
PC - Lycée Dumont D’Urville

DS 4 de physique
Le sujet comprend quatre exercices indépendants à traiter dans l’ordre de votre choix. La feuille d’annexe
est à rendre avec la copie. Il est demandé de numéroter les pages au format i/N où i est le numéro de la
page et N le nombre de pages.

Il est demandé un effort de présentation (tirer un trait entre chaque question et encadrer les résultats) et de
rédaction (prendre soin de nommer les lois utilisées, les hypothèses pour les appliquer et expliquer clairement).

I. Turbine à gaz

Le biogaz provient principalement de la fermentation anaérobie, c’est-à-dire sans oxygène, des déchets de
l’agriculture, de l’industrie alimentaire et des ordures ménagères. À l’état brut, sa teneur en méthane est un
peu supérieure à 50 %. Après une épuration poussée, il atteint le même niveau de qualité que le gaz naturel
et porte alors le nom de bio-méthane (CH4). Il peut être valorisé par la production d’énergie électrique. Il
est considéré comme une énergie renouvelable à part entière depuis plus de dix ans et sa combustion libère
moins de CO2 que celle du fuel (C16H32).

1. Justifier, à l’aide des données fournies, que pour une même production d’énergie, la combustion du
méthane libère moins de CO2 que celle du fuel.

Données: Pouvoir calorifique (énergie thermique libérée lors de la combustion d’une mole de carburant):

méthane : 803 kJ.mol−1

fuel : 7 600 kJ.mol−1

On étudie ici une installation motrice dont le principe
de fonctionnement est décrit sur la figure suivante.

Elle fonctionne en régime permanent suivant un cycle
de Hirn. Le fluide utilisé est de l’eau. La pompe ali-
mente le générateur de vapeur en liquide haute pres-
sion (point 1), on a P1 = 10 bars. Le liquide est
porté à ébullition, puis totalement vaporisé, et en-
fin surchauffé de façon isobare par le brûleur au bio-
méthane (point 2). La vapeur surchauffée se détend
ensuite dans la turbine accouplée à un alternateur
électrique (point 3). Au point 3, on a P3 = 1 bar, la
vapeur est sous forme de vapeur saturante de titre
massique en vapeur xv = 1. La vapeur humide
basse pression est totalement condensée, puis le liq-
uide (point 4) est réintroduit dans la pompe. Un cir-
cuit secondaire, associé au condenseur et relié à une
tour de refroidissement ou autre, permet d’extraire
l’énergie issue du condenseur par transfert thermique.

Hypothèses :

- l’évolution dans la turbine est adiabatique et réversible

- l’évolution dans la pompe est supposée isenthalpique

- dans les bilans énergétiques, les variations d’énergie cinétique et potentielle du fluide seront négligées par
rapport aux termes enthalpiques

- on néglige les pertes mécaniques de la turbine et le rendement de l’alternateur est considéré égal à 100 %

2. Que dire de l’entropie qu cours de la transformation 2 − 3. Justifier votre réponse. Compléter le
diagramme enthalpique de l’eau en annexe en y portant les points 1, 2, 3 et 4. Reproduire et compléter le
tableau 1 sur votre copie.

Point 1 Point 2 Point 3 Point 4
T (0C)
P (bar) 10 10 1 1
Etat vapeur saturante xv = 1 liquide saturant xl = 1

h(kJ.kg−1

3. Exprimer en fonction des enthalpies massiques aux points 1, 2, 3 et 4 :
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- le travail utile massique de la turbine wuT

- le transfert thermique massique qGV échangé avec le générateur de vapeur

- le transfert thermique massique qcond échangé avec le circuit secondaire associé au condenseur.

Évaluer numériquement wuT , qGV et qcond.

Représenter le schéma fonctionnel de cette machine et exprimer le rendement de l’installation. Faire
l’application numérique.

4. Évaluer le débit massique en eau du circuit primaire, noté Dm, pour une production d’électricité d’une
puissance Pelec = 250 kW .

