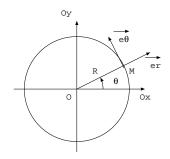
Interrogation de rentrée

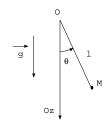
I. Mouvement d'un satellite

Un satellite assimilé à un point matériel M de masse m décrit une orbite circulaire de rayon R autour de la Terre. On note O et M_T , le centre et la masse de la Terre. On note $\mathcal G$, la constante de gravitation universelle. Déduire de la RFD appliquée au satellite l'expression de la vitesse v du satellite sur son orbite ainsi que la période T de son mouvement. Exprimer l'énergie mécanique du satellite en fonction de m, M_T , $\mathcal G$ et R.

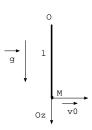


II. Pendule

Soit un pendule simple de longueur l et de masse m. On néglige tout frottement. On repère la position du pendule par l'angle θ que fait la direction du fil par rapport à la verticale descendante Oz.

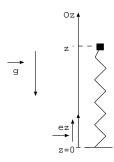


- 1. Exprimer son énergie potentielle en fonction de m, g, l et θ .
- 2. Enoncer le théorème de la puissance mécanique. Qu'en déduit-on ici sur l'énergie mécanique?
- 3. On envoie le pendule avec une vitesse v_0 depuis la verticale. Exprimer sa vitesse lorsqu'il atteint la position désignée par l'angle θ .



III. Point matériel accroché à un ressort

Soit un point matériel M de masse m relié à un ressort de constante de raideur k et de longueur à vide l_0 . On repère la position de M par sa côte z (Oz verticale ascendante). On néglige tout frottement.

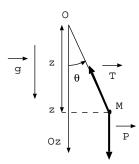


- 1. Dans cette question, M est supposée immobile. Déterminer l'expression de sa position d'équilibre z_e en fonction des données.
- 2. Dans cette question, M est en mouvement. Déduire de la RFD l'équation différentielle vérifiée par z(t). La mettre sous la forme $\ddot{z} + \omega_0^2 z = \omega_0^2 z_e$. Exprimer ω_0 .
- **3.** A l'instant t = 0, M est à la position $z = z_e$ et possède une vitesse $\overrightarrow{v_0} = v_0 \overrightarrow{e_z}$ avec $v_0 > 0$. Résoudre l'équation différentielle pour en déduire z(t) et représenter l'allure de la fonction z(t).

IV. Mouvement d'un satellite

Voir cours pour la correction: exemple 1 du cours sur les lois.

V. Pendule

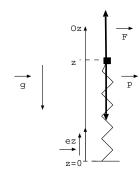


- 1. Le pendule subit son poids qui est une force conservative $E_p = -mgz = -mgl\cos\theta$ et la tension du fil qui ne travaille pas.
- 2. Le théorème de la puissance mécanique dit que, dans un référentiel galiléen, la dérivée temporelle de l'énergie mécanique de M est égale à la puissance des forces non conservatives qui s'exercent sur M. Ici la seule force conservative qui s'exerce sur M est la tension du fil et elle est perpendiculaire au mouvement donc sa puissance est nulle. On en déduit donc que l'énergie mécanique de M est constante.
- 3. A la verticale, l'énergie mécanique de M s'écrit $E_m = \frac{mv_0^2}{2} mgl$ et dans la position θ , l'énergie mécanique de M s'écrit $E_m = \frac{mv^2}{2} mgl\cos\theta$. L'énergie mécanique se conserve donc on a $E_m = \frac{mv_0^2}{2} mgl\cos\theta$ soit $v = \sqrt{v_0^2 2gl(1 \cos\theta)}$.

VI. Correction: point matériel accroché à un ressort

On se place dans le référentiel terrestre supposé galiléen.

M subit son poids $\overrightarrow{P} = -mg\overrightarrow{e_z}$ et la force de rappel du ressort soit $\overrightarrow{F} = -k(l-l_0)\overrightarrow{u}_{spires/vers/M} = -k(z-l_0)\overrightarrow{e_z}$.



à l'équilibre, la force de rappel est ascendante, au cours du mouvement, elle change de sens sans arret.

- 1. A l'équilibre, la somme des forces est nulle soit $-mg\overrightarrow{e_z} k(z_e l_0)\overrightarrow{e_z} = \overrightarrow{0}$ soit $z_e = l_0 \frac{mg}{k} < 0$: on vérifie que la position d'équilibre est bien plus petite que la longueur à vide du ressort puisque le ressort à l'équilibre ici est comprimé.
- **2.** Hors équilibre, on applique la RFD: $m\overrightarrow{a} = \overrightarrow{P} + \overrightarrow{F}$ avec $\overrightarrow{a} = \ddot{z}\overrightarrow{e_z}$.

On a donc en projection sur $\overrightarrow{e_z}$: $m\ddot{z} = -mg - k(z - l_0)$ soit $\ddot{z} + \frac{k}{m}z = \frac{k}{m}(l_0 - \frac{mg}{k})$. Soit par identification avec l'énoncé, on a bien $z_e = l_0 - \frac{mg}{k}$ et $\omega_0 = \sqrt{\frac{k}{m}}$.

3. On reconnaît l'équation différentielle d'un oscillateur harmonique de pulsation propre ω_0 .

La solution de l'équation différentielle comprend une solution particulière $z_p = z_e$ et une solution générale de la forme $z_g = A\cos(\omega_0 t) + B\sin(\omega_0 t)$. On a donc pour solution $z(t) = z_e + A\cos(\omega_0 t) + B\sin(\omega_0 t)$. On trouve A et B avec les conditions initiales.

Soit
$$z(t=0) = z_e = z_e + A$$
 soit $A=0$

$$\dot{z}(t) = -A\omega_0 \sin(\omega_0 t) + B\omega_0 \cos(\omega_0 t)$$
 avec $A = 0$ d'où $\dot{z}(t) = v_0 = B\omega_0$ donc $B = \frac{v_0}{\omega_0}$.

On a donc $z(t)=z_e+\frac{v_0}{\omega_0}\sin(\omega_0t)$. Pour tracer la courbe on place le point à t=0 à la position $z=z_e$ et avec une tangente à la courbe de pente positive puisque $v_0>0$. De plus la fonction z(t) varie entre $z_e-\frac{v_0}{\omega_0}$ et $z_e+\frac{v_0}{\omega_0}$.

