
Entraînement au cours chap Th2

Sur le diagramme enthalpique, les entropies sont données en $kJ.kg^{-1}.K^{-1}$.

Indiquer les domaines de la vapeur, du liquide et du mélange liquide-vapeur. Indiquer les courbes de rosée et d'ébullition.

Placer les points sur le diagramme enthalpique et compléter le tableau:

	$h\ (kJ.kg^{-1})$	$s (kJ.kg^{-1}.K^{-1})$	$T (^{0}C)$	P(bar)	x_v	x_l
état A	360		40			
état B			30	1		
état C		1,85		4		

Retrouver x_v dans l'état A en appliquant le théorème des moments.

Calculer l'enthalpie de vaporisation à $60^{\circ}C$.

Calculer l'enthalpie de liquéfaction à $10^{0}C$.

Lire l'enthalpie massique et l'entropie massique de la vapeur saturante à $30^{0}C$.

Lire l'enthalpie massique du liquide saturant à $0^{\circ}C$.

Un GP dans l'état 1 tel que $(P_1 = 1 \ bar, T_1 = 300^K)$ subit une compression adiabatique jusqu'à la pression $P_2 = 5 \ bar$. Calculer T_2 . Donnée: $\gamma = 1, 4$.

Le fluide subit une détente isotherme à $20^{0}C$ de l'état de liquide saturant jusqu'à la pression de 1 bar. Calculer Δh .

Le fluide subit une transformation isobare à la pression P=2,0 bar de la température initiale $100^{0}C$ jusqu'à la température $0^{0}C$. Calculer Δs et Δh .