II. Diffusion de neutrons

On étudie la diffusion de neutrons dans un barreau cylindrique d’axe Oz, de longueur L et de rayon R1. Le
matériau qui compose le barreau a pour coefficient de diffusion D et il absorbe les neutrons. On note:

• n(r, t) la densité particulaire de neutrons à la distance r de l’axe Oz à l’instant t

•
−→
jD = jD(r, t)−→er le vecteur densité de courant de neutrons diffusés

• K le nombre de neutrons par unité de volume et de temps absorbés par le matériau. K est une constante
positive.

R1

Oz

L

jD(r,t)
r

M

Vue de coté Vue de dessus 

R1

r
M

jD(r,t)

1. La diffusion de neutrons dans le matériau obéit à la loi de Fick. On donne
−−→
grad V =

∂V

∂r
−→er +

1

r

∂V

∂θ
−→eθ +

∂V

∂z
−→ez .

Ecrire la loi de Fick et la simplifier dans le cas où n = n(r, t). Donner le sens physique de cette loi.

2. Soit un système élémentaire compris entre les cylindres de même axe Oz, de même longueur L et de
rayons r et r + dr avec r + dr < R1.

2.a. Exprimer le volume dτ de ce système.

2.b. Déduire d’un bilan de matière que l’on a
∂n

∂t
= −

1

r

∂

∂
(rjD(r, t)) −K.

2.c. Dans toute la suite, on se place en régime permanent, simplifier cette équation. On la note (∗).

3. On note n1 la densité particulaire de neutrons en r = R1 et le vecteur densité de courant est défini
pour toute valeur de r ≤ R1. Déduire de l’équation (∗) l’expression de jD(r) et montrer que n(r) s’écrit

n(r) = n1 +
K(r2 −R2

1)

4D
. En déduire la densité particulaire minimale de neutrons dans le cylindre. Quelle

condition doit vérifiée K pour que cette densité soit définie?

III. Séchage des sols

On note T la température, supposée uniforme, de l’air extérieur situé en z > H et assimilable à un gaz
parfait, R désigne la constante des gaz parfait et Na la constante d’Avogadro. La pression partielle de la
vapeur d’eau dans l’atmosphère est notée Pext.

On admet que, sous l’action de l’air extérieur, le sol s’assèche par sa partie supérieure. On adopte un modèle
dans lequel 0 < zm(t) < H délimite la partie mouillée du sol. On a zm(t = 0) = H .

À la date t, dans la zone 0 < z < zm(t), le sol est mouillé et contient de l’eau sous forme liquide. On note
nliq le nombre de molécules d’eau liquide par unité de volume de sol. nliq est supposé constant.
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Dans la zone zm(t) < z < H , le sol est sec mais il
contient de l’eau sous forme de vapeur assimilée à
un gaz parfait. On fait l’hypothèse que cette vapeur
d’eau est également à la température uniforme T . La
vapeur d’eau diffuse dans cette zone vers l’extérieur
suivant la loi de Fick de coefficient de diffusion D. On
note nvap(z, t) la densité locale en molécules d’eau
sous forme vapeur et φS(z, t) le débit ascendant en
molécules d’eau soit le nombre de molécules d’eau
vapeur qui traversent une section horizontale S, ori-
entée vers le haut et située à la côte z, par unité de
temps.

z

H

zm(t)

0

sol sec contenant

de l’eau sous forme

de vapeur

sol mouillé contenant

de l’eau sous forme

liquide

atmosphère contenant 

de la vapeur d’eau à la

pression Pext

1. On note Psat(T ) la pression de vapeur saturante de l’eau à la température T . Cette pression est la pression
lorsque l’eau liquide est en équilibre avec l’eau vapeur. Justifier le fait que pour qu’il y ait évaporation et
que le sol puisse sécher, il faut avoir Pext < Psat(T ).

