


Chap M2: dynamique en référentiel non galiléen

Observations: on étudie le mouvement d'un petit objet accroché au rétroviseur d'une voiture en mouvement.

Conclusion:

I. Rappel: première loi de Newton

La première loi de Newton s'énonce:

En langage mathématique:

 ${\bf Exemples:}$

Contre exemple: le pendule dans la voiture qui possède une accélération par rapport au sol

Il existe donc des référentiels galiléens et des référentiels non galiléens, or les lois de la mécanique: relation fondamentale de la dynamique (deuxième loi de Newton), le théorème du moment cinétique et les théorèmes énergétiques ne s'appliquent que dans les référentiels galiléens.

Le cours doit donc répondre à deux questions:

- Comment reconnaît-on un référentiel galiléen ?
- Que deviennent les lois de la mécanique dans un référentiel non galiléen ?

II. Référentiels galiléens ou non

On cherche ici à répondre à la première question. Pour cela soit un référentiel \mathcal{R} galiléen et un point matériel M pseudo-isolé. On peut donc écrire:

Soit \mathcal{R}' , un référentiel mobile dans \mathcal{R} . La loi de composition des accélérations s'écrit:
\mathcal{R}' est galiléen à condition que:
Conclusion:

III. Les lois de la mécanique en référentiel non galiléen

Ce paragraphe répond à le deuxième question posée.

Soit \mathcal{R} un référentiel galiléen.

Soit M un point matériel qui subit la résultante des forces extérieures \overrightarrow{F}_{ext} .

Soit \mathcal{R}' un référentiel mobile dans \mathcal{R} , tel que \mathcal{R}' n'est pas en translation rectiligne uniforme dans \mathcal{R} donc \mathcal{R}'

Les forces d'inertie s'appliquent au barycentre du système et l'expression de ces forces d'inertie dépend du mouvement de \mathcal{R}' dans \mathcal{R} , il est donc important dans un exercice de bien identifier en premier lieu ce mouvement.		
\mathcal{R}' en translation dans \mathcal{R}	\mathcal{R}' en rotation dans \mathcal{R} : on note $\overrightarrow{\omega}_{\mathcal{R}'/\mathcal{R}} = \omega \overrightarrow{e_z}$	
\overrightarrow{F}_{ie}		
$ec{F}_{ic}$		
La RFD appliquée à M dans \mathcal{R}' s'écrit:		
Le théorème du moment cinétique appliqué à M dans \mathcal{R}' s'écrit:		
Le théorème de la puis sance mécanique appliqué à M dans \mathcal{R}' s'écrit:		
A l'équilibre dans \mathcal{R}' on a:		

Conclusion: