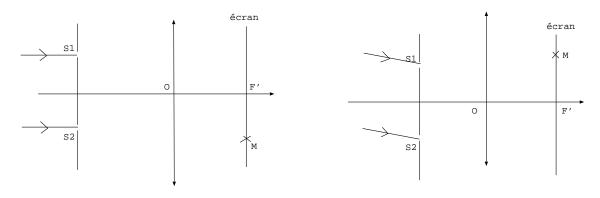
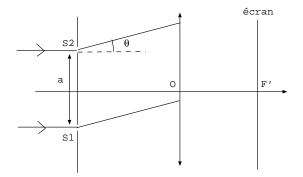

TD différences de marche

I. Constructions


Construisez les rayons issus de S et passant par M après la lentille.

Complétez les trajets des rayons lumineux.

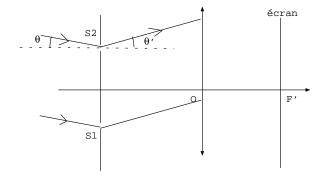

Construisez les rayons qui interfèrent en M sur l'écran. Citer le nom du phénomène qui se produit au niveau des fentes.

II. Différence de marche 1

Une source à l'infini émet deux rayons parallèles à l'axe optique. Après la traversée des fentes S_1 et S_2 , les rayons ressortent sous un angle θ par rapport à l'axe optique.

1. Citer le nom du phénomène qui se produit à la traversée des fentes?

2. Compléter les tracés des rayons lumineux et en déduire le point M sur l'écran où les rayons interfèrent.

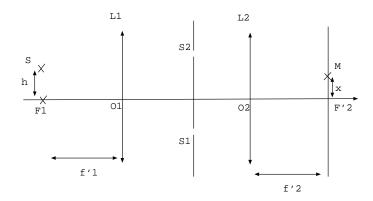

3. Exprimer la différence de marche $\delta(M) = (S_{\infty}S_2M) - (S_{\infty}S_1M)$ en fonction de θ et $a = S_1S_2$.

Réponse: $\delta(M) = a\theta$

III. Différence de marche 2

Une source à l'infini émet deux rayons parallèles inclinés d'un angle θ par rapport à l'axe optique. Après la traversée des fentes S_1 et S_2 , les rayons ressortent sous un angle θ' par rapport à l'axe optique.

1. Citer le nom du phénomène qui se produit à la traversée des fentes?


2. Compléter les tracés des rayons lumineux et en déduire le point M sur l'écran où les rayons interfèrent.

3. Exprimer la différence de marche $\delta(M) = (S_{\infty}S_2M) - (S_{\infty}S_1M)$ en fonction de θ , θ' et $a = S_1S_2$.

Réponse: $\delta(M) = a\theta + a\theta'$

IV. Différence de marche 3

Construisez les rayons issus de S, la source qui se trouve dans le plan focal objet de la lentille L_1 et qui interfèrent en M, qui se trouve sur l'écran dans le plan focal image de la lentille L_2 . Quel phénomène se produit au niveau des fentes?

Exprimer la différence de marche $\delta(M) = (SS_2M) - (SS_1M)$ en fonction de $h = F_1S$, $a = S_1S_2$, $x = F_2'M$ et les distances focales images f_1' et f_2' des deux lentilles.

Réponse: $\delta(M) = \frac{ax}{f_2'} + \frac{ah}{f_1'}$