2. Pourquoi un sol sèche-t-il plus vite lorsqu’il y a du vent ?

3. Rappeler la loi de Fick et préciser les unités, dans le Système International, et les noms des grandeurs

qui interviennent. Exprimer φS(z) en fonction de D, S et
dnvap

dz
en régime stationnaire où nvap = nvap(z).

4. On étudie la diffusion de la vapeur d’eau dans le sol sec (zm < z < H), on suppose que le phénomène
de diffusion est en régime stationnaire. On considère le système élémentaire composé de sol sec, de section
S compris entre z et z + dz. Montrer que le débit φS(z) est uniforme. On le notera φS par la suite.

5. Pour zm(t) < z < H , déterminer l’expression de nvap(z) en fonction de nvap(zm), φS , D, S, z et zm.

6. En considérant qu’en z = zm, la vapeur d’eau est en équilibre thermodynamique avec l’eau liquide (soit
sa pression est égale à la pression de vapeur saturante), exprimer nvap(zm) en fonction de Na, R, T et
Psat(T ).

7. En déduire l’expression de nvap(z) en fonction de Na, R, T , Psat(T ), φS , D, S, z et zm.

Exprimer alors P (H) en fonction de Na, R, T , Psat(T ), φS , D, S, H et zm.

8. A l’interface sol-atmosphère, on suppose que la pression de vapeur d’eau est continue. En déduire que

φS s’écrit φS =
(Psat(T )− Pext)NaDS

(H − zm)RT
.

9. On admet que l’équation différentielle traduisant la conservation des molécules d’eau à l’interface z = zm

s’écrit
dzm
dt

= −
φS

Snliq
. Vérifier que cette équation est homogène. Justifier le signe − et les variations de

dzm
dt

en fonction de φS et nliq .

10. À l’aide des deux équations établies aux deux questions précédentes, en déduire l’équation différentielle
vérifiée par zm(t), puis exprimer le temps de séchage τsechage en fonction de Psat(T ), Pext, R, T , H , zm, D
et Na. Pour la résolution de l’équation différentielle, on utilise la méthode de séparation des variables.

IV. Interféromètre de Michelson

Les parties A et B de ce problème sont indépendantes.

A- Résolution interférométrique d’un doublet spectral

Les moyens spectroscopiques conventionnels (spectroscope à prisme ou à réseau) peuvent se révéler insuff-
isants quand il s’agit de résoudre un doublet à très faible écart spectral. On peut alors avoir recours à des
méthodes interférométriques. Il est question dans cette partie de l’utilisation de l’interféromètre de Michel-
son. Le schéma 1 de principe d’un interféromètre de Michelson réglé en lame d’air est donné en annexe.
On note Ox et Oy deux axes perpendiculaires définissant les directions des deux bras de l’interféromètre.
S est une source lumineuse ponctuelle située sur Ox. M1 et M2 sont deux miroirs plans parfaitement
réfléchissants, disposés perpendiculairement à Ox en H1 et respectivement à Oy en H2. Le trait incliné à
450, noté Ls schématise un groupe de deux lames à faces parallèles. Ce groupe est supposé n’introduire
aucune différence de marche sur les trajets lumineux. Lp désigne une lentille mince convergente placée à la
sortie de l’interféromètre de manière à ce que son axe optique soit confondu avec l’axe Oy. Un écran E est
placé dans le plan focal image de Lp. On note C le foyer image de Lp.
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1. Nommer les lames qui composent Ls. Qu’est-ce qui les distingue ? Expliquer la nécessité pratique
d’utiliser deux lames.

2. Un rayon lumineux, noté (r), émis par S, a été représenté. Compléter le schéma 1 en annexe en faisant
un tracé soigné des deux rayons (r1) et (r2) qui émergent de l’interféromètre après division de (r). On
laissera apparent tout élément de construction (traits, prolongements de rayons, points remarquables , etc.)
justifiant d’un tracé raisonné sans utilisation d’aucun rapporteur d’angle. Tout élément explicatif (no ms,
positions des points, constructions réalisées...) sera également mentionné.

