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DM 3 de physique
I. Décantation pour le traitement des eaux

La clarification par décantation est une des étapes réalisées dans le traitement des eaux des stations
d’épuration. Elle consiste à éliminer les particules polluantes en suspension dans l’eau polluée. L’eau
polluée, c’est-à-dire chargée en particules non désirées, circule en continu dans le bassin de décantation, à
faible vitesse horizontale −→u . Les particules ont le temps de se déposer au fond du bassin et l’eau de sortie
est ainsi clarifiée.

Le bassin de décantation est de longueur Lb et de profondeur db, sa largeur est indifférente. On note
respectivement η et ρe la viscosité dynamique et la masse volumique de l’eau polluée. η et ρe sont supposées
constantes.

On définit le repère (O,−→ex,
−→ey ,

−→ez) lié au bassin. L’axe Oz est vertical descendant. Le niveau d’entrée de
l’eau dans le bassin correspond à la cote z = 0.

On suppose que les particules polluantes sont sphériques, de rayon R, et qu’elles sont soumises à la force de
frottement fluide:

−→
F − 6πηR−→v où −→v est la vitesse des particules.

On note ρ0 la masse volumique des particules polluantes, supposée constante. On a: ρ0 > ρe.

On considère que l’eau arrive en amont du bassin avec une densité en particules polluantes notée N0.

Décantation statique

Dans un premier temps, l’eau ne circule pas horizontalement, −→u =
−→
0 et les particules polluantes qu’elle

contient chutent verticalement. Compte tenu des phénomènes de transport des particules polluantes dans
le bassin, la densité en particules polluantes n’est pas uniforme sur la hauteur du bassin. Elle dépend de la
profondeur z. Dans le bassin, on note n(z) la densité en particules polluantes à l’altitude z et n0 la valeur
associée à l’altitude z = 0, soit n0 = n(z = 0).

1. A partir de l’équation différentielle du mouvement, issue de la seconde loi de Newton, établir, en fonction
de ρ0, ρe, R, η et de l’accélération g de la pesanteur, la vitesse limite −→vl = vl

−→ez atteinte par ces particules.
Quel est le signe de vl ? Exprimer en fonction de ρ0, R et η, le temps caractéristique τc d’établissement de
cette vitesse limite.

On supposera par la suite que la constante de temps τc est très faible devant le temps de sédimentation (i.e.
le temps de chute dans le bassin) de sorte que le mouvement des particules est considéré comme uniforme à
la vitesse −→vl .

2. Cette chute des particules est à l’origine d’un courant convectif vertical des particules. On note:
−→
j =

j(z)−→ez , le vecteur densité de courant de particules associé. Préciser l’unité de
−→
j . Puis exprimer le vecteur

−→
j en fonction de n(z) et de −→vl .

En plus du courant précédent, on observe l’existence d’un second courant qui résulte d’un phénomène de
diffusion. On note D le coefficient de diffusivité des particules dans l’eau et

−→
jD = jD(z)−→ez le vecteur densité

de courant de particules associé à ce second courant.

3. Rappeler la loi de Fick et préciser les unités des grandeurs qui interviennent. Justifier qualitativement
l’existence de ce courant de diffusion. Préciser s’il est ascendant ou descendant en déduire le signe de jD(z).

4. En régime permanent, ces deux courants se compensent. En déduire, en fonction de n0, D et vl,
l’expression de la densité de particules n(z). Représenter graphiquement la fonction n(z) en fonction de z.

5. On note l la largeur du bassin selon Oy.

Exprimer en fonction de N0, Lb, db et l le nombre total de particules polluantes dans le bassin.

Exprimer ce même nombre de particules en utilisant la fonction n(z).

Par conservation du nombre de particules dans le bassin, exprimer n0 en fonction de N0, D, db et de vl.

6. Définir en fonction de D, db et de vl, un temps caractéristique τs de sédimentation, ainsi qu’un temps
caractéristique τD de diffusion des particules sur la hauteur du bassin.

