{1/2}$ est la point à l'extrémité de la fente source. Expliquer ce critère et en déduire la largeur maximale d de la fente source pour conserver des franges à l'écran ?

 $\textit{R\'eponses: 1- i} = \frac{\lambda f_2'}{a} \text{ 2- } \lambda = 542 \text{ nm 3- a} = 68 \text{ } \mu \text{m 4- } \frac{A'B'}{AB} = \frac{f_2'}{f_1'} \text{ et } h = 0, 5 \text{ cm 5- } d < 1, 6 \text{ } mm$

VII. Réseau de diffraction

On considère un réseau de diffraction par transmission caractérisé par un nombre de traits par unité de longueur : $n = 300 \ traits.mm^{-1}$. On oriente les angles dans le sens horaire.

1. Démontrer la formule des réseaux.

2. Déterminer la déviation à l'ordre 1 pour $\lambda = 589 \ nm$ et $i_0 = -20^{\circ}$.

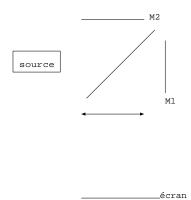
3. Déterminer les ordres observables pour un angle d'incidence $i_0 = 30^0$ pour $\lambda = 632 \ nm$

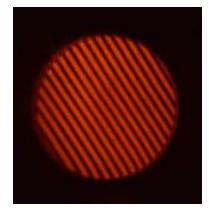
4. Pour $\lambda = 589 \ nm$, calculer la déviation minimale dans l'ordre -4.

Réponses : 2- $D = 10,5^0$ 3- 10 ordres visibles 4- $D_m = 41,4^0$

VIII. Interféromètre de Michelson

On place l'écran à une distance D=1,6 m du miroir M_2 . On dispose d'une lentille de focale image $f' = 30 \ cm$. On donne la photo de l'écran.





- 1. Préciser comment est réglé le Michelson, comment sont éclairés les miroirs, la localisation des franges.
- 2. Déterminer la distance miroir M₂-lentille pour faire l'image agrandie du miroir sur l'écran et calculer le grandissement de la lentille pour cette position.

Pour la résolution, on rappelle les relations de conjugaison et de grandissement $\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$ et $\gamma =$

 $\frac{\overline{OA'}}{\overline{OA}} = \frac{\overline{A'B'}}{\overline{AB}}$. On propose de poser x = OA.

3. En déduire un angle pertinent pour ce Michelson.

Réponses: 2- x = 0,4 m, grandissement=3

IX. Mesure de l'épaisseur d'un film alimentaire

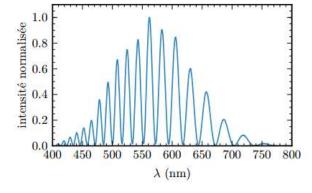
On dispose d'un interféromètre de Michelson réglé en configuration lame d'air éclairé par une source de lumière blanche.

1. Décrire le dispositif, notamment l'allure des franges d'interférences et la façon de les observer.

On règle le Michelson au contact optique, puis on insère dans l'un des bras de l'interféromètre un film alimentaire tendu, assimilé à une lame à faces parallèles d'épaisseur e d'indice n = 1, 5. L'écran apparaît blanc dans les deux cas.

2. On donne le spectre de la lumière au centre de l'écran en présence du film. Commenter la courbe et en déduire la valeur numérique de e.

Réponse: $e = 15, 4 \mu m$



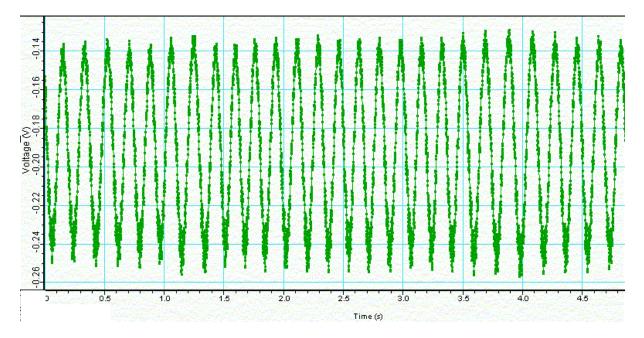
X. Doublet du sodium

Dans un premier temps on considère un interféromètre de Michelson réglé en lame d'air éclairé par une source de longueur d'onde λ .

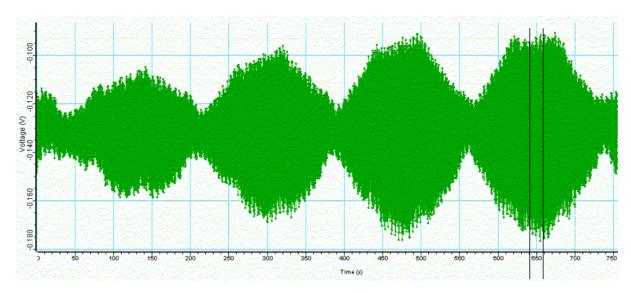
- 1. Préciser la forme et la localisation des franges. Pour observer ces franges on utilise une lentille de focale $f' = 60 \ cm$. Préciser les positions de la lentille et de l'écran.
- 2. Calculer la taille de la 4ième frange brillante en partant du centre de l'écran. Données: épaisseur e de la lame d'air $e=356~\mu m$ et $\lambda=632~nm$.

Le Michelson est éclairé par une lampe spectrale présentant un doublet de longueurs d'onde λ_1 et λ_2 . On déplace un des miroirs à une vitesse $v=1.65~\mu m/s$. On observe les franges sur un écran à l'aide d'une lentille de focale f'=1~m. On mesure l'éclairement reçu au centre de l'écran à l'aide d'un capteur.

3. La première courbe donne l'éclairement en fonction du temps pour un temps variant de 0 à 5 s. Sur cette courbe tout se passe comme si le Michelson était éclairé par une source monochromatique de longueur d'onde λ_m égale à la longueur d'onde moyenne de la source.



4. La seconde courbe donne l'éclairement en fonction du temps pour un temps variant de 0 à 750 s. Nommer le phénomène qui se produit aux instants t=210 s, $t\approx 390$ s, $t\approx 570$ s et $t\approx 720$ s. Exprimer les valeurs de l'épaisseur de la lame d'air qui conduisent à ce phénomène. Commenter la courbe et en déduire les longueurs d'onde du doublet.



Réponses: 2- $r_4=4,8$ cm 3- $\lambda_m=594$ nm 4- $\Delta\lambda=6,3.10^{-10}$ m