3. Sur ce même schéma positionner le miroir fictif M ′

1 justifiant de la dénomination ”lame d’air” en faisant
apparâıtre le point Q1 intersection de M ′

1 avec le prolongement fictif ad hoc de (r1). Enfin, terminer le
tracé des rayons (r1) et de (r2) après la lentille Lp jusqu’à l’écran E (on demande comme ci-dessus un tracé
raisonné).

4. Indiquer quelle est la forme des franges d’interférences observées sur l’écran (aucune justification n’est
demandée). Comment nomme -t-on ces franges?

5. En appelant e l’épaisseur de la lame d’air et en prenant l’indice optique de l’air égal à 1, exprimer la

différence de marche δ au centre C de l’écran. Faire un schéma sur votre copie des deux rayons issus
de S qui convergent en C pour appuyer votre résultat.

6. On étudie le cas où la source de lumière utilisée présente un doublet spectral de nombres d’ondes σ1

et σ2 (le nombre d’onde est l’inverse de la longueur d’onde soit σ =
1

λ
). Donner l’expression des ordres

d’interférence p1 et p2 en C pour chaque radiation du doublet en fonction de δ, σ1 et σ2.

7. Expliquer la notion de brouillage. Pour quelles valeurs de la différence p1 − p2 y-a-t-il brouillage en C?
En pratique la totalité de la figure d’interférences est affectée et on perd la visibilité des franges partout sur
l’écran. En déduire, en fonction de l’écart spectral ∆σ = σ1−σ2, toutes les valeurs de e (épaisseur de la lame
d’air) pour lesquelles il y a brouillage. En déduire De, le déplacement du miroir M1 entre deux brouillages
consécutifs.

Application numérique: dans le cas du doublet Hα ( écart spectral ∆σ = 0, 360 cm−1), calculer la variation
De de l’épaisseur de la lame d’air pour passer d’une situation de brouillage à la situation de brouillage
directement consécutive.

8. À l’entrée de leur interféromètre historique de 1887, Michelson et Morley ont utilisé un dispositif à
prismes muni d’une fente pour sélectionner la raie Hα présente dans le spectre solaire. Ils ont observé des
brouillages périodiques lors de la translation du miroir mobile de leur interféromètre. Partant du contact
optique (bras de longueurs rigoureusement égales à L0, ils ont compté un total de 6 brouillages à partir du
contact optique pour un déplacement du miroir égal à 1/160 ième de la longueur L0 (déplacement entre ces
6 brouillages successifs). Calculer la valeur de L0 pour l’interféromètre de Michelson de 1887.

9. L’interféromètre, construit dans un sous -sol du campus de l’Université de Cleveland aux Etats-Unis,
était monté sur une table en granite rectangulaire posée sur un cylindre de bois flottant dans du mercure.
La table faisait environ 130 cm × 110 cm de cotés. La longueur L0 des bras de l’interféromètre était
synthétisée grâce à deux groupes de miroirs permettant plusieurs allers -retours du faisceau sur chaque
voie, comme représenté sur la figure suivante. A partir de la figure, donner, en expliquant votre calcul,
une estimation grossière de la longueur d’un bras de l’interféromètre. L’ordre de grandeur obtenu est -il en
accord avec la valeur L0 trouvée à la question 8.
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B- Michelson réglé en coin d’air

Dans cette question l’interféromètre de Michelson est réglé en coin d’air. On note M ′

1 l’image de M1 par la
séparatrice et on donne le schéma du coin d’air.

10. Reproduire le schéma ci-contre, et représenter
les deux rayons qui interfèrent, montrer que la
différence de marche s’écrit δ2/1(M) = 2αx (dans
l’approximation des petits angles) et en déduire
l’interfrange.

Oxx0

α

M’1

M2

11. La source est monochromatique de longueur d’onde λ. On observe les franges d’interférences sur un
écran à l’aide d’une lentille de focale image f ′ = 30 cm placée à 38 cm du miroir M2. On mesure sur l’écran
un interfrange ie = 1, 3 cm. Calculer la distance entre la lentille et l’écran. Calculer l’angle α du coin d’air.
Donnée: λ = 632 nm.