A quelle condition portant sur τs et τD, la décantation statique permet-elle une clarification de l’eau ?
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Clarification dynamique de l’eau polluée

Dans un second temps, l’eau polluée est mise en mouvement et s’écoule avec une vitesse horizontale constante
−→u . Un aspirateur situé au fond du bassin aspire maintenant les particules polluantes. Un modèle simple
considère que le mouvement des particules polluantes est la combinaison d’un mouvement horizontal de
vitesse −→u dû à l’entrâınement de l’eau et d’un mouvement vertical de chute à la vitesse constante −→vl
déterminée précédemment dans l’étude de la décantation statique. L’eau sera clarifiée si les particules
polluantes introduites à l’entrée du bassin ont le temps de tomber au fond avant que l’eau d’entrâınement,
injectée à l’entrée du bassin en x = 0, ne soit parvenue à l’autre extrémité de sortie du bassin, située en
x = Lb.

7. Définir en fonction de Lb et u, un temps de traversée τt du bassin. À quelle condition, portant sur τt et
τs, la clarification dynamique est-elle efficace ?

II. Diffusion de nutriments autour d’une bactérie

Dans ce problème, nous allons nous intéresser à un aspect de la biophysique des bactéries, s’articulant autour
de leur capacité à assurer la présence d’une quantité suffisante de nutriments nécessaire à leur métabolisme
dans leur environnement. Nous allons voir qu’une bactérie immobile ne peut pas excéder une taille critique.

Nous assimilons la bactérie à une sphère de rayon R
et nous supposons qu’elle absorbe des nutriments à
sa surface. Dans le milieu extérieur, les nutriments
migrent de façon diffusive, avec un coefficient de dif-
fusion D. Nous appelons n(r) la densité particulaire
en nutriments en un point M, placé à la distance r

du centre de la bactérie. On note n∞ la densité par-
ticulaire en nutriments très loin de la bactérie. Nous
appelons

−→
j = j(r)−→er le vecteur densité de courant

de nutriments à l’extérieur de la bactérie.

R
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présence et diffusion

 de nutriments dont

 la bactérie se nourrit

1. Ecrire la loi de Fick en précisant la dimension des différentes grandeurs physiques qui interviennent et
le sens physique de cette équation.

En déduire l’expression de
−→
j en fonction de la densité particulaire en nutriments. Donnée:

−−→
gradV =

∂V

∂r
−→er +

1

r

∂V

∂θ
−→eθ +

1

r sin θ

∂V

∂φ
−→eφ pour V = V (r, θ, φ) en coordonnées sphériques.

La collecte de nutriments par la bactérie peut se quantifier par un flux φ0(r) correspondant au nombre de
nutriments entrant par unité de temps dans une sphère de rayon r centrée sur la bactérie. Nous insistons
sur ce choix de convention, commode dans la situation considérée mais inhabituel. Au niveau de la surface de
la bactérie, le flux φ0(r = R) est déterminé de sorte que la quantité de matière entrante permette d’assurer
l’activité métabolique, caractérisée par la quantité de matière de nutriments consommée par unité de temps
et de volume de la bactérie notée A en mol.−1.m−3. Nous étudions le régime stationnaire.

2. En considérant un système élémentaire compris entre les sphères de rayons r et r + dr avec r > R,
montrer que φ0(r) est égale à une constante que l’on notera φ0.

3. Exprimer le flux de nutriments φ0 collecté par la bactérie en fonction de sa consommation en nutriments
A, du nombre d’Avogadro Na et de son rayon R.

4. Exprimer φ0(r) en fonction de j(r) et r puis en fonction de D, r et de n(r). En déduire le profil de
densité particulaire n(r) en fonction de n∞, D, r et φ0. Donner les signes de j(r) et φ0 en expliquant le
phénomène étudié.

5. Montrer qu’une bactérie de rayon R donné ne peut pas collecter plus qu’une certaine quantité de nutri-
ments par unité de temps, définissant ainsi une consommation maximale A∗ dont l’expression en fonction
de n∞, D, Na et R est à déterminer.

6. En utilisant les données concernant la bactérie d’Escherichia Coli fournis en fin du sujet, déterminer
l’ordre de grandeur de concentration en glucose cm minimale dans le milieu pour qu’une bactérie puisse y
survivre.

Données numériques: coefficient de diffusion du glucose dans l’eau D = 10−5 cm2.s−1, nombre d’Avogadro:
Na = 6.1023 mol−1.

Caractéristiques d’une bactérie Escherichia Coli: rayon du corps R = 1 µm, consommation de glucose par
unité de volume de bactérie et de temps A = 10 mol.m−3.s−1.
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