marche au hasard à une dimension

On modélise la marche aléatoire selon Ox d'une particule effectuant N pas aléatoires. A intervalles de temps régulier τ , la particule subit un choc à la suite duquel, aléatoirement, elle continue son chemin selon +Ox ou -Ox. Entre deux chocs, la particule se déplace donc soit vers la droite soit vers la gauche d'une distance moyenne, appelée libre parcours moyen et notée l.

I. Approche théorique

D'un instant à l'autre, l'abscisse de la particule varie aléatoirement de +l ou -l avec une égale probabilité. On note p(x,t) la probabilité qu'une particule se trouve en x à l'instant t.

- 1. Exprimer $p(x, t + \tau)$ en fonction de p(x + l, t) et p(x l, t).
- **2.** On donne le DL à l'ordre 2 en ϵ petit: $p(x+\epsilon,t) = p(x,t) + \epsilon \frac{\partial p}{\partial x}(x,t) + \frac{\epsilon^2}{2} \frac{\partial^2 p}{\partial x^2}(x,t)$.

Ecrire le DL à l'ordre 1 en τ de $p(x, t + \tau)$. Ecrire les DL à l'ordre 2 en l de p(x + l, t) et de p(x - l, t).

3. En déduire que p(x,t) vérifie une équation de la forme $\frac{\partial p}{\partial t} = D \frac{\partial^2 p}{\partial x^2}$. Exprimer D en fonction de l et τ .

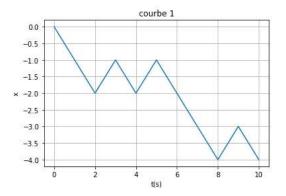
II. Simulation numérique de la marche au hasard

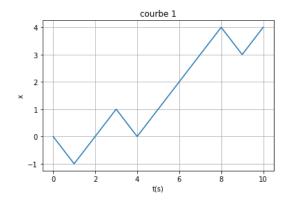
A l'instant $t_0 = 0$, la particule se trouve en x = 0. On cherche la position x(t) de la particule aux instants $t_i = \tau, 2\tau, 3\tau, \dots$ On simule la marche au hasard de la particule sous python en utilisant la fonction random.choice([-l,+l]) qui renvoie aléatoirement la valeur -l ou +l.

On donne le code suivant:

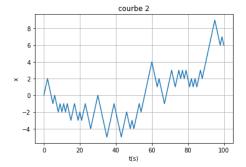
```
1 import matplotlib.pyplot as plt
 2 import numpy as np
 3 import random
5 l=1
6 def position(N):
      poslist=[0]
      for i in range(N):
9
           poslist.append(poslist[i]+random.choice([+l,-l]))
      return np.array(poslist)
10
11
12 N=...
13 temps=[j for j in range(N+1)]
14 plt.plot(temps,position(N))
15 plt.title('courbe 1')
16 plt.xlabel('t(s)')
17 plt.ylabel('x')
18 plt.grid()
19 plt.show()
```

1. On exécute le code deux fois et on obtient:





- **1.a.** Expliquer la ligne 9 et compléter la ligne 12.
- 1.b. Ecrire le contenu de la liste temps et donner la valeur numérique de τ choisie ici. Ecrire ce que renvoie (numériquement) la fonction position(N) pour chacune des courbes obtenues.
 - **1.c.** Qu'a-t-on modifié dans le code pour obtenir cette courbe?



- 2. Les particules, au nombre de N_p , se trouvent initialement à l'origine O des coordonnées, puis chacune d'elles effectue une marche aléatoire de N pas comme dans le paragraphe précédent. On stocke les positions de toutes les particules à tous les instants dans un tableau noté T de N+1 lignes et de N_p colonnes. L'élément de la ligne i et de la colonne j du tableau T se note [i,j], il correspond à l'abscisse $x_j(t_i=i\tau)$ de la particule d'indice j.
- T[i,:] désigne la ligne i du tableau T, cette ligne contient les abscisses de toutes les particules à l'instant t_i . T[:,j] désigne la colonne j du tableau T, elle contient les abscisses de la particule d'indice j à tous les instants.
- **2.a.** Exemple: on donne le tableau T cidessous.

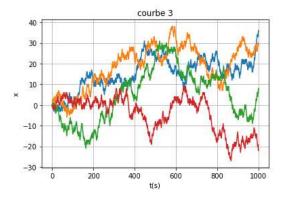
0	0	0
1	1	-1
2	0	0
1	1	-1
2	0	-2

Donner les valeurs de N_p et de N. Donner $x_0(t=3\tau)$ pour la particule d'indice 0, $x_1(t=2\tau)$ pour la particule d'indice 1 et $x_2(t=\tau)$ pour la particule d'indice 2. Poser le calcul permettant d'évaluer $< x(t=\tau) >$ (valeur moyenne de la position calculée sur l'ensemble des particules à l'instant $t=\tau$). Poser le calcul permettant d'évaluer $< x^2(t=3\tau) >$ (valeur moyenne du carré de la position calculée sur l'ensemble des particules à l'instant $t=3\tau$).

2.b. On complète le code précédent par

```
30 N=1000
31 temps=[j for j in range(N+1)]
32 for i in range(0,4):
33    plt.plot(temps,position(N))
34    plt.title('courbe 3')
35 plt.xlabel('t(s)')
36 plt.ylabel('x')
37 plt.grid()
38 plt.show()
```

L'exécution du code donne le graphe suivant. Expliquer ce que l'on observe et commenter les courbes.



2.c. On complète le code par:

```
40 Np=1000
41 T=np.zeros((N+1,Np))
42 for i in range(Np):
43
       T[:,i]=position(N)
44
45 def f(l):
46
       5=0
       for i in range(len(l)):
47
48
           s=s+l[i]**2
49
       return s/len(l)
50
51 def g(l):
52
       s=0
53
       for i in range(len(l)):
54
           s=s+l[i]
55
       return s/len(l)
```

Donnée: T = np.zeros((N + 1, Np)) crée un tableau contenant N + 1 lignes et Np colonnes ne contentant que des zéros.

T[:,i] représente les termes de la colonne i

Que représente le tableau T?

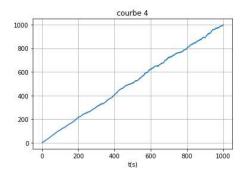
Quelle opération réalise la fonction f?

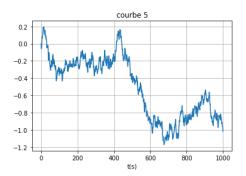
Quelle opération réalise la fonction g?

2.d. On complète une dernière fois le code par (donnée: T[i,:] représente les éléments de la ligne i du tableau):

```
57 11=[]
58 for i in range(N+1):
       l1.append(f(T[i,:]))
60 plt.plot(temps, l1)
61 plt.xlabel('t(s)')
62 plt.title('courbe 4')
63 plt.grid()
64 plt.show()
65
66 12=[]
67 for i in range(N+1):
       l2.append(g(T[i,:]))
69 plt.plot(temps, l2)
70 plt.xlabel('t(s)')
71 plt.title('courbe 5')
72 plt.grid()
73 plt.show()
```

L'exécution du code donne les courbes suivantes:





Préciser l'ordonnée de la courbe 4 et l'ordonnée de la courbe 5.

Commenter les courbes et conclure.