On rappelle:
1

OA′
−

1

OA
=

1

f ′
et γ =

OA′

OA
.

12. On observe les interférences en lumière blanche (λmin = 450 nm et λmax = 750 nm). On observe
le spectre en un point M de l’écran qui correspond au point d’abscisse x = 2, 4 cm sur le miroir (schéma
ci-dessus). Ce spectre présente des cannelures. Expliquer le phénomène et calculer le nombre de cannelures
présentes. Donnée: α = 9, 1.10−5 rad.

5



NOM:

Annexe: diagramme enthalpique de l’eau
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Annexe: schéma 1
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V. Michelson

1. Ls est composé d’une lame semi-réfléchissante composée d’une lame de verre d’épaisseur d et d’indice n
sur laquelle on a réalisé un dépôt métallique: c’est la lame séparatrice, et d’une lame de verre d’épaisseur d
et d’indice n appelée compensatrice. La lame semi-réfléchissante introduit une différence de marche entre les
rayons qui ne suivent pas le même chemin dans l’interféromètre, la lame compensatrice est là pour introduire
une différence de marche qui compense celle présente à cause de la séparatrice.

2. On trace le symétrique S′ de S par Ls (c’est l’image de S par le miroir de la lame semi réfléchissante),
on en déduit le rayon réfléchie sur Ls. On trace le symétrique de S′ par M2 et on en déduit le rayon réfléchi
sur le miroir M2.

Le rayon qui traverse la lame semi-réfléchissante est réfléchi sur M1 en passant par S′

1, image de S par M1

ou encore symétrique de S par le plan de M1. Ensuite le rayon réfléchi sur M1 se réfléchit sur la lame semi
réfléchissante, on trouve ce rayon grâce à S1 image de S1 par la lame semi réfléchissante.

3. Les rayons sortent parallèles entre eux du Michelson. On trace le rayon auxiliaire parallèle à ces deux
rayons et passant par le centre de la lentille (c’est le rayon que j’appelle le rayon magique). Les trois rayons
parallèles entre eux convergent sur l’écran en un foyer image secondaire.

4. Les franges sont des cercles, appelés franges d’égale inclinaison. Elles sont localisées à l’infini.

5. Les rayons qui convergent en C sont ceux issus
de S passant par Ox. La différence de marche entre
ces deux rayons est δ = 2e.

M1

M2

C

S

M’1

e

6. Les ordres d’interférences s’écrivent p1 =
δ

λ1
= δσ1 et p2 =

δ

λ2
= δσ2.

7. Chaque longueur d’onde donne son propre système de franges et à l’écran on observe la superposition
de ces deux systèmes de franges. Lorsque les franges brillantes d’un système (par exemple p1 entier) se
superposent aux franges sombres de l’autre système (par exemple p2 demi entier), on observe un écran
uniformément éclairé, les franges ne sont plus visibles, on dit qu’il y a brouillage.

On a donc brouillage pour p1 − p2 = k +
1

2
où k est un entier relatif. Ou encore 2ek(σ1 − σ2) = k +

1

2
soit
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ek =
k + 1

2

2(σ1 − σ2)
=

k + 1
2

2∆σ
.

On en déduit donc De = ek+1 − ek =
1

2σ
= 1, 39 cm.

8. Pour e = 0, c’est le contact optique. Pour e1, on observe le premier brouillage, pour e2, le second

brouillage... et pour e6 le 6 ième brouillage. D’après l’énonce e6 − e1 =
L0

160
soit L0 = 160(e6 − e1) =

160.5De = 11, 1 m.

9. Un rayon lumineux entre sa transmission sur le verre semi-argenté et sa réflexion, parcourt une demi
diagonale puis 7 diagonales, la longueur d’un bras du Michelson est donc 7, 5 fois la diagonale de longueur

approchée
√

1102 + 1302 = 170 cm. Donc L0 = 7, 5.170 = 12, 8 m: c’est de l’ordre de grandeur des 11
mètres trouvés précédemment.

VI. Diffusion de neutrons

1. La loi de Fick s’écrit
−→
jD = −D

−−→
grad n(r, t) = −D

∂n

∂r
−→er . Cette loi traduit que la diffusion se fait des

fortes vers les faibles densités et qu’elle est d’autant plus efficace que le coefficient de diffusion est grand et
que les inhomogénéités de densités sont importantes.

2.

2.a. Le volume compris entre les cylindres
de rayons r et r+ dr s’écrit dτ = 2πrLdr (surface du
petit cylindre fois l’épaisseur).

r

r+dr

jD(r,t)

jD(r+dr,t)

système

2.b. Le nombre de neutrons qui entrent dans le système est le nombre de neutrons qui traversent
le cylindre de rayon r soit δNe = jD(r, t)2πrLdt.

Le nombre de neutrons qui sortent du système est le nombre de neutrons qui traversent le cylindre de rayon
r + dr soit δNs = jD(r + dr, t)2π(r + dr)Ldt.

Le nombre de neutrons dans le système à l’instant t est N(t) = n(r, t)2πrLdr.

Le nombre de particules dans le système à l’instant t+ dt est N(t+ dt) = n(r, t+ dt)2πrLdr .

Le nombre de neutrons absorbés par le matériau entre t et t+ dt est δNabs = K2πrLdrdt.

La conservation du nombre de neutrons s’écrit N(t+ dt)−N(t) = δNe − δNs + δNabs.

d’où n(r, t+ dt− n(r, t))2πrLdr = −(jD(r + dr, t)(r + dr) − jD(r, t)r)2πLdt −K2πrLdrdt.

avec dt et dr petits on fait les DL:
∂n

∂t
2πrLdrdt = −

∂(jD(r, t)r)

∂r
2πLdrdt−K2πrLdrdt.

soit
∂n

∂t
= −

1

r

∂(jD(r, t)r)

∂r
−K.

3. En régime stationnaire
∂n

∂t
= 0 soit

1

r

∂(jD(r, t)r)

∂r
= −K.

On a donc
∂(jD(r, t)r)

∂r
= −Kr soit en primitivant jD(r, t)r = −

Kr2

2
+B ou encore jD(r, t) = −

Kr

2
+

B

r
.

En r = 0, jD diverge. Il faut donc prendre B = 0 pour que jD soit défini en tout point.

On a donc jD(r) = −
Kr

2
.

On a
dn

dr
= −

jD
D

= +
Kr

2D
d’après la loi de Fick.

On primitive pour trouver n soit n(r) =
Kr2

4D
+ C.

On trouve la constante C en utilisant la condition aux limites données par l’énoncé n(r = R1) = n1 =
KR2

1

4D
+ C.

On a donc n(r) = n1 +
K(r2 −R2

1)

4D
.
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4. La densité de neutrons est minimale sur l’axe du cylindre en r = 0, on a nmin = n1−
KR2

1)

4D
. Une densité

est positive soit il faut n1 >
KR2

1

4D
ou encore K <

4Dn1

R2
1

.

VII. Correction: séchage des sols

1. Il y a évaporation lorsque les molécules d’eau liquide du sol se transforment en vapeur. Cela se produit
lorsque Pext est inférieure à la pression de vapeur saturante. En effet, lorsque la pression en vapeur d’eau
est plus faible que Psat, des molécules d’eau liquide se vaporisent pour augmenter la pression de la vapeur
d’eau pour atteindre la valeur de la pression à l’équilibre, Psat(T ).

2. Le vent chasse les molécules d’eau vapeur qui sont à la surface du sol, ainsi il y a moins de molécules
d’eau vapeur, et l’évaporation augmente pour former de nouvelles molécules d’eau vapeur pour augmenter
la pression de vapeur d’eau pour qu’elle atteigne sa valeur à l’équilibre Psat(T ). Ainsi le sol sèche plus vite.

3. La loi de Fick s’écrit
−→
jD = −D

−−→
grad n où

−→
jD est le vecteur densité de courant de particules en

particules.m−2.s−1, n est la densité particulaire ou le nombre de particules par unité de volume en particules.m−3

et D est le coefficient de diffusion en m2.s−1.

Le flux de particules s’écrit φS(z) = jD(z, t)S = −D
dnvap

dz
S d’après la loi de Fick.

4. On considère le système élémentaire de surface S
compris entre z et z + dz. En régime stationnaire,
le nombre de molécules d’eau qui entrent dans ce
système est égal au nombre de molécules d’eau qui
en sortent entre t et t + dt. On a donc φS(z)dt =
φS(z + dz)dt ainsi φS ne dépend pas de z.

Oz

z+dz

z

jD(z+dz)

jD(z)

systeme

5. On a φS = −D
dnvap

dz
S = constante donc

dnvap

dz
=

−φS

DS
. On primitive: nvap(z) =

−φSz

DS
+ C. On

trouve la constante C en appliquant la condition aux limites nvap(zm) =
−φSzm
DS

+ C. On en déduit

nvap(z) =
−φS(z − zm)

DS
+ nvap(zm).

6. On a P (z = zm) = Psat(T ). Or la vapeur d’eau est un GP donc on peut appliquer P (z = zm) = Psat(T ) =
nRT

V
où n est le nombre de moles de vapeur d’eau et nvap est le nombre de molécules d’eau par unité de

volume on a donc nvap =
nNa

V
soit P (z = zm) = Psat(T ) =

nvap(zm)RT

Na
soit nvap(zm) =

Psat(T )Na

RT
.

7. On remplace dans l’expression de nvap(z) soit nvap(z) =
−φS(z − zm)

DS
+

Psat(T )Na

RT
.

On applique la loi des GP en z = H soit P (z = H) =
n(z = H)RT

V
avec n(z = H) est le nombre de moles

d’eau en z = H soit comme précédemment n(z = H) =
nvap(z = H)V

Na
donc P (z = H) =

nvap(z = H)RT

Na

avec nvap(z = H) =
−φS(H − zm)

DS
+

Psat(T )Na

RT
.

On obtient donc P (z = H) = −
φS(H − zm)RT

NaDS
+ Psat(T ).

8. A l’interface air-sol soit en z = H , la pression de vapeur d’eau est continue soit P (z = H) = Pext =

−
φS(H − zm)RT

NaDS
+ Psat(T ), on en déduit φS =

(Psat(T )− Pext)NaDS

(H − zm)RT
.

9. Le nombre de molécules d’eau qui traversent la surface S en z = zm entre t et t+ dt est égal à φSdt.

Ces molécules d’eau viennent de la zone sol mouillé dans laquelle ces molécules sous forme de liquide se sont
vaporisées. A l’instant t, l’interface sol mouillé-sol sec se trouve en zm et A l’instant t + dt, l’interface sol
mouillé-sol sec se trouve en zm + dzm (avec dzm < 0 car l’interface descend). Ainsi le volume −Sdzm est
initialement occupé par de l’eau sous forme liquide, ce volume contient nliq(−Sdzm) molécules d’eau sous
forme liquide qui deviennent vapeur.

On a donc φSdt = nliq(−Sdzm) d’où
dzm
dt

= −
φS

nliqS
< 0: car zm diminue au cours du temps.
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De plus la diffusion est importante, plus il y a de molécules d’eau qui se vaporisent et donc le sol sèche plus
rapidement soit zm diminue plus vite (φS est au numérateur).

De même plus il y a de molécules d’eau liquide dans le sol mouillé, plus ce sera long pour sécher le sol, donc
zm varie lentement quand nliq est grand.

10. On combine les deux équations:
dzm
dt

= −
φS

nliqS
et φS =

(Psat(T )− Pext)NaDS

(H − zm)RT
. On a donc

dzm
dt

=

−
(Psat(T )− Pext)NaD

(H − zm)RTnliq
.

Pour trouver le temps de séchage, on sépare les variables et on intègre entre t = 0 où zm = H et t = τsechage
où zm = 0. Soit:
∫ 0

H

(zm −H)dzm =
(Psat(T )− Pext)NaD

RTnliq

∫ τsechage

0

dt.

avec

∫ τsechage

0

dt = τsechage

avec

∫ 0

H

(zm −H)dzm = [
z2m
2

−Hzm]0H = 0− (
H2

2
−H2) =

H2

2

On obtient donc pour temps de séchage τsechage =
RTnliqH

2

2(Psat(T )− Pext)NaD
.

VIII. Turbine à gaz

1. On écrit les réactions de combustion du méthane et du fuel:

CH4 + 2O2 → CO2 + 2H20

C16H32 + 24O2 → 16CO2 + 16H20

Une mole de fuel, produit par sa combustion à une énergie de 7 600 kJ et à un dégagement de 16 moles de
CO2.

Une mole de méthane, produit par sa combustion à une énergie de 803 kJ et à un dégagement d’une mole
de CO2.

Je cherche le nombre de moles de méthane qui produit la même énergie que la combustion d’une mole de

fuel. Il faut
7600

803
= 9, 5 moles de méthane pour produire la même énergie qu’une mole de fuel. D’après

la réaction de combustion, 9, 5 moles de méthane produisent 9, 5 moles de CO2, ce qui est inférieur aux 16
moles de CO2 produites par le fuel.

Ainsi la combustion du méthane produit moins de CO2 que la combustion du fuel pour une même énergie
libérée.

2. On place le point 3 sur la courbe de rosée à 1 bar et le point 4 sur la courbe d’ébullition à 1 bar.

Les points 1 et 2 sur l’isobare 10 bars.

La transformation 2-3 dans la turbine est adiabatique (pas d’entropie échangée) et réversible (pas d’entropie
créée), elle est donc isentropique.

La transformation 4-1 est isenthalpique.

Point 1 Point 2 Point 3 Point 4
T (0C) 100 410 100 100
P (bar) 10 10 1 1
Etat liquide vapeur sèche vapeur saturante xv = 1 liquide saturant xl = 1

h(kJ.kg−1 410 3300 2700 410
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3. On applique le premier principe industriel dans la turbine soit pour la transformation 2-3 qui est adia-
batique soit: h3 − h2 = wu,23 + q23 = wuT soit wuT = −600 kJ.kg−1 < 0: le fluide donne du travail pour
faire tourner la turbine.

On applique le premier principe industriel dans le générateur de vapeur, transformation 1-2, il ne comprend
pas de pièce mobile donc le travail utile est nul soit: h2−h1 = wu,12+q12 = qGV soit qGV = +2890 kJ.kg−1 >
0: le fluide reçoit du transfert thermique pour être vaporisé (contact avec la source chaude).

On applique le premier principe industriel dans le condenseur, transformation 3-4, il ne comprend pas de
pièce mobile donc le travail utile est nul soit: h4 − h3 = wu,34 + q34 = qcond soit qcond = −2290 kJ.kg−1 > 0:
le fluide donne du transfert thermique en se condensant (contact avec la source froide).

fluide du

  moteur

source chaude 

(générateur

de vapeur)

source froide

(condenseur)

w=wuT<0

qc=qGV>0

qf=qcond<0

Le rendement de ce moteur est défini par l’énergie

produite sur l’énergie couteuse soit r =
−wuT

qGV
=

0, 21.

4. La turbine a un rendement de 100 % donc la puissance mécanique qu’elle reçoit (celle qui lui donne le
fluide soit PuT ) et la puissance électrique de la turbine sont égales.

On a donc Pelec = Dm|wuT | soit Dm =
Pelec

|wuT |
= 0, 42 kg.s−1.
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